JPH04341518A - Production of extra thin grain-oriented silicon steel sheet having high magnetic flux density and reduced in iron loss - Google Patents
Production of extra thin grain-oriented silicon steel sheet having high magnetic flux density and reduced in iron lossInfo
- Publication number
- JPH04341518A JPH04341518A JP928991A JP928991A JPH04341518A JP H04341518 A JPH04341518 A JP H04341518A JP 928991 A JP928991 A JP 928991A JP 928991 A JP928991 A JP 928991A JP H04341518 A JPH04341518 A JP H04341518A
- Authority
- JP
- Japan
- Prior art keywords
- hot
- temperature
- flux density
- magnetic flux
- cold rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 64
- 230000004907 flux Effects 0.000 title claims abstract description 37
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 32
- 229910000976 Electrical steel Inorganic materials 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 238000005097 cold rolling Methods 0.000 claims abstract description 35
- 238000005098 hot rolling Methods 0.000 claims abstract description 21
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 11
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 10
- 229910052802 copper Inorganic materials 0.000 claims abstract description 9
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims description 59
- 238000000034 method Methods 0.000 claims description 31
- 238000004804 winding Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 9
- 239000012298 atmosphere Substances 0.000 claims description 8
- 229910052717 sulfur Inorganic materials 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052718 tin Inorganic materials 0.000 abstract description 5
- 239000012299 nitrogen atmosphere Substances 0.000 abstract description 4
- 229910052799 carbon Inorganic materials 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 abstract 2
- 239000000047 product Substances 0.000 description 24
- 238000000137 annealing Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 14
- 239000007789 gas Substances 0.000 description 12
- 238000005096 rolling process Methods 0.000 description 11
- 230000006698 induction Effects 0.000 description 9
- 230000005381 magnetic domain Effects 0.000 description 8
- 238000001953 recrystallisation Methods 0.000 description 8
- 238000005261 decarburization Methods 0.000 description 7
- 238000001556 precipitation Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 239000011162 core material Substances 0.000 description 5
- 238000007670 refining Methods 0.000 description 4
- 238000005204 segregation Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005485 electric heating Methods 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、極薄手の高磁束密度、
低鉄損一方向性電磁鋼板を工業的に安定して製造する方
法に関するものである。[Industrial Application Field] The present invention is an ultra-thin high magnetic flux density
The present invention relates to a method for industrially stably manufacturing a unidirectional electrical steel sheet with low core loss.
【0002】0002
【従来の技術】一方向性電磁鋼板は、主に変圧器や発電
機の鉄心材料に使用され、低鉄損高磁束密度という特徴
を有しているが、省エネルギーの観点から更に鉄損の低
いものが市場から要求されている。低鉄損を得るために
は、Siを極力高め素材の固有抵抗を上げて渦電流損を
下げる方法と、成品板厚を極力薄くすることで渦電流損
を下げる方法が一般的である。ところが成品板厚を薄く
する方法では、仕上焼鈍での二次再結晶が不安定となり
、従来法では0.23mm厚以下の磁気特性の優れた成
品を工業的に安定して得ることは困難である。二次再結
晶を安定して行わせるためには、仕上焼鈍を行うまでに
鋼中に微細で均一な析出分散相を存在させ、更には結晶
粒界に粒界偏析元素を偏析させて、一次再結晶を極力抑
制し、続く仕上焼鈍で(110)〔001〕方位の二次
再結晶を選択的に成長させることが肝要である。一次再
結晶を抑える手段として、これまで析出分散相による粒
界のピン止め効果と、粒界偏析元素による粒界のドラッ
グ効果が考えられており、析出分散相としては、MnS
,MnSe及びAlNなどが考えられ、粒界偏析元素と
しては、Sn,Sb,Bi,Te及びSe等が一般的で
ある。[Prior Art] Unidirectional electrical steel sheets are mainly used as core materials for transformers and generators, and have the characteristics of low core loss and high magnetic flux density. something is demanded by the market. In order to obtain low iron loss, two methods are generally used: one method is to increase the Si content as much as possible to increase the specific resistance of the material to reduce eddy current loss, and the other is to reduce the eddy current loss by reducing the thickness of the finished product as much as possible. However, with the method of reducing the thickness of the finished product, secondary recrystallization during final annealing becomes unstable, and with conventional methods, it is difficult to stably obtain products with excellent magnetic properties with a thickness of 0.23 mm or less industrially. be. In order to stably perform secondary recrystallization, it is necessary to create a fine and uniform precipitated dispersed phase in the steel before finishing annealing, and to segregate grain boundary elements at the grain boundaries. It is important to suppress recrystallization as much as possible and selectively grow secondary recrystallization in the (110)[001] orientation in the subsequent final annealing. As a means of suppressing primary recrystallization, the pinning effect of the grain boundaries by the precipitated dispersed phase and the drag effect of the grain boundaries by the grain boundary segregated elements have been considered.
, MnSe, and AlN, and the grain boundary segregation elements are generally Sn, Sb, Bi, Te, Se, and the like.
【0003】しかして、上記のような観点から、析出分
散相としてMnS,AlNを使用し、かつ粒界偏析元素
としてSnを使用して製品板厚0.30mm以下、特に
0.23mm以下の薄手高磁束密度一方向性電磁鋼板の
製造方法が、既に特公昭62−48725号公報によっ
て提案されている。この提案発明の要旨は次の通りであ
る。C:0.025〜0.085%、Si:2.5〜4
.5%、Mn:0.01〜0.10%、S:0.01〜
0.04%、 solAl:0.010〜0.065%
、N:0.005〜0.0100%、Cu:0.03〜
0.5%、Sn:0.03〜0.5%、残部鉄及び不可
避的不純物を含有するスラブを高温加熱後熱間圧延し、
最終冷延率83%以上の冷延工程を含む所定の高磁束密
度一方向性電磁鋼板の製造方法において、上記熱間圧延
での仕上前面温度を1150〜1250℃、仕上後面温
度を950〜1050℃、及び巻取温度を500〜60
0℃の温度領域に制御するというものである。[0003] From the above-mentioned viewpoint, it has been proposed to use MnS and AlN as the precipitated dispersed phase and Sn as the grain boundary segregation element to produce thin product sheets with a thickness of 0.30 mm or less, particularly 0.23 mm or less. A method for producing a high magnetic flux density unidirectional electrical steel sheet has already been proposed in Japanese Patent Publication No. 48725/1983. The gist of this proposed invention is as follows. C: 0.025-0.085%, Si: 2.5-4
.. 5%, Mn: 0.01~0.10%, S: 0.01~
0.04%, solAl: 0.010-0.065%
, N: 0.005~0.0100%, Cu: 0.03~
A slab containing 0.5%, Sn: 0.03 to 0.5%, balance iron and unavoidable impurities is heated to a high temperature and then hot rolled,
In a predetermined method for manufacturing a high magnetic flux density unidirectional electrical steel sheet that includes a cold rolling process with a final cold rolling rate of 83% or more, the finishing front surface temperature in the hot rolling is 1150 to 1250°C, and the finishing rear temperature is 950 to 1050°C. ℃, and the winding temperature is 500-60
The temperature is controlled within the 0°C temperature range.
