[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04357132A - Composition for low-melting sealing - Google Patents

Composition for low-melting sealing

Info

Publication number
JPH04357132A
JPH04357132A JP15998291A JP15998291A JPH04357132A JP H04357132 A JPH04357132 A JP H04357132A JP 15998291 A JP15998291 A JP 15998291A JP 15998291 A JP15998291 A JP 15998291A JP H04357132 A JPH04357132 A JP H04357132A
Authority
JP
Japan
Prior art keywords
sealing
glass
composition
sample
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15998291A
Other languages
Japanese (ja)
Other versions
JP3149929B2 (en
Inventor
Hajime Hikata
元 日方
Hisami Tanaka
久美 田中
Kazuyoshi Shindo
和義 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15705419&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04357132(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP15998291A priority Critical patent/JP3149929B2/en
Publication of JPH04357132A publication Critical patent/JPH04357132A/en
Application granted granted Critical
Publication of JP3149929B2 publication Critical patent/JP3149929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • C03C8/245Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders containing more than 50% lead oxide, by weight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain a sealing composition satisfying characteristics required for a sealing material such as IC package or display device, capable of sealing especially at <=400 deg.C. CONSTITUTION:A composition for low-melting sealing consists of 45-80vol.% glass powder having a composition of 65.0-85.0wt.% PbO, 1.0-11.0wt.% B2O3, 0.2-10.0wt.% Fe2O3, 1.0-15.0wt.% Bi2O3+ZnO+CuO, 0-5.0wt.% SiO2+Al2O3, 0-5.0wt.% V2O5, 0-6.0wt.% F2O and 0-5.0wt.% SnO2 and 20-55vol.% refractory filler powder such as lead titanate-based ceramics, willemite-based ceramics, beta-eucryptite, codierite, zircon-based ceramics, tin oxide-based ceramics, mullite- based ceramics, quartz glass alumina or titanium oxide.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は低融点封着用組成物に関
し、より具体的にはIC用セラミックパッケージや表示
デバイス等の電子部品を封着するのに好適な低融点封着
用組成物に関するものである。
[Field of Industrial Application] The present invention relates to a low melting point sealing composition, and more specifically to a low melting point sealing composition suitable for sealing electronic components such as ceramic packages for ICs and display devices. It is.

【0002】0002

【従来の技術】ICパッケージや表示デバイスの封着に
使用される封着材料には、ICや水晶振動子等に悪影響
を及ぼさないように低温で封着できることや、熱膨張係
数がセラミックや窓板ガラスのそれに適合していること
が要求される。また特にICパッケージ用の封着材料に
は、これらの条件の他に、機械的強度が高いこと、信号
電流がリークしないように絶縁特性が良好であること、
IC素子にα線が照射されるとソフトエラーが発生する
ため、α線を放出する物質を極力含まないこと等の条件
を満たす必要がある。
[Prior Art] Sealing materials used for sealing IC packages and display devices have the ability to seal at low temperatures so as not to adversely affect ICs, crystal resonators, etc., and have thermal expansion coefficients such as those of ceramics and windows. It is required that it conform to that of plate glass. In addition to these conditions, sealing materials for IC packages in particular must have high mechanical strength, good insulation properties to prevent signal current leakage, and
If an IC element is irradiated with alpha rays, a soft error will occur, so it is necessary to satisfy conditions such as containing as little material that emits alpha rays as possible.

【0003】従来より上記諸条件を満たすものとして、
PbO−B2 O3 系、PbO−B2O3 −ZnO
系等の低融点ガラスや、これらのガラスに耐火性フィラ
ーを添加してなる封着材料が各種提案されている。例え
ば本発明者等の発明になる特開平2−229738号に
おいて、PbO−B2 O3 系ガラスに、チタン酸鉛
系セラミック粉末と低膨張性セラミック粉末を添加して
なる封着材料が開示されている。
[0003] Conventionally, as a product that satisfies the above conditions,
PbO-B2O3 system, PbO-B2O3 -ZnO
Various types of low-melting point glasses, such as those of the BACKGROUND ART type, and sealing materials made by adding fire-resistant fillers to these glasses have been proposed. For example, JP-A No. 2-229738, which was invented by the present inventors, discloses a sealing material made by adding lead titanate-based ceramic powder and low-expansion ceramic powder to PbO-B2O3-based glass. .

