JPH04341694A - Structure of vacuum heat insulation box body - Google Patents
Structure of vacuum heat insulation box bodyInfo
- Publication number
- JPH04341694A JPH04341694A JP3113617A JP11361791A JPH04341694A JP H04341694 A JPH04341694 A JP H04341694A JP 3113617 A JP3113617 A JP 3113617A JP 11361791 A JP11361791 A JP 11361791A JP H04341694 A JPH04341694 A JP H04341694A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- box
- inner box
- deformation
- box body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009413 insulation Methods 0.000 title claims abstract description 26
- 239000012528 membrane Substances 0.000 claims abstract description 44
- 239000011810 insulating material Substances 0.000 claims description 8
- 230000035882 stress Effects 0.000 abstract description 21
- 230000008646 thermal stress Effects 0.000 abstract description 7
- 239000012212 insulator Substances 0.000 abstract 1
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 230000007423 decrease Effects 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Landscapes
- Thermal Insulation (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、真空断熱箱体の構造に
関し、特に高温の品物を収容するのに好適な真空断熱箱
体の構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of a vacuum insulated box, and more particularly to the structure of a vacuum insulated box suitable for accommodating high temperature items.
【0002】0002
【従来の技術】従来の真空断熱箱体は、たとえば図9に
示すように、内箱1と外箱2とにより一方に開口3を有
する二重壁構造の箱体を形成して、内箱1と外箱2との
間に真空断熱層4を形成している。また、真空断熱層4
を密封するメンブレン5により、内箱1の端部壁6と外
箱2との開口側周縁どうしを連結している。外箱2の開
周縁に設けたフランジ7に断熱蓋8が被せられることで
、真空断熱容器が構成される。真空断熱層4には、粉末
断熱材が充填されている。メンブレン5は薄板で構成さ
れ、熱伝導による放熱を少なくして断熱特性を維持する
ようにされている。2. Description of the Related Art Conventional vacuum insulated boxes, for example as shown in FIG. A vacuum heat insulating layer 4 is formed between the outer box 1 and the outer box 2. In addition, the vacuum insulation layer 4
The end wall 6 of the inner box 1 and the opening side periphery of the outer box 2 are connected to each other by a membrane 5 that seals the inner box 1 and the outer box 2. A vacuum insulated container is constructed by covering a flange 7 provided on the open peripheral edge of the outer box 2 with a heat insulating lid 8. The vacuum heat insulating layer 4 is filled with a powder heat insulating material. The membrane 5 is made of a thin plate, and is designed to reduce heat radiation due to thermal conduction and maintain heat insulating properties.
【0003】0003
【発明が解決しようとする課題】しかし、上記従来の真
空断熱箱体に高温の品物を収容すると、図10に示すよ
うに、内箱1が温度上昇してメンブレン側に長さΔlだ
け膨張する。そして図示の端部構造ではメンブレン5に
変形が集中して、図示のa部に大きな応力が発生する。[Problems to be Solved by the Invention] However, when high-temperature items are housed in the conventional vacuum insulated box described above, the temperature of the inner box 1 rises and expands by a length Δl toward the membrane side, as shown in FIG. . In the illustrated end structure, deformation concentrates on the membrane 5, and a large stress is generated in the illustrated portion a.
【0004】その原因を図11により説明する。内箱1
がメンブレン側にΔlだけ膨張することにより、図11
(a) に示すように、図10のa部におけるメンブレ
ンの内面および外面に曲げによる圧縮応力および引張応
力がそれぞれ発生する。また内箱1およびメンブレン5
の周方向への膨張が外箱2で拘束されることにより、図
11(b) に示すように、図10のa部の断面に圧縮
応力が発生する。そのため、図11(c) に示すよう
に、このa部には、同図(a)(b)の応力を合計した
応力が発生し、特にメンブレン5の真空層側表面に大き
な圧縮応力が発生する。その結果、内箱1の加熱,冷却
を繰り返すとこのa部が熱応力によって破損するおそれ
があり、真空断熱箱体の寿命すなわち耐久性が低下する
という問題点がある。The cause will be explained with reference to FIG. Inner box 1
expands toward the membrane side by Δl, and as a result, as shown in FIG.