【0004】即ち、上記先行発明の特徴とするところは
、素材スラブを1250℃以上の温度で加熱して析出分
散相となるMnS,AlNを完全に固溶させ、その後の
熱間圧延工程において仕上前面温度を1150〜125
0℃に制御することにより、粗圧延から仕上圧延に入る
間にMnSを均一微細に析出させ、その後仕上後面温度
を950〜1050℃に制御することにより、仕上スタ
ンド中でのMnSの析出を抑える。更に仕上後面を出た
2.5mm厚以下のホットコイルを500〜600℃の
温度で巻取ることにより仕上スタンドから巻取るまでの
間でのAlNの析出を制御すると共に、Snの粒界への
積極的な析出を行うことにより良質な高磁束密度一方向
性電磁鋼板用のホットコイルを得るというものである。
そして、上記先行特許の実施例1には、予備冷延−最終
冷延の2回冷延法(特開昭59−126722号公報で
提案されている技術)でホットコイル厚2.3mmから
0.23mm厚の成品を得る例が開示され、一方実施例
2には、一回冷延法でホットコイル厚2.0mmから0
.23mm厚の成品を得る例が開示されている。That is, the above-mentioned prior invention is characterized by heating the raw material slab at a temperature of 1250° C. or higher to completely dissolve MnS and AlN, which will become the precipitated dispersed phase, and finishing it in the subsequent hot rolling process. Front temperature 1150-125
By controlling the temperature to 0°C, MnS is precipitated uniformly and finely during the transition from rough rolling to finishing rolling, and then by controlling the temperature after finishing to 950 to 1050°C, precipitation of MnS in the finishing stand is suppressed. . Furthermore, by winding up the hot coil with a thickness of 2.5 mm or less that exits the finished surface at a temperature of 500 to 600°C, precipitation of AlN from the finishing stand to winding is controlled, and the precipitation of Sn to the grain boundaries is controlled. The purpose is to obtain high-quality hot coils for use in unidirectional electrical steel sheets with high magnetic flux density by performing active precipitation. In Example 1 of the above-mentioned prior patent, a hot coil thickness of 2.3 mm to 0.0 An example of obtaining a product with a thickness of .23 mm is disclosed, while in Example 2, a product with a thickness of 0.23 mm is obtained from a hot coil thickness of 2.0 mm by a single cold rolling method.
.. An example of obtaining a product with a thickness of 23 mm is disclosed.
【0005】[0005]
【発明が解決しようとする課題】上記先行発明によれば
、析出分散相及び粒界偏析元素の有効利用が図られ、従
来法では得られない高磁束密度を有する薄手の一方向性
電磁鋼板がえられるものであるが、本発明は、製造コス
トの安価な一回冷延法で更に磁束密度が高く、鉄損の低
い薄手一方向性電磁鋼板を提供することを目的とするも
のである。[Problems to be Solved by the Invention] According to the above-mentioned prior invention, the precipitated dispersed phase and the grain boundary segregated elements are effectively utilized, and a thin grain-oriented electrical steel sheet having a high magnetic flux density that cannot be obtained by conventional methods can be obtained. However, it is an object of the present invention to provide a thin unidirectional electrical steel sheet which has a higher magnetic flux density and a lower iron loss by a one-time cold rolling method that is inexpensive to manufacture.
【0006】一方、近年極低鉄損一方向性電磁鋼板の市
場要求が強まっている中で、製品の表面にレーザー照射
処理を施したり、或いは製品の表面に所定の荷重で条痕
を生成した後熱処理を施したりする、所謂磁区細分化処
理により鉄損を改善する技術が開発され、そして実施さ
れている。前者の磁区細分化処理は、例えば特公昭57
−2252号公報、同58−36051号公報、同58
−50298号公報によって提案されており、後者の磁
区細分化処理は、例えば特開昭61−117218号公
報等によって提案されている。これら磁区細分化処理に
供する一方向性電磁鋼板は、その磁束密度が高い程磁区
細分化処理後の鉄損改善代が大きいことが知られている
が、本発明は、予備冷延−最終冷延の2回冷延法により
、更に磁区細分化処理に最適な高磁束密度を有し、かつ
低鉄損の一方向性電磁鋼板を提供することを別の目的と
するものである。On the other hand, as the market demand for ultra-low core loss unidirectional electrical steel sheets has increased in recent years, laser irradiation treatment has been applied to the surface of the product, or streaks have been created on the surface of the product under a predetermined load. Techniques for improving iron loss through so-called magnetic domain refining treatment, such as post-heat treatment, have been developed and are being put into practice. The former magnetic domain subdivision process is, for example,
-2252 publication, 58-36051 publication, 58
The latter magnetic domain subdivision process has been proposed in, for example, Japanese Patent Laid-Open No. 117218/1983. It is known that the higher the magnetic flux density of these unidirectional electrical steel sheets subjected to magnetic domain refining treatment, the greater the iron loss improvement margin after magnetic domain refining treatment. Another object of the present invention is to provide a grain-oriented electrical steel sheet that has a high magnetic flux density that is optimal for magnetic domain refining treatment and has a low iron loss by using the two-time cold rolling method.
【0007】[0007]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明は次の構成を要旨とする。[Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration.
【0008】(1) C:0.025〜0.085%
、Si:2.5〜4.5%、Mn:0.01〜0.10
%、 S:0.01〜0.04%、solA
l:0.010〜0.065%、 N:0.005〜
0.0100%、Cu:0.03〜0.5%、
Sn:0.03〜0.5%、残部鉄及び不可避的不
純物を含有するスラブを高温加熱後熱間圧延するにさい
し、仕上前面温度を1150〜1250℃、仕上後面温
度を950〜1100℃、及び巻取温度を400〜60
0℃としてホットコイルを得、このホットコイルを冷延
率83%以上の一回冷延工程を含む所定の製造工程によ
り成品板厚0.23mm以下の極薄手高磁束密度一方向
性電磁鋼板を製造する方法において、上記スラブの高温
加熱を電気式雰囲気加熱炉で1300〜1450℃に均
一加熱し、上記熱間圧延後のホットコイルの板厚を1.
9mm以下とすることを特徴とする、極薄手高磁束密度
低鉄損一方向性電磁鋼板の製造方法。(1) C: 0.025-0.085%
, Si: 2.5-4.5%, Mn: 0.01-0.10
%, S: 0.01-0.04%, solA
l: 0.010~0.065%, N: 0.005~
0.0100%, Cu: 0.03-0.5%,
When hot rolling a slab containing Sn: 0.03 to 0.5%, balance iron and unavoidable impurities after high temperature heating, the finishing front temperature is 1150 to 1250°C, the finishing rear temperature is 950 to 1100°C, and winding temperature 400-60
A hot coil is obtained at 0°C, and this hot coil is processed into an ultra-thin high magnetic flux density unidirectional electrical steel sheet with a finished plate thickness of 0.23 mm or less by a predetermined manufacturing process including a single cold rolling process of 83% or more. In the manufacturing method, the slab is uniformly heated at a high temperature of 1300 to 1450°C in an electric atmosphere heating furnace, and the thickness of the hot coil after hot rolling is 1.
A method for producing an ultra-thin, high magnetic flux density, low iron loss unidirectional electrical steel sheet, characterized in that the thickness is 9 mm or less.