【0004】0004

【発明が解決しようとする課題】一般に、PbO−B2
 O3 系ガラスやPbO−B2 O3 −ZnO系ガ
ラスにおいて、B2 O3 の含有量が少ないほど転移
点が下がり、封着温度を低くできることが知られている
。しかしながらB2 O3 はガラスの安定化のために
一定量以上含有させる必要があるため、これらのガラス
を使用した封着材料においては低融点化に限界があり、
封着温度を400℃以下にすることが困難である。それ
ゆえこれらの封着材料は熱に非常に敏感な素子、例えば
集積度の高いICや特殊な水晶振動子を搭載したパッケ
ージやデバイスの封着には使用することができないとい
う問題を有している。
[Problem to be solved by the invention] Generally, PbO-B2
It is known that in O3-based glasses and PbO-B2O3-ZnO-based glasses, the lower the content of B2O3, the lower the transition point and the lower the sealing temperature. However, since B2 O3 must be contained in a certain amount or more to stabilize the glass, there is a limit to lowering the melting point of sealing materials using these glasses.
It is difficult to keep the sealing temperature below 400°C. Therefore, these sealing materials have the problem of not being able to be used for sealing packages and devices equipped with highly heat-sensitive elements, such as highly integrated ICs and special crystal oscillators. There is.

【0005】本発明は上記事情に鑑みなされたもので、
ICパッケージや表示デバイス等の封着材料に要求され
る諸特性を満足し、特に400℃以下の温度で封着する
ことが可能である封着用組成物を提供することを目的と
する。
[0005] The present invention has been made in view of the above circumstances.
The object of the present invention is to provide a sealing composition that satisfies various properties required of sealing materials for IC packages, display devices, etc., and is particularly capable of sealing at a temperature of 400° C. or lower.

【0006】[0006]

【課題を解決するための手段】本発明者等は種々の研究
を行った結果、PbO−B2 O3 系ガラスにおいて
、Fe2 O3 がガラスの安定化に非常に効果があり
、このためFe2 O3 を含有させることによってB
2 O3 の含有量を低減できることを見いだし、本発
明として提案するものである。
[Means for Solving the Problems] As a result of various studies conducted by the present inventors, it was found that Fe2 O3 is very effective in stabilizing the PbO-B2 O3 glass, and therefore Fe2 O3 containing Fe2 O3 is very effective in stabilizing the glass. B by letting
It has been discovered that the content of 2 O3 can be reduced, and this is proposed as the present invention.

【0007】即ち、本発明の低融点封着用組成物は、重
量百分率でPbO  65.0〜85.0%、B2 O
3 1.0〜11.0%、Fe2 O3 0.2〜10
.0%、Bi2O3 +ZnO+CuO  1.0〜1
5.0%、SiO2 +Al2 O3 0〜5.0%、
V2 O5 0〜5.0%、F2 0〜6.0%、Sn
O2 0〜5.0%からなることを特徴とする。
That is, the low melting point sealing composition of the present invention contains 65.0 to 85.0% PbO and B2O in weight percentage.
3 1.0-11.0%, Fe2O3 0.2-10
.. 0%, Bi2O3 +ZnO+CuO 1.0~1
5.0%, SiO2 + Al2 O3 0-5.0%,
V2 O5 0-5.0%, F2 0-6.0%, Sn
It is characterized by consisting of 0 to 5.0% O2.

【0008】また本発明の低融点封着用組成物は、重量
百分率でPbO  65.0〜85.0%、B2 O3
 1.0〜11.0%、Fe2 O3 0.2〜10.
0%、Bi2 O3 +ZnO+CuO  1.0〜1
5.0%、SiO2 +Al2 O3 0〜5.0%、
V2 O5 0〜5.0%、F2 0〜6.0%、Sn
O2 0〜5.0%の組成を有するガラス45〜80体
積%と、耐火性フィラー20〜55体積%からなること
を特徴とする。
[0008] The low melting point sealing composition of the present invention also contains 65.0 to 85.0% PbO and B2O3 in weight percentages.
1.0-11.0%, Fe2O3 0.2-10.
0%, Bi2O3 +ZnO+CuO 1.0~1
5.0%, SiO2 + Al2 O3 0-5.0%,
V2 O5 0-5.0%, F2 0-6.0%, Sn
It is characterized by consisting of 45-80% by volume of glass having a composition of 0-5.0% O2 and 20-55% by volume of refractory filler.

【0009】[0009]

【作用】本発明の低融点封着用組成物は、PbO−B2
 O3 系ガラスのB2 O3 の一部をFe2 O3
 で置換し、B2 O3 の含有量を少なくしたもので
ある。
[Operation] The low melting point sealing composition of the present invention is PbO-B2
Part of B2 O3 of O3 glass is converted to Fe2 O3
The content of B2 O3 is reduced.

【0010】本発明の低融点封着用組成物において、ガ
ラス組成を上記のように限定した理由を以下に述べる。
The reason for limiting the glass composition as described above in the low melting point sealing composition of the present invention will be described below.

【0011】PbOの含有量は65.0〜85.0%、
好ましくは70.0〜83.0%である。PbOが65
.0%より少ないとガラスの粘度が高くなって400℃
以下の温度でガラスが十分に流動せず、85.0%より
多いと封着時に結晶化が著しくなって流動しなくなる。
[0011] The content of PbO is 65.0 to 85.0%,
Preferably it is 70.0 to 83.0%. PbO is 65
.. If it is less than 0%, the viscosity of the glass will increase to 400℃.
If the temperature is below 85.0%, the glass will not flow sufficiently, and if it exceeds 85.0%, crystallization will become significant during sealing and the glass will not flow.