As shown in (a), compressive stress and tensile stress due to bending are generated on the inner and outer surfaces of the membrane at section a in FIG. 10, respectively. Also, inner box 1 and membrane 5
As the expansion in the circumferential direction is restrained by the outer box 2, compressive stress is generated in the cross section of section a in FIG. 10, as shown in FIG. 11(b). Therefore, as shown in FIG. 11(c), a stress that is the sum of the stresses shown in FIG. do. As a result, if the inner box 1 is repeatedly heated and cooled, there is a risk that this part a will be damaged due to thermal stress, resulting in a problem that the life span, that is, the durability of the vacuum insulated box body will be reduced.
【0005】そこで本発明はこのような問題点を解決し
、メンブレンに作用する応力を緩和して、真空断熱箱体
の寿命を向上させることを目的とする。SUMMARY OF THE INVENTION It is an object of the present invention to solve these problems, alleviate the stress acting on the membrane, and improve the life of the vacuum insulation box.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に本発明は、内箱と外箱とにより一方に開口を有する二
重構造の箱体を形成し、内箱と外箱との間に真空断熱層
を形成し、この真空断熱層を密封するメンブレンにより
内箱と外箱との開口側周縁を連結した真空断熱箱体にお
いて、前記内箱におけるメンブレンの近傍の部分に、内
部からメンブレンへの方向の内箱の熱抵抗を増大させる
湾曲部を形成し、この湾曲部の内部に、断熱材とこの湾
曲部の変形を一定範囲に制限する変形部材とを設けたも
のである。[Means for Solving the Problems] In order to achieve the above object, the present invention forms a double-structured box body having an opening on one side by an inner box and an outer box, and provides a space between the inner box and the outer box. In a vacuum insulated box body in which a vacuum insulating layer is formed on the inner box and the opening side periphery of the inner box and the outer box are connected by a membrane that seals this vacuum insulating layer, a membrane is applied from the inside to a portion of the inner box near the membrane. A curved portion that increases the thermal resistance of the inner box in the direction of
【0007】[0007]
【作用】上記構成の真空断熱箱体においては、内箱にお
けるメンブレンの近傍の部分に湾曲部を形成しているの
で、その部分の伝熱径路が長くなって熱抵抗が増大する
。そのため、内箱の開口側周縁部分およびメンブレンの
温度が低下して、内箱およびメンブレンの周方向への膨
張による圧縮応力(図11(b) )が減少する。また
、湾曲部の内部に変形抑止部材を設けているので、湾曲
部の変形が制限され、この湾曲部に発生する応力がメン
ブレンに発生する応力と同等またはそれ以下となる。こ
の結果、熱応力に対する真空断熱箱体の寿命が向上する
。さらに、湾曲部の内部の断熱材は、空隙を無くして空
気の対流を阻止し、またヒートブリッジ部の熱抵抗を増
加して放熱量を減少させる。そのため、真空断熱箱体の
断熱性能が向上する。[Operation] In the vacuum insulation box having the above structure, since a curved portion is formed in the inner box near the membrane, the heat transfer path in that portion becomes longer and the thermal resistance increases. Therefore, the temperature of the opening-side peripheral portion of the inner box and the membrane decreases, and the compressive stress (FIG. 11(b)) due to expansion of the inner box and membrane in the circumferential direction decreases. Further, since the deformation suppressing member is provided inside the curved portion, deformation of the curved portion is restricted, and the stress generated in the curved portion is equal to or lower than the stress generated in the membrane. As a result, the life of the vacuum insulation box against thermal stress is improved. Further, the heat insulating material inside the curved portion eliminates air gaps to prevent air convection, and also increases the thermal resistance of the heat bridge portion to reduce the amount of heat dissipated. Therefore, the insulation performance of the vacuum insulation box is improved.