【0009】(2) C:0.025〜0.085%
、Si:2.5〜4.5%、Mn:0.01〜0.10
%、 S:0.01〜0.04%、solA
l:0.010〜0.065%、 N:0.005〜
0.0100%、Cu:0.03〜0.5%、
Sn:0.03〜0.5%、残部鉄及び不可避的不
純物を含有するスラブを高温加熱後熱間圧延するにさい
し、仕上前面温度を1150〜1250℃、仕上後面温
度を950〜1100℃、及び巻取温度を400〜60
0℃としてホットコイルを得、このホットコイルを予備
冷延及び最終冷延率83%以上の冷延工程を含む所定の
製造工程により成品板厚0.23mm以下の極薄手高磁
束密度一方向性電磁鋼板を製造する方法において、上記
スラブの高温加熱を電気式雰囲気加熱炉で1300〜1
450℃に均一加熱し、上記熱間圧延後のホットコイル
の板厚を2.5mm以下とすることを特徴とする、極薄
手高磁束密度低鉄損一方向性電磁鋼板の製造方法。(2) C: 0.025-0.085%
, Si: 2.5-4.5%, Mn: 0.01-0.10
%, S: 0.01-0.04%, solA
l: 0.010~0.065%, N: 0.005~
0.0100%, Cu: 0.03-0.5%,
When hot rolling a slab containing Sn: 0.03 to 0.5%, balance iron and unavoidable impurities after high temperature heating, the finishing front temperature is 1150 to 1250°C, the finishing rear temperature is 950 to 1100°C, and winding temperature 400-60
A hot coil is obtained at 0°C, and this hot coil is subjected to a predetermined manufacturing process including preliminary cold rolling and a final cold rolling process with a final cold rolling rate of 83% or more to produce an ultra-thin high magnetic flux density unidirectional product with a thickness of 0.23 mm or less. In the method for manufacturing electrical steel sheets, the slab is heated at a high temperature of 1300 to 1
A method for producing an ultra-thin, high magnetic flux density, low core loss, unidirectional electrical steel sheet, characterized by uniformly heating to 450° C. and setting the thickness of the hot coil after hot rolling to 2.5 mm or less.
【0010】以下、本発明の内容を詳細に説明する。本
発明者等は、上記先行技術である特公昭62−4872
5号公報記載の発明について、熱間圧延工程を詳細に検
討した。その結果、スラブの高温加熱を通常採用されて
いるガス加熱炉で行った場合、均一加熱が困難な結果、
仕上前面温度及び仕上後面温度の幅及び長手方向のコイ
ル内のバラツキが大きいことが判った。この傾向は、ホ
ットコイルの板厚が2.5mm以下になると著しく、特
に1.9mm以下ではコイル端部の温度が大幅に低下す
るものである。ちなみに、1.9mmのホットコイルの
場合仕上前面温度で1050〜1200℃、仕上後面温
度で850〜1100℃の範囲のバラツキが生じるもの
である。その結果、粗圧延から仕上圧延に入る間におい
てMnSを均一微細に析出させるために必要な仕上前面
温度1150〜1250℃及び仕上スタンド中でのMn
Sの析出を抑えるために必要な仕上後面温度を950〜
1100℃の下限温度を外れることになり、成品の磁束
密度、鉄損が劣化すると共に鉄損値にバラツキが生じる
。[0010] The contents of the present invention will be explained in detail below. The present inventors have discovered the above-mentioned prior art in Japanese Patent Publication No. 62-4872.
Regarding the invention described in Publication No. 5, the hot rolling process was examined in detail. As a result, when heating slabs at high temperatures using a commonly used gas heating furnace, uniform heating is difficult.
It was found that there were large variations in the width and longitudinal direction of the finishing front temperature and finishing finishing temperature within the coil. This tendency becomes remarkable when the plate thickness of the hot coil becomes 2.5 mm or less, and especially when the plate thickness of the hot coil becomes 1.9 mm or less, the temperature at the end of the coil decreases significantly. Incidentally, in the case of a 1.9 mm hot coil, the finished front temperature varies from 1050 to 1200°C, and the finished finished temperature varies from 850 to 1100°C. As a result, the finishing front temperature of 1150 to 1250°C and the Mn in the finishing stand required to precipitate MnS uniformly and finely between rough rolling and finishing rolling.
The finishing surface temperature required to suppress S precipitation is 950~
As a result, the lower limit temperature of 1100° C. is exceeded, and the magnetic flux density and iron loss of the product deteriorate, and variations in iron loss values occur.
【0011】また、1.6mmのホットコイルの場合に
は、ガス加熱炉ではスラブの均一加熱が困難なことに加
えて、スラブの厚み方向中心温度が表面温度に比べて低
いことから粗圧延から仕上圧延に入る間および仕上圧延
中の温度降下量が大きく、長手方向全長にわたって仕上
前面温度で1150℃、仕上後面温度で950℃を確保
することができず、粗圧延から仕上圧延に入る間におい
てMnSを均一微細に析出させるために必要な仕上前面
温度1150〜1250℃及び仕上スタンド中でのMn
Sの析出を抑えるために必要な仕上後面温度を950〜
1100℃の下限温度を外れることになり、成品の磁束
密度および鉄損の劣化が生じるものであることが判った
。[0011] In addition, in the case of a 1.6 mm hot coil, it is difficult to uniformly heat the slab in a gas heating furnace, and the center temperature in the thickness direction of the slab is lower than the surface temperature, so it is difficult to heat the slab from rough rolling. The amount of temperature drop during and during finishing rolling was large, and it was not possible to maintain a finishing front temperature of 1150°C and a finishing finishing temperature of 950°C over the entire length in the longitudinal direction. The finishing front temperature of 1150 to 1250°C and Mn in the finishing stand required to uniformly and finely precipitate MnS.
The finishing surface temperature required to suppress S precipitation is 950~
It was found that the lower limit temperature of 1100° C. was exceeded, resulting in deterioration of the magnetic flux density and iron loss of the product.
【0012】そこで、本発明者等は上記スラブのガス加
熱炉による長手方向および幅方向不均一加熱、厚み方向
中心温度が表面温度に比べて低いことに起因する仕上前
面温度及び仕上後面温度の下限外れを解決することが、
成品の磁束密度、鉄損の向上並びに鉄損値の安定に不可
欠であることに鑑み、スラブの長手方向および幅方向均
一加熱、スラブの厚み方向中心温度が表面温度よりも高
くする加熱(厚み方向中心高温加熱)方法を検討した結
果、誘導加熱に代表される電気式加熱方式が最適である
ことが判った。即ち、誘導加熱はガス加熱の外部入熱方
式と異なり内部入熱方式であるために、スラブの長手方
向および幅方向均一加熱、厚み方向中心高温加熱が可能
となる。従って、誘導加熱によりスラブを所定の温度範
囲に加熱して熱間圧延に供給することにより、所定の仕
上前面温度1150〜1250℃及び仕上後面温度95
0〜1100℃が安定して確実に確保することができ、
その結果、析出分散相のより完全な活用が可能となるも
のである。[0012] Therefore, the inventors of the present invention determined the lower limits of the finished front temperature and the finished finished surface temperature, which are caused by uneven heating of the slab in the longitudinal and width directions by the gas heating furnace and the center temperature in the thickness direction being lower than the surface temperature. Resolving the deviation is
Considering that it is essential to improve the magnetic flux density and iron loss of the product and to stabilize the iron loss value, uniform heating in the longitudinal and width directions of the slab, heating in which the center temperature in the thickness direction of the slab is higher than the surface temperature (thickness direction As a result of examining the central high-temperature heating method, it was found that an electric heating method represented by induction heating was the most suitable. That is, unlike the external heat input method of gas heating, induction heating uses an internal heat input method, so that it is possible to uniformly heat the slab in the longitudinal direction and width direction, and to heat the slab at a high temperature in the thickness direction. Therefore, by heating the slab to a predetermined temperature range by induction heating and supplying it to hot rolling, a predetermined finishing front surface temperature of 1150 to 1250°C and finishing back surface temperature of 95° C.