【0012】B2 O3 の含有量は1.0〜11.0
%、好ましくは2.0〜10.0%である。B2 O3
 が1.0%より少ないとガラスが不安定となり、封着
時に結晶化が著しくなって流動せず、11.0%より多
いとガラスの粘度が高くなって400℃以下の温度で十
分に流動しなくなる。
[0012] The content of B2 O3 is 1.0 to 11.0.
%, preferably 2.0 to 10.0%. B2 O3
If it is less than 1.0%, the glass will become unstable and crystallization will be significant during sealing and will not flow, and if it is more than 11.0%, the viscosity of the glass will be high and it will not flow sufficiently at temperatures below 400°C. I won't.

【0013】Fe2 O3 はガラスを安定化させる働
きがあり、その含有量は0.2〜10.0%、好ましく
は0.5〜8.5%である。Fe2 O3 が0.2%
より少ないと上記した効果がなく、封着時に結晶化が著
しくなって流動しなくなり、10.0%より多いとガラ
スの粘度が高くなって400℃以下の温度で十分流動し
なくなる。
[0013] Fe2 O3 has the function of stabilizing glass, and its content is 0.2 to 10.0%, preferably 0.5 to 8.5%. Fe2O3 is 0.2%
If the amount is less than 10.0%, the above-mentioned effect will not be obtained, and crystallization will become significant during sealing, and the glass will not flow properly.If it is more than 10.0%, the viscosity of the glass will become high and the glass will not flow sufficiently at temperatures below 400°C.

【0014】Bi2 O3 、ZnO及びCuOは、ガ
ラスの粘性を上げずに、ガラスを安定化させる成分であ
り、合量で1.0〜15.0%含有する。Bi2 O3
 、ZnO、及びCuOの合量が1.0%より少ないと
結晶化が著しくなって流動性が低下し、400℃以下の
温度で封着できなくなる。また15.0%より多い場合
も封着時に結晶の析出が著しくなり、流動性が低下する
。なおこれらの成分中、特にBi2 O3 は上記した
効果が大きく、1.0〜15.0%含有することが好ま
しい。またZnO及びCuOの含有量はそれぞれ、0〜
10.0%、0〜5.0%の範囲にあることが好ましい
Bi2 O3, ZnO and CuO are components that stabilize the glass without increasing its viscosity, and are contained in a total amount of 1.0 to 15.0%. Bi2 O3
If the total amount of , ZnO, and CuO is less than 1.0%, crystallization will become significant, fluidity will decrease, and sealing will not be possible at temperatures below 400°C. Moreover, if the amount is more than 15.0%, crystal precipitation becomes significant during sealing, resulting in a decrease in fluidity. Among these components, Bi2 O3 has the above-mentioned effect particularly, and is preferably contained in an amount of 1.0 to 15.0%. In addition, the contents of ZnO and CuO are respectively 0 to 0.
10.0%, preferably in the range of 0 to 5.0%.

【0015】SiO2 及びAl2 O3 は失透を防
止する効果があり、その含有量は合量で0〜5.0%、
好ましくは0〜3.0%である。SiO2 とAl2 
O3 が合量で5%より多いとガラスの粘度が高くなっ
て流動性が悪くなる。
[0015] SiO2 and Al2O3 have the effect of preventing devitrification, and their total content is 0 to 5.0%,
Preferably it is 0 to 3.0%. SiO2 and Al2
If the total amount of O3 is more than 5%, the viscosity of the glass will increase and the fluidity will deteriorate.

【0016】V2 O5 はガラスの表面張力を下げて
流動性を向上させる成分であり、その含有量は0〜5.
0%、好ましくは0〜3.0%である。V2 O5 が
5.0%より多いとガラスの結晶化が著しくなって流動
しなくなる。
V2O5 is a component that lowers the surface tension of glass and improves its fluidity, and its content ranges from 0 to 5.
0%, preferably 0-3.0%. If the V2 O5 content is more than 5.0%, the crystallization of the glass will become significant and the glass will not flow.

【0017】F2 はガラスの封着温度を下げる働きが
あり、その含有量は0〜6.0%、好ましくは0〜4.
0%である。F2 が6.0%より多いと封着時に結晶
化が著しくなって流動し難くなる。
F2 has the function of lowering the sealing temperature of glass, and its content is 0 to 6.0%, preferably 0 to 4.0%.
It is 0%. If the F2 content is more than 6.0%, crystallization becomes significant during sealing, making it difficult to flow.

【0018】SnO2 はガラスを安定化するために0
〜5.0%、好ましくは0〜2.0%含有する。SnO
2 が5.0%より多いとガラスの粘度が高くなって流
動し難くなる。
[0018] SnO2 is added to stabilize the glass.
-5.0%, preferably 0-2.0%. SnO
When 2 is more than 5.0%, the viscosity of the glass becomes high and it becomes difficult to flow.