【0008】[0008]
(実施例1)図1および図2に示すように、内箱1の端
部壁6におけるメンブレン近傍部分には、内箱1の内部
からメンブレンへ向かう方向の熱抵抗を増大させる湾曲
部19を、真空断熱層4内に突出するように形成してい
る。湾曲部19の内部には、断熱材20を充填するとと
もに、図3に示すように、湾曲部19の変形を一定範囲
ΔLに制限する複数の変形抑止部材21を、適当間隔お
きに挿入している。また、湾曲部19には金網などの押
さえ部材22を設けることにより、断熱材20および変
形抑止部材21が湾曲部19から脱出しないように支持
している。断熱材20としては、ロックウール,グラス
ウール,セラミックウールなどが好適である。また、変
形抑止部材21は、図4(a) に示すような鞍形枠体
とするか、または図4(b) に示すようなブロック状
に成形されている。その材料には、耐圧性とある程度の
断熱性とを有する珪酸カルシウム成形体や断熱キャスタ
などが使用される。(Example 1) As shown in FIGS. 1 and 2, the end wall 6 of the inner box 1 is provided with a curved portion 19 in the vicinity of the membrane to increase the thermal resistance in the direction from the inside of the inner box 1 toward the membrane. , are formed so as to protrude into the vacuum insulation layer 4. The inside of the curved part 19 is filled with a heat insulating material 20, and as shown in FIG. There is. Further, by providing a pressing member 22 such as a wire mesh on the curved portion 19, the heat insulating material 20 and the deformation suppressing member 21 are supported so that they do not escape from the curved portion 19. As the heat insulating material 20, rock wool, glass wool, ceramic wool, etc. are suitable. Further, the deformation suppressing member 21 is formed into a saddle-shaped frame as shown in FIG. 4(a), or in a block shape as shown in FIG. 4(b). The materials used include calcium silicate molded bodies and heat insulating casters, which have pressure resistance and a certain degree of heat insulation.
【0009】上記構成の真空断熱箱体に高温の品物を収
容すると、内箱11が温度上昇する。このとき、湾曲部
19は端部壁6の伝熱径路を延長することになり、その
熱抵抗を増大させる。そのため、内箱1が温度上昇して
も、湾曲部19を形成しない場合に比べ端部壁6の開口
側周縁部分およびメンブレン5の温度が低下する。この
ため、端部壁6およびメンブレン5が周方向に膨張する
ことによりメンブレン5の縁部Aに発生する圧縮応力(
図11(b) )が減少する。[0009] When high-temperature items are housed in the vacuum insulated box having the above structure, the temperature of the inner box 11 rises. At this time, the curved portion 19 extends the heat transfer path of the end wall 6, increasing its thermal resistance. Therefore, even if the temperature of the inner box 1 increases, the temperature of the opening-side peripheral portion of the end wall 6 and the membrane 5 decreases compared to the case where the curved portion 19 is not formed. Therefore, compressive stress (
(Fig. 11(b)) decreases.
【0010】また、湾曲部19の内部に変形抑止部材2
1を挿入しているので、温度上昇にもとづくメンブレン
側への内箱1の膨張は、図3に示すように、湾曲部19
の変形量ΔLおよびメンブレン5の変形量ΔMにより吸
収される。そのため、メンブレン5の変形量ΔMは湾曲
部19を形成しない場合の変形量すなわち図10のΔl
よりも減少して、内箱1の膨張により縁部Aに発生する
曲げ応力(図11(a) )が減少する。同時に、湾曲
部19において許容しうる変形量ΔLを適当に設定して
おくと、湾曲部19に発生する応力をメンブレン5に発
生する応力と同等またはそれ以下に制限することができ
る。なお、場合によっては、変形抑止部材21を厚くし
て変形量ΔLを0にしてもよい。Furthermore, a deformation suppressing member 2 is provided inside the curved portion 19.
1 is inserted, the expansion of the inner box 1 toward the membrane side due to temperature rise is caused by the curved portion 19 as shown in FIG.
is absorbed by the deformation amount ΔL of the membrane 5 and the deformation amount ΔM of the membrane 5. Therefore, the amount of deformation ΔM of the membrane 5 is the amount of deformation when the curved portion 19 is not formed, that is, Δl in FIG.