0~1100℃ can be stably and reliably secured,
As a result, more complete utilization of the precipitated dispersed phase is possible.
【0013】この場合の誘導加熱条件としては、130
0〜1450℃にスラブを加熱することが必要で、13
00℃以下では析出分散相を形成するMnS,AlN等
の完全固溶が困難となって所定の磁気特性が得られない
。一方加熱温度が1450℃を超えるとスラブに局部溶
解が生じ割れ欠陥発生の原因となる。In this case, the induction heating conditions are 130
It is necessary to heat the slab to 0-1450℃, 13
At temperatures below 00°C, complete solid solution of MnS, AlN, etc. forming the precipitated dispersed phase becomes difficult, making it impossible to obtain desired magnetic properties. On the other hand, if the heating temperature exceeds 1450° C., local melting occurs in the slab, causing cracking defects.
【0014】一方向性電磁鋼板の製造において、熱間圧
延工程でのスラブの高温加熱に誘導加熱方式を採用する
ことは、既に多数提案されている。本発明においては、
スラブの高温加熱を誘導加熱方式のみによって行っても
よいし、また1250℃以下の低温域を通常のガス加熱
で行い、高温域の仕上げ加熱を誘導加熱方式で行う二段
加熱で行ってもよい。この際、誘導加熱装置は粗圧延機
の近傍に設けることが圧延温度確保上望ましい。[0014] In the production of unidirectional electrical steel sheets, many proposals have already been made to employ an induction heating method for high-temperature heating of slabs in the hot rolling process. In the present invention,
The high-temperature heating of the slab may be carried out only by induction heating, or it may be carried out by two-stage heating, in which the low-temperature region below 1250°C is carried out by ordinary gas heating, and the final heating in the high-temperature region is carried out by induction heating. . At this time, it is desirable to provide the induction heating device near the rough rolling mill in order to ensure the rolling temperature.
【0015】かくして、本発明により板厚が2.5mm
以下のホットコイルに対して所定の仕上前面温度、仕上
後面温度及び巻取温度が安定して確保できるようになり
、その結果、良質な薄手のホットコイルが得られ、この
ホットコイルを出発材料として所定の工程を経て成品と
することにより磁束密度の高い鉄損の低い一方向性電磁
鋼板が製造できるものである。そして、本発明では、第
1に製造コストの安価な一回冷延法で磁束密度の高い鉄
損の低い極薄手一方向性電磁鋼板の製造方法を提供する
ものであり、第2に2回冷延法で更に磁束密度が高く鉄
損の低い前記の磁区制御処理に適した、つまり磁区制御
処理により大幅に鉄損が改善できる極薄手一方向性電磁
鋼板の製造方法を提供するものである。[0015] Thus, according to the present invention, the plate thickness is 2.5 mm.
It is now possible to stably secure the predetermined finishing front temperature, finishing finishing temperature, and winding temperature for the following hot coils, and as a result, a high-quality thin hot coil can be obtained, and this hot coil can be used as a starting material. A unidirectional electrical steel sheet with high magnetic flux density and low iron loss can be manufactured by completing the product through predetermined processes. The present invention firstly provides a method for manufacturing an ultra-thin unidirectional electrical steel sheet with high magnetic flux density and low iron loss by a single cold rolling method that is inexpensive to produce; The object of the present invention is to provide a method for producing an ultra-thin unidirectional electrical steel sheet that is suitable for the above-mentioned magnetic domain control treatment, which has a higher magnetic flux density and lower iron loss through a cold rolling process, that is, can significantly improve iron loss through the magnetic domain control treatment. .
【0016】周知の如く、一方向性電磁鋼板の製造にお
いて、脱炭焼鈍前の最終冷延率は83%以上が必要であ
り、83%以下の冷延率では高い磁束密度がえられない
。本発明の第1の目的における成品厚は0.23mm以
下であり、それ故ホットコイルの板厚は1.9mm以下
とした。As is well known, in the production of unidirectional electrical steel sheets, the final cold rolling rate before decarburization annealing must be 83% or more, and a cold rolling rate of 83% or less does not provide a high magnetic flux density. The product thickness in the first object of the present invention is 0.23 mm or less, and therefore the plate thickness of the hot coil is 1.9 mm or less.
【0017】2回冷延法により更に磁束密度が高い極薄
手一方向性電磁鋼板がえられるものである。これは、ホ
ットコイルの板厚を厚くできて仕上げ圧延中に温度差が
生じ難いこと、2回冷延の作用によること、により磁束
密度B8 で1.925(T)以上が得られる。本発明
の第2の目的における成品板厚は0.23mm以下であ
り、1回目の冷延率は15〜40%が望ましく、従って
ホットコイルの板厚は2.5mm以下とした。By the double cold rolling method, an ultra-thin unidirectional electrical steel sheet with even higher magnetic flux density can be obtained. This is because the plate thickness of the hot coil can be made thicker so that temperature differences are less likely to occur during finish rolling, and because of the effect of two-time cold rolling, a magnetic flux density B8 of 1.925 (T) or more can be obtained. The thickness of the finished product according to the second object of the present invention is 0.23 mm or less, and the first cold rolling rate is preferably 15 to 40%, so the thickness of the hot coil is 2.5 mm or less.