【0019】なお上記成分以外にも、5%以下のAg2
 O、SrO、BaO、P2 O5 、Co2 O3 
や、3%以下のMo2 O3 、Rb2 O、Cs2 
O、Nb2 O5 、Ta2O3 、ZrO2 、Ce
O2 、NiO、Cr2 O3 、Sb2 O3 、及
びLa2 O3等の希土類酸化物を他成分として含有さ
せることが可能である。
[0019] In addition to the above components, 5% or less of Ag2
O, SrO, BaO, P2 O5, Co2 O3
, 3% or less Mo2 O3, Rb2 O, Cs2
O, Nb2O5, Ta2O3, ZrO2, Ce
It is possible to contain rare earth oxides such as O2, NiO, Cr2O3, Sb2O3, and La2O3 as other components.

【0020】以上のような組成を有するガラスは、ガラ
ス転移点が240〜300℃と低く、しかもガラスとし
て安定しており、また良好な流動性を示すため、低温で
の封着が可能な封着用組成物である。しかし、30〜2
50℃における熱膨張係数が110〜140×10−7
とアルミナ(70×10−7/℃)、窒化アルミニウム
(45×10−7/℃)、窓板ガラス(85×10−7
/℃)に比べて高いため、これらの材料を用いたICパ
ッケージや表示デバイス等の封着を行うには熱膨張係数
を調節する必要がある。
[0020] Glass having the above composition has a low glass transition point of 240 to 300°C, is stable as a glass, and exhibits good fluidity, so it is a sealing material that can be sealed at low temperatures. A wearable composition. However, 30-2
Thermal expansion coefficient at 50°C is 110 to 140 x 10-7
and alumina (70×10-7/℃), aluminum nitride (45×10-7/℃), window glass (85×10-7
/°C), so it is necessary to adjust the coefficient of thermal expansion in order to seal IC packages, display devices, etc. using these materials.

【0021】本発明の低融点封着用組成物は、先記した
範囲で耐火性フィラーを含有することにより、ICパッ
ケージや表示デバイス等の封着に適した熱膨張係数を得
ることができる。耐火性フィラーとしては、チタン酸鉛
系セラミック、ウイレマイト系セラミック、β−ユーク
リプタイト、コーディエライト、ジルコン系セラミック
、酸化錫系セラミック、ムライト系セラミック、石英ガ
ラス、アルミナ、酸化チタン等の粉末を単独、又は組み
合わせて使用することが好ましい。
The low-melting point sealing composition of the present invention can obtain a thermal expansion coefficient suitable for sealing IC packages, display devices, etc. by containing the refractory filler within the above-mentioned range. As the refractory filler, powders such as lead titanate ceramic, willemite ceramic, β-eucryptite, cordierite, zircon ceramic, tin oxide ceramic, mullite ceramic, quartz glass, alumina, and titanium oxide are used. It is preferable to use them alone or in combination.

【0022】本発明において、ガラスと耐火性フィラー
の混合割合を先記のように限定した理由を以下に示す。
[0022] In the present invention, the reason why the mixing ratio of glass and refractory filler is limited as described above will be explained below.

【0023】ガラスが45%より少ない場合、即ち耐火
性フィラーが55%より多い場合は流動性が悪くなって
400℃以下の温度で封着できなくなる。一方、ガラス
が80%より多い場合、即ち耐火性フィラーが20%よ
り少ない場合は上記した効果が得られなくなる。
[0023] If the glass content is less than 45%, that is, if the refractory filler content is more than 55%, the fluidity will be poor and sealing will not be possible at temperatures below 400°C. On the other hand, when the glass content is more than 80%, that is, when the fire-resistant filler content is less than 20%, the above-mentioned effects cannot be obtained.

【0024】次に本発明の低融点封着用組成物の製造方
法を述べる。まず所望の組成になるように各原料を調合
し、700〜1000℃で1〜2時間溶融した後、板状
に成形する。次にこの板状物をボールミル等により粉砕
した後、所定粒度に分級して粉末状のガラスとする。ま
た必要に応じて、このようにして得られたガラス粉末と
耐火性フィラーを所定の割合で混合する。
Next, a method for producing the low melting point sealing composition of the present invention will be described. First, each raw material is mixed to have a desired composition, melted at 700 to 1000°C for 1 to 2 hours, and then formed into a plate shape. Next, this plate-like material is pulverized using a ball mill or the like, and then classified to a predetermined particle size to obtain powdered glass. Further, if necessary, the glass powder thus obtained and the refractory filler are mixed in a predetermined ratio.

【0025】[0025]

【実施例】以下、実施例に基づいて本発明の低融点封着
用組成物を説明する。
EXAMPLES The low melting point sealing composition of the present invention will be explained below based on Examples.