As a result, the bending stress (FIG. 11(a)) generated at the edge A due to the expansion of the inner box 1 is reduced. At the same time, by appropriately setting the allowable amount of deformation ΔL in the curved portion 19, the stress generated in the curved portion 19 can be limited to the same level as or less than the stress generated in the membrane 5. Note that, depending on the case, the deformation suppressing member 21 may be made thicker so that the amount of deformation ΔL is zero.
【0011】以上の結果、真空断熱箱体に発生する熱応
力が低減し、繰り返し負荷される熱応力に対する真空断
熱箱体の寿命が向上する。さらに、湾曲部19の内部に
充填した断熱材20は、湾曲部19内の空隙を無くして
空気の対流を阻止し、またヒートブリッジ部の熱抵抗を
増加して放熱量を減少させる。そのため、真空断熱箱体
の断熱性能の向上を図ることもできる。As a result of the above, the thermal stress generated in the vacuum insulated box is reduced, and the life of the vacuum insulated box against repeated thermal stress is improved. Further, the heat insulating material 20 filled inside the curved section 19 eliminates voids within the curved section 19 to prevent air convection, and also increases the thermal resistance of the heat bridge section to reduce the amount of heat dissipated. Therefore, it is also possible to improve the insulation performance of the vacuum insulation box.
【0012】図5の斜線部に示す断熱境界について、湾
曲部19の長さXとメンブレン5の縁部Aの温度TA
との関係を一次元の伝熱計算により求めた結果を、図6
のグラフに示す。ただし、図5において、内箱1の端部
壁6の長さをメンブレン5の長さLに等しくし、端部壁
6の内側部Bの温度TB を300 ℃、メンブレン5
の外箱側縁部Cの温度TC を0℃とした。図6から判
るように、湾曲部19の長さXをメンブレン5の長さL
に等しくすると、縁部Aの温度TA は湾曲部19を形
成しない場合の150 ℃から100 ℃に大幅に低下
する。これにより、縁部Aに発生する圧縮応力(図11
(b) )は2/3程度に減少する。なお、湾曲部19
の長さXを2L以上にするには、湾曲部19を2箇所以
上形成してこれに対処する。
(実施例2)図7に示すように、実施例1における湾曲
部19を端部壁6に2箇所形成し、湾曲部19の長さを
倍増したものである。このようなものであると、メンブ
レン5の縁部Aに発生する圧縮応力(図11(b) )
を大幅に減少させるとともに、断熱性能を向上させるこ
とができる。
(実施例3)図8に示すように、実施例1におけるメン
ブレン5を3層の蛇腹構造にして変形を容易にしたもの
である。これにより、縁部Aに発生する熱応力(図11
(c) )を減少させることができる。Regarding the adiabatic boundary shown in the shaded area in FIG. 5, the length X of the curved portion 19 and the temperature TA of the edge A of the membrane 5
Figure 6 shows the results obtained by one-dimensional heat transfer calculation of the relationship between
This is shown in the graph below. However, in FIG. 5, the length of the end wall 6 of the inner box 1 is made equal to the length L of the membrane 5, the temperature TB of the inner part B of the end wall 6 is set to 300 °C, and the length of the membrane 5 is set equal to the length L of the membrane 5.
The temperature TC of the side edge C of the outer box was set to 0°C. As can be seen from FIG. 6, the length X of the curved portion 19 is the length L of the membrane 5.
, the temperature TA at the edge A is significantly reduced from 150° C. without the curved portion 19 to 100° C. As a result, compressive stress is generated at edge A (Fig. 11
(b)) decreases to about 2/3. Note that the curved portion 19
In order to make the length X of 2L or more, two or more curved portions 19 are formed to cope with this problem. (Example 2) As shown in FIG. 7, the curved portions 19 in Example 1 are formed at two locations on the end wall 6, and the length of the curved portions 19 is doubled. If this is the case, compressive stress will occur at the edge A of the membrane 5 (Fig. 11(b)).