【0018】次に諸条件の限定理由を説明する。
■成分組成
Cは下限0.025%未満であれば二次再結晶が不安定
となり、上限の0.085%は、これよりCが多くなる
と脱炭所要時間が長くなり経済的に不利となるために限
定した。Siは、下限2.5%未満では良好な鉄損が得
られず、上限4.5%を超えると、冷延性が著しく劣化
する。Mnは、MnSを形成するために必要な元素で、
下限0.01%未満であればMnSの絶対量が不足し、
上限0.10%を超えるとMnSをすべて固溶させるた
めのスラブ加熱温度が高くなりすぎるため、工業化が困
難となる。SはMnSを形成するために必要な元素で、
下限0.01%未満ではMnSの絶対量が不足し、上限
0.03%を超えると熱間割れを生じ、又、仕上焼鈍で
脱硫が困難となる。solAlは、AlNを形成するた
めに必要な元素で、下限0.010%未満では、AlN
の絶対量が不足し、上限0.065%を超えるとAlN
の適当な分散状態が得られない。NはAlNを形成する
ために必要な元素で、下限0.005%未満ではAlN
の絶対量が不足する。又上限0.0100%を超えると
二次再結晶が不安定となると共に、ブリスターが発生し
易くなる。CuはMnS量をコントロールし、かつ成品
皮膜性状を改善するために必要な元素で、下限0.03
%未満では成品皮膜性状を改善することができず、上限
0.5%を超えると、酸洗性、脱炭性が悪くなる。Sn
は粒界に偏析させ、二次再結晶を安定化させるが、下限
0.03%未満では偏析量が不足し、上限0.5%は経
済的理由と脱炭性が悪くなる。Next, the reasons for limiting the conditions will be explained. ■If the component composition C is less than the lower limit of 0.025%, secondary recrystallization will become unstable, and if the C content is higher than the upper limit of 0.085%, the time required for decarburization will be longer and it will be economically disadvantageous. Limited for. If Si is less than the lower limit of 2.5%, good iron loss cannot be obtained, and if it exceeds the upper limit of 4.5%, cold rollability is significantly deteriorated. Mn is an element necessary to form MnS,
If it is less than the lower limit of 0.01%, the absolute amount of MnS is insufficient,
If the upper limit of 0.10% is exceeded, the slab heating temperature for dissolving all MnS in solid solution becomes too high, making industrialization difficult. S is an element necessary to form MnS,
If it is less than the lower limit of 0.01%, the absolute amount of MnS will be insufficient, and if it exceeds the upper limit of 0.03%, hot cracking will occur and desulfurization will become difficult in final annealing. solAl is an element necessary to form AlN, and if the lower limit is less than 0.010%, AlN
If the absolute amount of AlN is insufficient and exceeds the upper limit of 0.065%, AlN
An appropriate dispersion state cannot be obtained. N is an element necessary to form AlN, and if it is less than the lower limit of 0.005%, AlN
The absolute amount of is insufficient. Moreover, if the upper limit of 0.0100% is exceeded, secondary recrystallization becomes unstable and blisters are likely to occur. Cu is an element necessary to control the amount of MnS and improve the properties of the finished film, and the lower limit is 0.03.
If it exceeds the upper limit of 0.5%, the properties of the finished film cannot be improved, and if it exceeds the upper limit of 0.5%, the pickling properties and decarburization properties will deteriorate. Sn
is segregated at grain boundaries and stabilizes secondary recrystallization, but if the lower limit is less than 0.03%, the amount of segregation will be insufficient, and if the upper limit is 0.5%, this will result in poor decarburization due to economic reasons.
【0019】■スラブ加熱
スラブ加熱を誘導加熱に代表される電気式加熱方式に限
定した理由は、上記の通りである。この場合、加熱温度
が1300℃以下では析出分散相を形成するMnS,A
lN等の完全固溶が困難となって所定の磁気特性が得ら
れない。一方加熱温度が1450℃を超えるとスラブに
局部溶解が生じ、割れ欠陥発生の原因となる。このよう
な理由で加熱温度を1300〜1450℃に限定した。
この場合、ガス加熱と併用加熱できることは勿論である
。(2) Slab Heating The reason why slab heating is limited to an electric heating method typified by induction heating is as described above. In this case, if the heating temperature is below 1300°C, MnS, A, which forms a precipitated dispersed phase,
Complete solid solution of lN or the like becomes difficult and predetermined magnetic properties cannot be obtained. On the other hand, if the heating temperature exceeds 1450°C, local melting will occur in the slab, causing cracking defects. For this reason, the heating temperature was limited to 1300 to 1450°C. In this case, it goes without saying that heating can be performed in combination with gas heating.
【0020】■熱間圧延
先ず、仕上前面温度が1250℃を超えるとMnSの析
出量が減少し、1150℃より低くなるとMnSの析出
量が多過ぎて磁気特性は良くない。次に仕上後面温度が
1100℃より高いとMnSの析出量が不足し、950
℃より低くなると、MnSの析出量が多過ぎて磁気特性
は劣化する。また950℃以上に仕上後面温度をコント
ロールされかつ2.5mm厚以下となったコイルは、超
焼入れ処理により極力AlNの析出を防ぐことが望まし
い。次に、巻取温度が600℃を超えると、AlNの析
出量が多過ぎて磁気特性は良くなく、又、巻取温度が4
00℃より下がると、ホットコイルの巻取姿が悪くなる
と同時にSnの粒界偏析量が減少し磁気特性が劣化する
と推定されるため、巻取温度は400〜600℃と限定
した。[0020] Hot rolling First, when the finishing front temperature exceeds 1250°C, the amount of MnS precipitated decreases, and when it becomes lower than 1150°C, the amount of MnS precipitated is too large and the magnetic properties are not good. Next, if the surface temperature after finishing is higher than 1100℃, the amount of MnS precipitated will be insufficient, and 950℃
When the temperature is lower than .degree. C., the amount of MnS precipitated is too large and the magnetic properties deteriorate. Further, for coils whose finished surface temperature is controlled to be 950° C. or higher and whose thickness is 2.5 mm or less, it is desirable to prevent AlN precipitation as much as possible by super-hardening treatment. Next, if the winding temperature exceeds 600°C, the amount of precipitated AlN will be too large and the magnetic properties will not be good.
The winding temperature was limited to 400 to 600°C because it is estimated that if the temperature drops below 00°C, the coiled appearance of the hot coil deteriorates, the amount of Sn grain boundary segregation decreases, and the magnetic properties deteriorate.
【0021】■ホットコイル及び製品の板厚、最終冷延
率
周知の如く、一方向性電磁鋼板の製造において脱炭焼鈍
前の最終冷延率は83%以上が必要であり、83%以下
の冷延率では高い磁束密度は得られない。すなわち0.
23mm以下の成品厚を1回冷延法で製造するためには
ホットコイル板厚1.9mm以下が必要である。また、
2回冷延法で製造するためには1回目の冷延率は15〜
40%が望ましく、これを考慮するとホットコイル板厚
2.5mm以下が必要となる。■ Plate thickness and final cold rolling ratio of hot coils and products As is well known, in the production of unidirectional electrical steel sheets, the final cold rolling ratio before decarburization annealing must be 83% or higher; A high magnetic flux density cannot be obtained at a cold rolling rate. That is, 0.
In order to produce a product with a thickness of 23 mm or less by a single cold rolling method, a hot coil plate thickness of 1.9 mm or less is required. Also,
In order to manufacture using the two-time cold rolling method, the first cold rolling rate should be 15~15.
40% is desirable, and taking this into consideration, the hot coil plate thickness is required to be 2.5 mm or less.
【0022】[0022]
[実施例1]重量%でC:0.072%、Si:3.3
5%、Mn:0.080%、S:0.025%、 so
lAl:0.026%、N:0.0081%、Cu:0
.07%、Sn:0.15%を含有する電磁鋼スラブを
、1180℃のガス加熱炉で3時間加熱し、炉より抽出
後幅圧下して適正スラブサイズに調整した。このスラブ
を1335℃の電気式N2 雰囲気加熱炉で50分加熱
、抽出後、表1に示す各熱延条件で熱間圧延し、1.6
mm厚のホットコイルを得た。この熱延板を1120℃
×30秒の加熱後900℃×60秒の均熱をする2段熱
延板焼鈍を行った後、最終冷延率86%によって0.2
3mmに仕上げた。その後、得られた冷延板に水素20
%、窒素80%、露点40℃の雰囲気中で840℃×3
分の脱炭焼鈍を施し、焼鈍分離材を塗布した後、水素雰
囲気中で1200℃×20時間の仕上焼鈍を行い、次い
で最終コーティングを施す工程によって成品とした。[Example 1] C: 0.072%, Si: 3.3 in weight%
5%, Mn: 0.080%, S: 0.025%, so
lAl: 0.026%, N: 0.0081%, Cu: 0
.. A magnetic steel slab containing Sn: 0.7% and Sn: 0.15% was heated in a gas heating furnace at 1180° C. for 3 hours, extracted from the furnace, and then width-reduced to adjust to an appropriate slab size. This slab was heated in an electric N2 atmosphere heating furnace at 1335°C for 50 minutes, and after extraction, it was hot rolled under the hot rolling conditions shown in Table 1.