【0026】(実施例1)表1は、PbO−B2 O3
 系ガラスにおけるFe2 O3 の効果を説明するも
のであり、試料No. aは一般的なPbO−B2 O
3 系ガラス、試料No. bは試料No. aの組成
からB2 O3 の含有量を4%を少なくしたPbO−
B2 O3 系ガラス、試料No. cは試料No. 
bに2%のFe2 O3 を添加した本発明の低融点封
着用組成物を示している。
(Example 1) Table 1 shows PbO-B2 O3
This is to explain the effect of Fe2 O3 on glass based on sample No. a is general PbO-B2O
3 series glass, sample No. b is sample No. PbO- with the B2 O3 content reduced by 4% from the composition of a.
B2 O3 type glass, sample No. c is sample No.
2 shows a low melting point sealing composition of the present invention in which 2% of Fe2O3 is added to b.

【0027】[0027]

【表1】[Table 1]

【0028】表1の試料は次のようにして調製した。The samples in Table 1 were prepared as follows.

【0029】表中の組成になるように原料粉末を調合、
混合し、白金坩堝に入れて900℃で1時間溶融し、薄
板状に成形した後、粉砕し、250メッシュのステンレ
ス製篩を通過させて平均粒径が4μmの試料を得た。
[0029] Mix raw material powder to have the composition shown in the table,
The mixture was mixed, placed in a platinum crucible, and melted at 900° C. for 1 hour, formed into a thin plate, pulverized, and passed through a 250-mesh stainless steel sieve to obtain a sample with an average particle size of 4 μm.

【0030】表1から明らかなように、B2 O3 の
含有量を少なくした試料No. bはガラス転移点が2
85℃であり、試料No. aに比べて20℃低下した
ものの、流動性及び安定性が不良であった。一方、Fe
2 O3 を添加した試料No. cは、ガラス転移点
が287℃であり、試料No. bと同等の低い値を示
し、しかも流動性が試料No. aより優れており、ま
た安定性が良好であった。
As is clear from Table 1, sample No. 1 with a reduced content of B2 O3. b has a glass transition point of 2
The temperature was 85°C, and sample no. Although the temperature was lowered by 20°C compared to a, the fluidity and stability were poor. On the other hand, Fe
Sample No. 2 O3 added. Sample No. c has a glass transition point of 287°C. It shows a low value equivalent to that of sample No. b, and the fluidity is as low as that of sample No. It was superior to A and had good stability.

【0031】これらの事実は、ガラス転移点を低くする
ためにB2 O3 の含有量を少なくしても、Fe2 
O3 を添加することによって良好な流動性及び安定性
が得られ、低温での封着が可能な封着用組成物が得られ
ることを示している。
These facts show that even if the content of B2 O3 is reduced in order to lower the glass transition point, Fe2
This shows that by adding O3, good fluidity and stability can be obtained, and a sealing composition that can be sealed at low temperatures can be obtained.

【0032】なお、ガラス転移点は示差熱分析計(DT
A)により求めた。また流動性は、試料から外径20m
m、高さ5mmのボタンを作製した後、380℃、10
分の条件で加熱し、このときのボタンの直径が23mm
を超えるものを良、20〜23mmのものを可、20m
m未満のものを不可とした。安定性は、流動性試験後の
試料表面を目視で観察し、結晶が全く認められなかった
ものを良、認められたものを不可とした。
[0032] The glass transition point was measured using a differential thermal analyzer (DT).
A). In addition, the fluidity was measured at an outer diameter of 20 m from the sample.
After making a button with a height of 5 mm, it was heated at 380°C for 10
Heated it under the conditions of 1 minute, and the diameter of the button at this time was 23 mm.
Good if over 20 to 23 mm, OK if over 20 m
Those less than m were not accepted. Stability was determined by visually observing the surface of the sample after the fluidity test, and those in which no crystals were observed were graded as good, and those in which any crystals were observed were graded as poor.

【0033】(実施例2)表2は本発明におけるガラス
からなる低融点封着用組成物の実施例を示すものである
(Example 2) Table 2 shows examples of low melting point sealing compositions made of glass according to the present invention.

【0034】[0034]

【表2】[Table 2]

【0035】表2から明らかなように、試料No. A
〜Fはガラス転移点が246〜295℃、熱膨張係数が
115〜132×10−7/℃であり、すべて良好な流
動性を示した。
As is clear from Table 2, sample No. A
~F had a glass transition point of 246 to 295°C, a thermal expansion coefficient of 115 to 132 x 10-7/°C, and all exhibited good fluidity.

【0036】なお、表2の各試料は、実施例1と同様に
して調製した。
[0036] Each sample in Table 2 was prepared in the same manner as in Example 1.

【0037】表3及び表4は、表2の各試料に耐火性フ
ィラーを混合して作製したICパッケージ用の低融点封
着用組成物の実施例(試料No. 1〜9)を示すもの
である。
Tables 3 and 4 show examples (sample Nos. 1 to 9) of low melting point sealing compositions for IC packages prepared by mixing each sample in Table 2 with a fire-resistant filler. be.