It is possible to significantly reduce the amount of heat and improve the heat insulation performance. (Example 3) As shown in FIG. 8, the membrane 5 in Example 1 is made into a three-layer bellows structure to facilitate deformation. This causes thermal stress generated at edge A (Fig. 11
(c) ) can be reduced.
【0013】[0013]
【発明の効果】以上述べたように本発明によれば、内箱
のメンブレン近傍部分に湾曲部を形成して内箱の内部か
らメンブレンへの方向の熱抵抗を増大させているので、
収容物により内箱が温度上昇した場合であっても、メン
ブレンと内箱との接続部の温度上昇が抑制され、その発
生応力を低くすることができる。また、湾曲部内に設け
た変形抑止部材が湾曲部の変形を一定範囲に制限して湾
曲部およびメンブレンに発生する応力を平均化するので
、湾曲部に発生する応力を一定値以下に制限することが
できる。以上の結果、真空断熱箱体の熱応力に対する耐
久性を向上することができる。As described above, according to the present invention, the curved portion is formed in the inner box near the membrane to increase the thermal resistance in the direction from the inside of the inner box to the membrane.
Even if the temperature of the inner box increases due to the contents, the temperature increase at the connection between the membrane and the inner box is suppressed, and the stress generated can be reduced. In addition, the deformation suppressing member provided inside the curved section limits the deformation of the curved section to a certain range and averages the stress generated in the curved section and membrane, so the stress generated in the curved section is limited to a certain value or less. Can be done. As a result of the above, the durability of the vacuum insulation box against thermal stress can be improved.
【0014】さらに、湾曲部内に設けた断熱材が空隙を
無くして空気の対流を阻止するとともに、ヒートブリッ
ジ部の熱抵抗を増加して放熱量を減少させるので、真空
断熱箱体の断熱性能を向上させることができる。Furthermore, the heat insulating material provided inside the curved part eliminates voids and prevents air convection, and also increases the thermal resistance of the heat bridge part and reduces the amount of heat dissipation, which improves the heat insulation performance of the vacuum insulated box. can be improved.
【図1】本発明の一実施例にもとづく真空断熱箱体の断
面図である。FIG. 1 is a sectional view of a vacuum insulation box according to an embodiment of the present invention.
【図2】図1における要部の拡大断面図である。FIG. 2 is an enlarged sectional view of a main part in FIG. 1.
【図3】図2に示す部分の変形例の断面図である。FIG. 3 is a sectional view of a modification of the portion shown in FIG. 2;
【図4】図3における変形抑止部材の斜視図である。FIG. 4 is a perspective view of the deformation suppressing member in FIG. 3;
【図5】図1の真空断熱箱体についての伝熱計算を行う
ためにモデル化した断熱境界の説明図である。FIG. 5 is an explanatory diagram of an adiabatic boundary modeled for performing heat transfer calculations for the vacuum insulated box shown in FIG. 1;
【図6】図5のモデルにもとづく伝熱計算により求めた
湾曲部の長さとメンブレンの温度との関係を示すグラフ
である。6 is a graph showing the relationship between the length of the curved portion and the temperature of the membrane, which is determined by heat transfer calculation based on the model of FIG. 5. FIG.
【図7】本発明の他の実施例にもとづく真空断熱箱体の
要部の断面図である。FIG. 7 is a sectional view of essential parts of a vacuum insulation box according to another embodiment of the present invention.
【図8】本発明のさらに他の実施例にもとづく真空断熱
箱体の要部の断面図である。FIG. 8 is a sectional view of a main part of a vacuum insulation box according to still another embodiment of the present invention.
【図9】従来の真空断熱箱体の一例を示す断面図である
。FIG. 9 is a sectional view showing an example of a conventional vacuum insulation box.
【図10】図9に示した従来の真空断熱箱体の端部構造
を示す拡大断面図である。10 is an enlarged sectional view showing the end structure of the conventional vacuum insulation box shown in FIG. 9. FIG.