A hot coil with a thickness of mm was obtained. This hot-rolled plate was heated to 1120°C.
After performing two-stage hot-rolled plate annealing by heating for 30 seconds and soaking at 900°C for 60 seconds, the final cold rolling rate was 86%.
Finished to 3mm. Thereafter, hydrogen 20
%, 840℃ x 3 in an atmosphere of 80% nitrogen and a dew point of 40℃
After performing decarburization annealing for 30 minutes and applying an annealing separation material, final annealing was performed at 1200° C. for 20 hours in a hydrogen atmosphere, and then a final coating was applied to produce a finished product.
【0023】このようにして得た本発明成品の磁気特性
は表1に示すように、同一成分材を1400℃のガス加
熱炉で6時間加熱後、熱間圧延し、1.6mm厚のホッ
トコイルに仕上げた比較材(熱延以降を電気式加熱炉で
処理したホットコイルと同一条件で処理した)成品の磁
気特性に比べて高く、磁束密度B8 で1.92T以上
、鉄損W17/50 で0.85W/kg以下を安定し
て得られることがわかる。なお表1の各温度は熱延材の
幅方向センター温度の長手方向の平均値を示し、磁束密
度、鉄損はストリップ長手方向のトップ部、ミドル部、
ボトム部の平均値を示す。The magnetic properties of the thus obtained product of the present invention are as shown in Table 1. Materials with the same components were heated in a gas heating furnace at 1400° C. for 6 hours, then hot rolled, and a 1.6 mm thick hot plate was prepared. The magnetic properties are higher than those of the comparative material finished into a coil (hot rolled and then processed under the same conditions as the hot coil in an electric heating furnace), with a magnetic flux density of B8 of 1.92T or more, and iron loss of W17/50. It can be seen that 0.85 W/kg or less can be stably obtained. In addition, each temperature in Table 1 indicates the average value in the longitudinal direction of the center temperature in the width direction of the hot-rolled material, and the magnetic flux density and iron loss are calculated at the top, middle, and center temperatures in the longitudinal direction of the strip.
Shows the average value at the bottom.
【0024】[0024]
【表1】[Table 1]
【0025】[実施例2]C:0.078%、Si:3
.30%、Mn:0.079%、S:0.026%、
solAl:0.026%、N:0.0083%、Cu
:0.07%、Sn:0.14%を含有する電磁鋼スラ
ブを10スラブ製片し、内、5スラブを1180℃のガ
ス加熱炉で3時間加熱し、炉より抽出後幅圧下して適正
スラブサイズに調整した。このスラブを1335℃の電
気式N2 雰囲気加熱炉で50分加熱して抽出後、表2
に示す各熱延条件で熱間圧延し、2.3mm厚のホット
コイルを得た。一方、残5スラブは、直接1380℃の
ガス加熱炉で7時間加熱し、炉より抽出後、幅圧下した
。この適正スラブサイズに調整されたスラブを表2に示
す各熱延条件で熱間圧延し、2.3mm厚のホットコイ
ルを得た。スラブ加熱条件の異なる10熱延板を同一ロ
ットにして、これらの熱延板を33%の圧下率の冷間圧
延後、1120℃×30秒の加熱後900℃×60秒の
均熱をとる2段の中間焼鈍を行った後、最終冷延率85
%によって0.23mmに仕上げた。その後、得られた
冷延板に水素20%、窒素80%、露点40℃の雰囲気
中で840℃×3分の脱炭焼鈍を施し、焼鈍分離材を塗
布した後、水素雰囲気中で1200℃×20時間の仕上
焼鈍を行い、次いで最終コーティングを施す工程によっ
て成品とした。[Example 2] C: 0.078%, Si: 3
.. 30%, Mn: 0.079%, S: 0.026%,
solAl: 0.026%, N: 0.0083%, Cu
0.07% and Sn: 0.14% were cut into 10 slabs, of which 5 slabs were heated in a gas heating furnace at 1180°C for 3 hours, extracted from the furnace, and then width-reduced. Adjusted to appropriate slab size. After heating this slab for 50 minutes in an electric N2 atmosphere heating furnace at 1335°C, Table 2
Hot rolling was carried out under each hot rolling condition shown below to obtain a hot coil having a thickness of 2.3 mm. On the other hand, the remaining 5 slabs were directly heated in a gas heating furnace at 1380° C. for 7 hours, extracted from the furnace, and then width-reduced. The slab adjusted to the appropriate slab size was hot rolled under each hot rolling condition shown in Table 2 to obtain a hot coil with a thickness of 2.3 mm. 10 hot-rolled sheets with different slab heating conditions are made into the same lot, and these hot-rolled sheets are cold-rolled at a rolling reduction of 33%, heated at 1120°C for 30 seconds, and then soaked at 900°C for 60 seconds. After performing two stages of intermediate annealing, the final cold rolling rate was 85.
It was finished to 0.23 mm by %. Thereafter, the obtained cold-rolled sheet was subjected to decarburization annealing at 840°C for 3 minutes in an atmosphere of 20% hydrogen, 80% nitrogen, and a dew point of 40°C, and after applying an annealing separation material, the temperature was increased to 1200°C in a hydrogen atmosphere. Finish annealing was performed for 20 hours, followed by a final coating process to obtain a finished product.
【0026】このようにして得た成品の磁気特性は、表
2に示す通りであり、本発明材は磁束密度B8 で1.
925T以上、鉄損W17/50 で0.83W/kg
以下を安定して得ることができ、比較材と比べ良好な磁
気特性が得られることがわかる。尚、表2の各温度は熱
延材の幅方向センター温度の長手方向の平均値を示し、
磁束密度、鉄損はストリップ長手方向のトップ部、ミド
ル部、ボトム部の平均値を示す。The magnetic properties of the thus obtained product are shown in Table 2, and the material of the present invention has a magnetic flux density of B8 of 1.
925T or more, iron loss W17/50, 0.83W/kg
It can be seen that the following can be stably obtained, and better magnetic properties can be obtained than the comparative materials. In addition, each temperature in Table 2 indicates the average value in the longitudinal direction of the center temperature in the width direction of the hot rolled material,
The magnetic flux density and iron loss are the average values of the top, middle, and bottom parts in the longitudinal direction of the strip.