【0038】[0038]

【表3】[Table 3]

【0039】[0039]

【表4】[Table 4]

【0040】表3及び表4から明らかなように、試料N
o. 1〜9は、封着温度が360〜400℃、抗折強
度が590〜680kg/cm2 、絶縁抵抗が13.
2〜14.8Ω・cm、α線放出量が0.11〜0.2
5count/cm2 ・hrと良好な値を示した。ま
た熱膨張係数は、試料No. 1〜6が60〜73×1
0−7/℃、試料No. 7〜9が51〜55×10−
7/℃であり、それぞれアルミナ(70×10−7/℃
)、窒化アルミニウム(45×10−7/℃)に近似し
た値を示した。
As is clear from Tables 3 and 4, sample N
o. Nos. 1 to 9 have a sealing temperature of 360 to 400°C, a bending strength of 590 to 680 kg/cm2, and an insulation resistance of 13.
2 to 14.8 Ω・cm, alpha ray emission amount is 0.11 to 0.2
It showed a good value of 5 counts/cm2·hr. In addition, the thermal expansion coefficient of sample No. 1 to 6 is 60 to 73 x 1
0-7/℃, sample no. 7 to 9 is 51 to 55 x 10-
7/℃, and alumina (70×10-7/℃), respectively.
), showed a value close to that of aluminum nitride (45 x 10-7/°C).

【0041】表5は、表2の試料に耐火性フィラーを混
合して作製した表示デバイス用の低融点封着用組成物の
実施例(試料No. 10〜12)を示すものである。
Table 5 shows examples (Samples Nos. 10 to 12) of low melting point sealing compositions for display devices prepared by mixing the samples in Table 2 with a refractory filler.

【0042】[0042]

【表5】[Table 5]

【0043】表5から明らかなように、試料No. 1
0〜12は封着温度が380〜390℃と低く、また熱
膨張係数は73〜78×10−7/℃であり、窓板ガラ
スのそれ(85×10−7/℃)に近似した値を示した
As is clear from Table 5, sample No. 1
0 to 12 has a low sealing temperature of 380 to 390°C, and a thermal expansion coefficient of 73 to 78 x 10-7/°C, which is a value close to that of window glass (85 x 10-7/°C). Indicated.

【0044】これらの事実は、本発明の低融点封着用組
成物がICパッケージや表示デバイスの封着材料に求め
られる諸条件を満足し、特に400℃以下の低い温度で
封着できること、また耐火性フィラー粉末を適当量含有
することにより、熱膨張係数をアルミナ、窒化アルミニ
ウム、窓板ガラス等に適合するように調節できることを
示している。
These facts demonstrate that the low melting point sealing composition of the present invention satisfies the various conditions required for sealing materials for IC packages and display devices, can be sealed at low temperatures of 400°C or less, and is fire resistant. This shows that by containing an appropriate amount of filler powder, the coefficient of thermal expansion can be adjusted to suit alumina, aluminum nitride, window glass, etc.

【0045】なお、熱膨張係数は、押棒式熱膨張測定装
置を用いて測定した。また各試料から作製した外径20
mm、高さ5mmのボタンを加熱して流動させ、その外
径が21mm以上となった時の温度を封着温度とした。 抗折強度は試料を焼結した後、10×10×50mmの
角柱に成形し、3点荷重測定法によって求めた。絶縁抵
抗はメガオームメーターを用いて150℃における値を
測定し、α線放出量はZnSシンチレーションカウンタ
ーを用いて測定した。
The coefficient of thermal expansion was measured using a push rod type thermal expansion measuring device. In addition, the outer diameter 20 made from each sample
A button with a diameter of 5 mm and a height of 5 mm was heated to flow, and the temperature at which the outer diameter became 21 mm or more was defined as the sealing temperature. The bending strength was determined by sintering the sample, forming it into a 10 x 10 x 50 mm square column, and using a three-point load measurement method. Insulation resistance was measured at 150° C. using a megohmmeter, and α-ray emission was measured using a ZnS scintillation counter.

【0046】また表3乃至表5に示した耐火性フィラー
は次のようにして作製した。
The fire-resistant fillers shown in Tables 3 to 5 were produced in the following manner.

【0047】チタン酸鉛系セラミックは、リサージ、酸
化チタン、炭酸カルシウムを重量%でPbO  65%
、TiO2 30%、CaO  5%の組成になるよう
に調合し、混合後、1100℃で5時間焼成し、次いで
この焼成物をアルミナボールにて粉砕し、350メッシ
ュのステンレス製篩を通過させ、平均粒径が5μmの粉
末状とした。
The lead titanate ceramic contains litharge, titanium oxide, and calcium carbonate in a weight percent of PbO of 65%.
, 30% TiO2, and 5% CaO, and after mixing, it was fired at 1100°C for 5 hours, and then the fired product was crushed with an alumina ball and passed through a 350 mesh stainless steel sieve. It was made into a powder with an average particle size of 5 μm.