【図11】従来の真空断熱箱体におけるメンブレンに発
生する応力の説明図である。FIG. 11 is an explanatory diagram of stress generated in a membrane in a conventional vacuum insulation box.
1 内箱 2 外箱 3 開口 4 真空断熱層 5 メンブレン 19 湾曲部 20 断熱材 21 変形抑止部材 1 Inner box 2 Outer box 3 Opening 4 Vacuum insulation layer 5 Membrane 19 Curved part 20 Insulation material 21 Deformation prevention member
Claims (1)
る二重構造の箱体を形成し、内箱と外箱との間に真空断
熱層を形成し、この真空断熱層を密封するメンブレンに
より内箱と外箱との開口側周縁を連結した真空断熱箱体
において、前記内箱におけるメンブレンの近傍の部分に
、内部からメンブレンへの方向の内箱の熱抵抗を増大さ
せる湾曲部を形成し、この湾曲部の内部に、断熱材とこ
の湾曲部の変形を一定範囲に制限する変形部材とを設け
たことを特徴とする真空断熱箱体の構造。[Claim 1] An inner box and an outer box form a double-structure box with an opening on one side, a vacuum insulation layer is formed between the inner box and the outer box, and this vacuum insulation layer is sealed. In a vacuum insulated box body in which the opening side peripheries of an inner box and an outer box are connected by a membrane, a curved portion is provided in a portion of the inner box near the membrane to increase the thermal resistance of the inner box in the direction from the inside to the membrane. 1. A structure of a vacuum insulation box body, characterized in that a heat insulating material and a deformable member for restricting deformation of this curved part to a certain range are provided inside the curved part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3113617A JP2776646B2 (en) | 1991-05-20 | 1991-05-20 | Structure of vacuum insulation box |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3113617A JP2776646B2 (en) | 1991-05-20 | 1991-05-20 | Structure of vacuum insulation box |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04341694A true JPH04341694A (en) | 1992-11-27 |
JP2776646B2 JP2776646B2 (en) | 1998-07-16 |
Family
ID=14616754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3113617A Expired - Lifetime JP2776646B2 (en) | 1991-05-20 | 1991-05-20 | Structure of vacuum insulation box |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2776646B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5634256A (en) * | 1994-05-24 | 1997-06-03 | Sigg Ag | Process for producing a thermally insulated flask |
JP2007150336A (en) * | 2007-01-09 | 2007-06-14 | Nsk Ltd | Substrate transporting apparatus |
CN112629134A (en) * | 2015-08-03 | 2021-04-09 | Lg电子株式会社 | Vacuum heat insulator |
EP3971501A1 (en) * | 2015-08-04 | 2022-03-23 | LG Electronics Inc. | Vacuum adiabatic body and refrigerator |
EP4043818A3 (en) * | 2015-08-03 | 2022-11-30 | LG Electronics Inc. | Vacuum adiabatic body and refrigerator |
US11573048B2 (en) | 2015-08-03 | 2023-02-07 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US11585591B2 (en) | 2015-08-03 | 2023-02-21 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US11592230B2 (en) | 2015-08-03 | 2023-02-28 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US11598573B2 (en) | 2015-08-03 | 2023-03-07 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US11796246B2 (en) | 2015-08-03 | 2023-10-24 | Lg Electronics Inc. | Vacuum adiabatic body, fabrication method for the vacuum adiabatic body, porous substance package, and refrigerator |
US11920857B2 (en) | 2015-08-03 | 2024-03-05 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US11920858B2 (en) | 2015-08-03 | 2024-03-05 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US11920723B2 (en) | 2015-08-03 | 2024-03-05 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US11927386B2 (en) | 2015-08-03 | 2024-03-12 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US12146702B2 (en) | 2015-08-03 | 2024-11-19 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
-
1991
- 1991-05-20 JP JP3113617A patent/JP2776646B2/en not_active Expired - Lifetime
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5634256A (en) * | 1994-05-24 | 1997-06-03 | Sigg Ag | Process for producing a thermally insulated flask |