【0027】[0027]
【表2】[Table 2]
【0028】[実施例3]C:0.070%、Si:3
.45%、Mn:0.085%、S:0.027%、
solAl:0.028%、N:0.0089%、Cu
:0.06%、Sn:0.13%を含有する電磁鋼スラ
ブを10スラブ製片し、内5スラブを1180℃のガス
加熱炉で3時間加熱し、炉より抽出後幅圧下した。適正
スラブサイズに調整されたスラブを1400℃の電気式
N2 雰囲気加熱炉で50分加熱し、抽出後、表3に示
す各熱延条件で熱間圧延し、2.3mm厚のホットコイ
ルを得た。[Example 3] C: 0.070%, Si: 3
.. 45%, Mn: 0.085%, S: 0.027%,
solAl: 0.028%, N: 0.0089%, Cu
0.06% of Sn and 0.13% of Sn were cut into 10 slabs, 5 of which were heated in a gas heating furnace at 1180° C. for 3 hours, extracted from the furnace, and then rolled down across the width. The slab adjusted to the appropriate slab size was heated in an electric N2 atmosphere heating furnace at 1400°C for 50 minutes, and after extraction, it was hot rolled under the hot rolling conditions shown in Table 3 to obtain a hot coil with a thickness of 2.3 mm. Ta.
【0029】一方、残5スラブは、直接1400℃のガ
ス加熱炉で7時間加熱し、炉より抽出後幅圧下した。適
正スラブサイズに調整されたスラブを表3に示す各熱延
条件で熱間圧延し、2.3mm厚のホットコイルを得た
。
スラブ加熱条件の異なる10熱延板を同一ロットにして
、これらの熱延板を33%の圧下率の冷間圧延後、11
20℃×30秒の加熱後900℃×60秒の均熱をとる
2段の中間焼鈍を行った後、最終冷延率85%によって
0.23mmに仕上げた。その後、得られた冷延板に水
素20%、窒素80%、露点40℃の雰囲気中で840
℃×3分の脱炭焼鈍を施し、焼鈍分離材を塗布した後、
水素雰囲気中で1200℃×20時間の仕上焼鈍を行い
、次いで最終コーティングを施す工程によって成品とし
た。On the other hand, the remaining five slabs were directly heated in a gas heating furnace at 1400° C. for 7 hours, extracted from the furnace, and then reduced widthwise. The slabs adjusted to appropriate slab sizes were hot rolled under the hot rolling conditions shown in Table 3 to obtain hot coils with a thickness of 2.3 mm. Ten hot-rolled plates with different slab heating conditions were made into the same lot, and after cold rolling with a rolling reduction of 33%, 11
After performing two stages of intermediate annealing, heating at 20° C. for 30 seconds and then soaking at 900° C. for 60 seconds, the material was finished to 0.23 mm with a final cold rolling rate of 85%. Thereafter, the obtained cold rolled sheet was heated to 840°C in an atmosphere of 20% hydrogen, 80% nitrogen, and a dew point of 40°C
After decarburizing annealing for 3 minutes at °C and applying an annealing separation material,
Finish annealing was performed at 1200° C. for 20 hours in a hydrogen atmosphere, and then a final coating was applied to produce a finished product.
【0030】このようにして得た成品の磁気特性は、表
3に示す通りであり、本発明材は磁束密度B8 で1.
930T以上、鉄損W17/50 で0.80W/kg
以下を安定して得ることができ、比較材と比べ良好な磁
気特性が得られることがわかる。尚、表3の各温度は熱
延材の幅方向センター温度の長手方向の平均値を示し、
磁束密度、鉄損はストリップ長手方向のトップ部、ミド
ル部、ボトム部の平均値を示す。The magnetic properties of the thus obtained product are shown in Table 3, and the material of the present invention has a magnetic flux density of B8 of 1.
930T or more, iron loss W17/50, 0.80W/kg
It can be seen that the following can be stably obtained, and better magnetic properties can be obtained than the comparative materials. In addition, each temperature in Table 3 indicates the average value in the longitudinal direction of the center temperature in the width direction of the hot rolled material,
The magnetic flux density and iron loss are the average values of the top, middle, and bottom parts in the longitudinal direction of the strip.
【0031】[0031]
【表3】[Table 3]
【0032】[0032]
【発明の効果】以上のように本発明法によれば、磁束密
度の高い、かつ鉄損の低い極薄手一方向性電磁鋼板を得
ることができる。As described above, according to the method of the present invention, an ultra-thin unidirectional electrical steel sheet with high magnetic flux density and low iron loss can be obtained.
Claims (2)
85%、Si:2.5〜4.5%、Mn:0.01〜0
.10%、 S:0.01〜0.04%、s
olAl:0.010〜0.065%、 N:0.0
05〜0.0100%、Cu:0.03〜0.5%、
Sn:0.03〜0.5%、残部鉄及び不可
避的不純物を含有するスラブを高温加熱後熱間圧延する
にさいし、仕上前面温度を1150〜1250℃、仕上
後面温度を950〜1100℃、及び巻取温度を400
〜600℃としてホットコイルを得、このホットコイル
を冷延率83%以上の一回冷延工程を含む所定の製造工
程により成品板厚0.23mm以下の極薄手高磁束密度
一方向性電磁鋼板を製造する方法において、上記スラブ
の高温加熱を電気式雰囲気加熱炉で1300〜1450
℃に均一加熱し、上記熱間圧延後のホットコイルの板厚
を1.9mm以下とすることを特徴とする、極薄手高磁
束密度低鉄損一方向性電磁鋼板の製造方法。Claim 1: C as weight %: 0.025 to 0.0
85%, Si: 2.5-4.5%, Mn: 0.01-0
.. 10%, S: 0.01-0.04%, s
olAl: 0.010-0.065%, N: 0.0
05-0.0100%, Cu: 0.03-0.5%,
When hot rolling a slab containing Sn: 0.03 to 0.5%, balance iron and unavoidable impurities after high temperature heating, the finishing front temperature is 1150 to 1250°C, the finishing rear temperature is 950 to 1100°C, and the winding temperature to 400
A hot coil is obtained at ~600°C, and this hot coil is processed through a predetermined manufacturing process including a single cold rolling process with a cold rolling rate of 83% or more to produce an ultra-thin high magnetic flux density unidirectional electrical steel sheet with a thickness of 0.23 mm or less. In the method for producing
A method for producing an ultra-thin, high magnetic flux density, low iron loss, unidirectional electrical steel sheet, characterized by uniformly heating the hot coil to 1.9 mm or less after hot rolling.