【0048】ウイレマイト系セラミックは、亜鉛華、光
学石粉、酸化アルミニウムを重量%でZnO  70%
、SiO2 25%、Al2 O3 5%の組成になる
ように調合し、混合後、1440℃で15時間焼成し、
次いでこの焼成物を粉砕し、250メッシュのステンレ
ス製篩を通過したものを使用した。
The willemite ceramic contains zinc white, optical stone powder, and aluminum oxide in a weight percent of ZnO of 70%.
, 25% SiO2 and 5% Al2O3, and after mixing, baked at 1440°C for 15 hours,
Next, this fired product was pulverized and passed through a 250 mesh stainless steel sieve before being used.

【0049】β−ユークリプタイトは、炭酸リチウム、
アルミナ、光学石粉をLi2 O・Al2 O3 ・2
SiO2 の組成になるように調合し、混合後、125
0℃で5時間焼成し、次いでこの焼成物を粉砕し、25
0メッシュのステンレス製篩を通過したものを使用した
β-eucryptite is lithium carbonate,
Alumina, optical stone powder Li2 O・Al2 O3 ・2
Mixed to have a composition of SiO2, and after mixing, 125
Calcinate at 0°C for 5 hours, then crush the fired product,
The material that passed through a 0 mesh stainless steel sieve was used.

【0050】ジルコン系セラミックは次のようにして作
製した。まず、天然ジルコンサンドを一旦ソーダ分解し
、塩酸に溶解した後、濃縮結晶化を繰り返すことによっ
て、α線放出物質であるU、Thの極めて少ないオキシ
塩化ジルコニウムにし、アルカリ中和後、加熱して精製
ZrO2 を得た。さらにこの精製ZrO2 に高純度
珪石粉、酸化第二鉄を重量%でZrO2 66%、Si
O2 32%、Fe2 O3 2%の組成になるように
調合し、混合後、1400℃で16時間焼成し、次いで
この焼成物を粉砕し、250メッシュのステンレス製篩
を通過したものを使用した。
The zircon ceramic was produced as follows. First, natural zircon sand is decomposed with soda, dissolved in hydrochloric acid, and then concentrated and crystallized repeatedly to produce zirconium oxychloride with extremely low U and Th content, which are α-ray emitting substances. After neutralization with alkali, the mixture is heated. Purified ZrO2 was obtained. Furthermore, high-purity silica powder and ferric oxide were added to this purified ZrO2 in weight percentages of 66% ZrO2 and Si.
The composition was prepared to have a composition of 32% O2 and 2% Fe2O3, and after mixing, it was fired at 1400°C for 16 hours, and then the fired product was pulverized and passed through a 250 mesh stainless steel sieve and used.

【0051】酸化錫系セラミックは、重量%でSnO2
 93%、TiO2 2%、MnO2 5%の組成にな
るように調合し、混合後、1400℃で16時間焼成し
、次いでこの焼成物を粉砕し、250メッシュのステン
レス篩を通過したものを使用した。
[0051] The tin oxide ceramic contains SnO2 in weight%.
93% TiO2, 2% MnO2, and 5% MnO2. After mixing, it was fired at 1400°C for 16 hours, and then the fired product was crushed and passed through a 250 mesh stainless steel sieve. .

【0052】ムライト系セラミックは、酸化アルミニウ
ム、光学石粉を3Al2 O3 ・2SiO2 の組成
になるように調合し、混合後、1600℃で10時間焼
成し、次いでこの焼成物を粉砕し、250メッシュのス
テンレス製篩を通過したものを使用した。
[0052] Mullite ceramic is prepared by mixing aluminum oxide and optical stone powder to have a composition of 3Al2O3.2SiO2, and after mixing, firing at 1600°C for 10 hours, then crushing the fired product, and molding it into 250 mesh stainless steel. The material that passed through a sieve was used.

【0053】コーディエライトは、酸化マグネシウム、
酸化アルミニウム、光学石粉を2MgO・2Al2 O
3 ・5SiO2 の割合になるように調合し、混合後
、1400℃で10時間焼成し、次いでこの焼成物を粉
砕し、250メッシュのステンレス製篩を通過したもの
を使用した。
Cordierite is magnesium oxide,
Aluminum oxide, optical stone powder 2MgO・2Al2O
3.5SiO2, and after mixing, it was fired at 1400°C for 10 hours, and then the fired product was crushed and passed through a 250 mesh stainless steel sieve and used.