JP2007150336A (en) * | 2007-01-09 | 2007-06-14 | Nsk Ltd | Substrate transporting apparatus |
US11920858B2 (en) | 2015-08-03 | 2024-03-05 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US11592230B2 (en) | 2015-08-03 | 2023-02-28 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US12146702B2 (en) | 2015-08-03 | 2024-11-19 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US12078409B2 (en) | 2015-08-03 | 2024-09-03 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
CN112629134B (en) * | 2015-08-03 | 2022-08-26 | Lg电子株式会社 | Vacuum heat insulator |
KR20220145305A (en) * | 2015-08-03 | 2022-10-28 | 엘지전자 주식회사 | Vacuum adiabatic body and refrigerator |
EP4043818A3 (en) * | 2015-08-03 | 2022-11-30 | LG Electronics Inc. | Vacuum adiabatic body and refrigerator |
US11573048B2 (en) | 2015-08-03 | 2023-02-07 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US11585591B2 (en) | 2015-08-03 | 2023-02-21 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
EP3964777A1 (en) * | 2015-08-03 | 2022-03-09 | LG Electronics Inc. | Vacuum adiabatic body and refrigerator |
US11598573B2 (en) | 2015-08-03 | 2023-03-07 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US11796246B2 (en) | 2015-08-03 | 2023-10-24 | Lg Electronics Inc. | Vacuum adiabatic body, fabrication method for the vacuum adiabatic body, porous substance package, and refrigerator |
US11920857B2 (en) | 2015-08-03 | 2024-03-05 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
CN112629134A (en) * | 2015-08-03 | 2021-04-09 | Lg电子株式会社 | Vacuum heat insulator |
US11920723B2 (en) | 2015-08-03 | 2024-03-05 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US11927386B2 (en) | 2015-08-03 | 2024-03-12 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US12050046B2 (en) | 2015-08-03 | 2024-07-30 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US11365931B2 (en) | 2015-08-04 | 2022-06-21 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
EP3971501A1 (en) * | 2015-08-04 | 2022-03-23 | LG Electronics Inc. | Vacuum adiabatic body and refrigerator |
Also Published As
Publication number | Publication date |
---|---|
JP2776646B2 (en) | 1998-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04341694A (en) | Structure of vacuum heat insulation box body | |
JPS6396395A (en) | Joint insulating structure for vacuum-heat -insulating element | |
JP2593004B2 (en) | Thermal expansion and contraction absorption structure of vacuum insulation | |
JP2001108187A (en) | Vacuum heat insulating body, manufacturing method of vacuum heat insulating body and heat reserving vessel | |
JPH0510494A (en) | End portion structure of vacuum insulation box | |
JP7357075B2 (en) | Refrigeration equipment | |
JPH0771690A (en) | Thermal extension/contraction absorbing structure for vacuum heat insulator | |
KR20190070415A (en) | Hemming structure for door of hybrid type | |
JPH10318681A (en) | Heat insulation cover and heat treating furnace | |
JPH06281090A (en) | Structure of vacuum heat-insulating wall | |
JPH08303684A (en) | Heat insulating container | |
JPH04127498U (en) | Structure of vacuum insulated box | |
JP2521332Y2 (en) | Vacuum insulation container | |
JPS5952213B2 (en) | Local annealing method for welded structures | |
JP2549719B2 (en) | Box insulation | |
JPH02139905A (en) | Lubrication of sealed oil-filled electric apparatus | |
JP2000316720A (en) | Electric pot | |
JPH09166381A (en) | Muffle heat treatment furnace | |
JPS6193575A (en) | Ignition plug | |
JPH0595877U (en) | Thermal stress relaxation structure of heat insulation container | |
JP2002062037A (en) | Heat insulating box body | |
JPS6132993Y2 (en) | ||
JPH08114297A (en) | Heat insulated box body | |
JPH09119589A (en) | Vacuum-insulated container | |
JPH05187598A (en) | Vacuum heat insulating container |