85%、Si:2.5〜4.5%、Mn:0.01〜0
.10%、 S:0.01〜0.04%、s
olAl:0.010〜0.065%、 N:0.0
05〜0.0100%、Cu:0.03〜0.5%、
Sn:0.03〜0.5%、残部鉄及び不可
避的不純物を含有するスラブを高温加熱後熱間圧延する
にさいし、仕上前面温度を1150〜1250℃、仕上
後面温度を950〜1100℃、及び巻取温度を400
〜600℃としてホットコイルを得、このホットコイル
を予備冷延及び最終冷延率83%以上の冷延工程を含む
所定の製造工程により成品板厚0.23mm以下の極薄
手高磁束密度一方向性電磁鋼板を製造する方法において
、上記スラブの高温加熱を電気式雰囲気加熱炉で130
0〜1450℃に均一加熱し、上記熱間圧延後のホット
コイルの板厚を2.5mm以下とすることを特徴とする
、極薄手高磁束密度低鉄損一方向性電磁鋼板の製造方法
。Claim 2: C as weight %: 0.025 to 0.0
85%, Si: 2.5-4.5%, Mn: 0.01-0
.. 10%, S: 0.01-0.04%, s
olAl: 0.010-0.065%, N: 0.0
05-0.0100%, Cu: 0.03-0.5%,
When hot rolling a slab containing Sn: 0.03 to 0.5%, balance iron and unavoidable impurities after high temperature heating, the finishing front temperature is 1150 to 1250°C, the finishing rear temperature is 950 to 1100°C, and the winding temperature to 400
A hot coil is obtained at ~600°C, and this hot coil is processed through a predetermined manufacturing process including preliminary cold rolling and a final cold rolling process with a final cold rolling rate of 83% or more to produce an ultra-thin, high magnetic flux density unidirectional product with a thickness of 0.23 mm or less. In the method for producing magnetic electrical steel sheets, the slab is heated at a high temperature of 130 ml in an electric atmosphere heating furnace.
A method for producing an ultra-thin, high magnetic flux density, low core loss, unidirectional electrical steel sheet, comprising heating uniformly to 0 to 1450° C. and setting the thickness of the hot coil after hot rolling to 2.5 mm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP928991A JPH04341518A (en) | 1991-01-29 | 1991-01-29 | Production of extra thin grain-oriented silicon steel sheet having high magnetic flux density and reduced in iron loss |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP928991A JPH04341518A (en) | 1991-01-29 | 1991-01-29 | Production of extra thin grain-oriented silicon steel sheet having high magnetic flux density and reduced in iron loss |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04341518A true JPH04341518A (en) | 1992-11-27 |
Family
ID=11716322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP928991A Pending JPH04341518A (en) | 1991-01-29 | 1991-01-29 | Production of extra thin grain-oriented silicon steel sheet having high magnetic flux density and reduced in iron loss |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04341518A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008063655A (en) * | 2006-08-07 | 2008-03-21 | Nippon Steel Corp | Method for producing grain oriented silicon steel sheet capable of stably obtaining magnetic property in sheet width direction |
JP2011518947A (en) * | 2008-12-31 | 2011-06-30 | 宝山鋼鉄股▲分▼有限公司 | Method for producing grain-oriented silicon steel by single cold rolling method |
WO2014132354A1 (en) | 2013-02-27 | 2014-09-04 | Jfeスチール株式会社 | Production method for grain-oriented electrical steel sheets |
WO2019131853A1 (en) | 2017-12-28 | 2019-07-04 | Jfeスチール株式会社 | Low-iron-loss grain-oriented electrical steel sheet and production method for same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6248725A (en) * | 1985-08-26 | 1987-03-03 | Agency Of Ind Science & Technol | Novel chelate resin and production thereof |
JPS62103322A (en) * | 1985-10-29 | 1987-05-13 | Kawasaki Steel Corp | Heating method for grain oriented silicon steel slab |
JPH02138418A (en) * | 1988-11-16 | 1990-05-28 | Kawasaki Steel Corp | Production of grain-oriented electrical steel sheet having excellent magnetic characteristic and surface characteristic |
JPH0354186A (en) * | 1989-07-21 | 1991-03-08 | Fujikura Ltd | Floating zone-melting device |
-
1991
- 1991-01-29 JP JP928991A patent/JPH04341518A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6248725A (en) * | 1985-08-26 | 1987-03-03 | Agency Of Ind Science & Technol | Novel chelate resin and production thereof |
JPS62103322A (en) * | 1985-10-29 | 1987-05-13 | Kawasaki Steel Corp | Heating method for grain oriented silicon steel slab |
JPH02138418A (en) * | 1988-11-16 | 1990-05-28 | Kawasaki Steel Corp | Production of grain-oriented electrical steel sheet having excellent magnetic characteristic and surface characteristic |
JPH0354186A (en) * | 1989-07-21 | 1991-03-08 | Fujikura Ltd | Floating zone-melting device |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008063655A (en) * | 2006-08-07 | 2008-03-21 | Nippon Steel Corp | Method for producing grain oriented silicon steel sheet capable of stably obtaining magnetic property in sheet width direction |
JP2011518947A (en) * | 2008-12-31 | 2011-06-30 | 宝山鋼鉄股▲分▼有限公司 | Method for producing grain-oriented silicon steel by single cold rolling method |
WO2014132354A1 (en) | 2013-02-27 | 2014-09-04 | Jfeスチール株式会社 | Production method for grain-oriented electrical steel sheets |
KR20150109486A (en) | 2013-02-27 | 2015-10-01 | 제이에프이 스틸 가부시키가이샤 | Production method for grain-oriented electrical steel sheets |
US10431359B2 (en) | 2013-02-27 | 2019-10-01 | Jfe Steel Corporation | Method for producing grain-oriented electrical steel sheet |
WO2019131853A1 (en) | 2017-12-28 | 2019-07-04 | Jfeスチール株式会社 | Low-iron-loss grain-oriented electrical steel sheet and production method for same |
KR20200089321A (en) | 2017-12-28 | 2020-07-24 | 제이에프이 스틸 가부시키가이샤 | Low iron loss grain-oriented electrical steel sheet and its manufacturing method |
US11459633B2 (en) | 2017-12-28 | 2022-10-04 | Jfe Steel Corporation | Low-iron-loss grain-oriented electrical steel sheet and production method for same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2902508B1 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5300210B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5287615B2 (en) | Method for producing grain-oriented electrical steel sheet | |
CN111417737A (en) | Grain-oriented electromagnetic steel sheet with low iron loss and method for producing same | |
JP2883226B2 (en) | Method for producing thin grain silicon steel sheet with extremely excellent magnetic properties | |
JPH059666A (en) | Grain oriented electrical steel sheet and its manufacture | |
JPH04341518A (en) | Production of extra thin grain-oriented silicon steel sheet having high magnetic flux density and reduced in iron loss | |
KR950007183B1 (en) | Method of hot rolling continuously cast grain oriented electrical steel slab | |
JP3368409B2 (en) | Manufacturing method of low iron loss unidirectional electrical steel sheet | |
JPH0797628A (en) | Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss | |
JPS6242968B2 (en) | ||
JPH10102145A (en) | Manufacture of extra thin silicon steel sheet and extra thin silicon steel sheet | |
JPH0625381B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JPH02240215A (en) | Production of thin grain-oriented magnetic steel sheet | |
JPS6248725B2 (en) | ||
JPH08157963A (en) | Production of grain oriented silicon steel sheet | |
JP3885240B2 (en) | Method for producing unidirectional silicon steel sheet | |
JPH0257125B2 (en) | ||
JPH0798976B2 (en) | Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss | |
JPH09118920A (en) | Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property | |
JP3369371B2 (en) | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet | |
JPH11293339A (en) | Manufacture of unidirectional magnetic steel plate | |
JPS5937330B2 (en) | Manufacturing method of unidirectional electrical steel sheet by applying continuous casting method | |
JPH07116515B2 (en) | Method for producing unidirectional silicon steel sheet having excellent magnetic properties | |
JPH04289121A (en) | Production of thin grain-oriented silicon steel sheet having stable magnetic property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19961210 |