【0054】[0054]

【発明の効果】以上説明したように、本発明の低融点封
着用組成物は、ICパッケージや表示デバイス等の封着
材料に要求される諸特性を満足し、特に400℃以下の
低い温度での封着が可能なものである。
Effects of the Invention As explained above, the low melting point sealing composition of the present invention satisfies various properties required for sealing materials for IC packages, display devices, etc., and is particularly effective at low temperatures below 400°C. can be sealed.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  重量百分率でPbO  65.0〜8
5.0%、B2 O3 1.0〜11.0%、Fe2 
O3 0.2〜10.0%、Bi2 O3 +ZnO+
CuO1.0〜15.0%、SiO2 +Al2 O3
 0〜5.0%、V2 O5 0〜5.0%、F2 0
〜6.0%、SnO2 0〜5.0%からなることを特
徴とする低融点封着用組成物。
Claim 1: PbO 65.0-8 in weight percentage
5.0%, B2 O3 1.0-11.0%, Fe2
O3 0.2-10.0%, Bi2 O3 +ZnO+
CuO1.0-15.0%, SiO2 +Al2O3
0-5.0%, V2 O5 0-5.0%, F2 0
6.0% and SnO2 0 to 5.0%.
【請求項2】  重量百分率でPbO  65.0〜8
5.0%、B2 O3 1.0〜11.0%、Fe2 
O3 0.2〜10.0%、Bi2 O3 +ZnO+
CuO1.0〜15.0%、SiO2 +Al2 O3
 0〜5.0%、V2 O5 0〜5.0%、F2 0
〜6.0%、SnO2 0〜5.0%の組成を有するガ
ラス45〜80体積%と、耐火性フィラー20〜55体
積%からなることを特徴とする低融点封着用組成物。
Claim 2: PbO 65.0 to 8 in weight percentage
5.0%, B2 O3 1.0-11.0%, Fe2
O3 0.2-10.0%, Bi2 O3 +ZnO+
CuO1.0-15.0%, SiO2 +Al2O3
0-5.0%, V2 O5 0-5.0%, F2 0
6.0%, SnO2 0 to 5.0% by volume, and 20 to 55 volume% of a fire-resistant filler.
JP15998291A 1991-06-03 1991-06-03 Low melting point sealing composition Expired - Fee Related JP3149929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15998291A JP3149929B2 (en) 1991-06-03 1991-06-03 Low melting point sealing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15998291A JP3149929B2 (en) 1991-06-03 1991-06-03 Low melting point sealing composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000235397A Division JP3402314B2 (en) 2000-08-03 2000-08-03 Method for producing low melting point sealing composition and method for using the same

Publications (2)

Publication Number Publication Date
JPH04357132A true JPH04357132A (en) 1992-12-10
JP3149929B2 JP3149929B2 (en) 2001-03-26

Family

ID=15705419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15998291A Expired - Fee Related JP3149929B2 (en) 1991-06-03 1991-06-03 Low melting point sealing composition

Country Status (1)

Country Link
JP (1) JP3149929B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163106A (en) * 1997-09-09 2000-12-19 Asahi Glass Company Ltd. Color cathode ray tube and water resistant glass frit
US6583079B1 (en) * 1999-02-19 2003-06-24 Nippon Electric Glass Co., Ltd. CRT frit capable of sealing a CRT bulb at a relatively low temperature and in a short time

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163106A (en) * 1997-09-09 2000-12-19 Asahi Glass Company Ltd. Color cathode ray tube and water resistant glass frit
US6583079B1 (en) * 1999-02-19 2003-06-24 Nippon Electric Glass Co., Ltd. CRT frit capable of sealing a CRT bulb at a relatively low temperature and in a short time

Also Published As

Publication number Publication date
JP3149929B2 (en) 2001-03-26

Similar Documents

Publication Publication Date Title
JP3424219B2 (en) Low melting point sealing composition
US5346863A (en) Low temperature sealing composition
JPS62191442A (en) Low-melting sealing composition
US4883777A (en) Sealing glass composition with filler containing Fe and W partially substituted for Ti in PbTiO3 filler
US5116786A (en) Low temperature sealing glass composition
JP2002037644A (en) Glass for sealing and sealing material which uses it
JP3402314B2 (en) Method for producing low melting point sealing composition and method for using the same
JP2002179436A (en) Silver phosphate glass and sealing material by using the same
JPH04357132A (en) Composition for low-melting sealing
JPH05170481A (en) Seal bonding composition having low melting point
JP3151794B2 (en) Low melting point sealing composition
JP3496687B2 (en) Low melting point sealing composition
JPH0597470A (en) Sealing composition having low melting point
JP3760455B2 (en) Adhesive composition
JP3082862B2 (en) Sealing material
JPH08231242A (en) Low melting point sealing composition
JP3534257B2 (en) Sealing material
JP3180299B2 (en) Low melting point sealing composition
JP4573204B2 (en) Glass for sealing and sealing material using the same
JP2968985B2 (en) Low melting point sealing composition
JPH0144656B2 (en)
JPH06171975A (en) Low melting point sealing composition
JP3409804B2 (en) Low expansion sealing material
JPH08157234A (en) Composition for sealing
JPH07315867A (en) Composition for sealing

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees