[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0434915A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH0434915A
JPH0434915A JP2140996A JP14099690A JPH0434915A JP H0434915 A JPH0434915 A JP H0434915A JP 2140996 A JP2140996 A JP 2140996A JP 14099690 A JP14099690 A JP 14099690A JP H0434915 A JPH0434915 A JP H0434915A
Authority
JP
Japan
Prior art keywords
conductive polymer
film
capacitor
conductor
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2140996A
Other languages
Japanese (ja)
Other versions
JP3030054B2 (en
Inventor
Rikizo Yamaguchi
山口 力三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga Sanyo Industry Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Saga Sanyo Industry Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga Sanyo Industry Co Ltd, Sanyo Electric Co Ltd filed Critical Saga Sanyo Industry Co Ltd
Priority to JP2140996A priority Critical patent/JP3030054B2/en
Publication of JPH0434915A publication Critical patent/JPH0434915A/en
Application granted granted Critical
Publication of JP3030054B2 publication Critical patent/JP3030054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To improve an equivalent series resistance, to prevent damage of a dielectric oxide film and to suppress deterioration of a leakage current by using an electrolytic polymerization conductor used for electrolytic polymerization as a cathode leading terminal of a capacitor. CONSTITUTION:A conductive polymer thin film 3 is uniformly formed on a dielectric oxide film 2 by chemical oxidation polymerization, and made conductive. Then, an electrolytic polymerization conductor 13 used also as an electrode leading terminal of a capacitor is connected in contact on the film 3, dipped in electrolyte in which monomer of conductive polymer such as pyrrole, thiophene, aniline, furan, etc., and brought into contact with the film 3 to form a conductor 14 as an anode, electrolyte 9 containing conductive polymer monomer is used as a cathode, and a conductive polymer film 4 is generated. Then, carbon 15 is immersed, dried, inserted into a metal case or a resin case, and sealed with epoxy resin, etc. In this case, the conductor 14 used at the time of electrolytic polymerization is used as the cathode terminal of the capacitor.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は導電性高分子を固体電解質として用いる固体電
解コンデンサの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a method for manufacturing a solid electrolytic capacitor using a conductive polymer as a solid electrolyte.

(ロ)従来の技術 従来、固体電解コンデンサとしては、−船釣にアルミニ
ウム又はタンタル等の金属表面に酸化皮膜を形成させ、
該酸化皮膜を誘電体とし、硝酸マンガンを熱分解して二
酸化マンガンを生成させ、この二酸化マンガン層を電解
質として用いている。この二酸化マンガンの生成工程は
数回繰り返して行い、必要量の二酸化マンガンを付着さ
せている。その後、導電性物質であるカーボン、更に陰
極引出しのために銀ペーストを塗布し、樹脂外装あるい
は金属製ケースに挿入し、エポキシ樹脂等で封止してコ
ンデンサとして完成している。このような従来のコンデ
ンサでは二酸化マンガンの比抵抗が比較的大きく、その
為インピーダンスが高い。また、二酸化マンガン層形成
のための熱分解を繰り返し行うため誘電体である酸化皮
膜が損傷しやすく、漏れ電流が大きくなるなどの欠点が
ある。
(b) Conventional technology Conventionally, solid electrolytic capacitors have been manufactured by forming an oxide film on the surface of metal such as aluminum or tantalum during boat fishing;
Using the oxide film as a dielectric, manganese nitrate is thermally decomposed to produce manganese dioxide, and this manganese dioxide layer is used as an electrolyte. This step of producing manganese dioxide is repeated several times to deposit the required amount of manganese dioxide. After that, carbon, which is a conductive material, and silver paste for drawing out the cathode are coated, the capacitor is inserted into a resin exterior or metal case, and the capacitor is sealed with epoxy resin or the like to complete the capacitor. In such conventional capacitors, manganese dioxide has a relatively high resistivity and therefore a high impedance. Furthermore, since thermal decomposition is repeated to form a manganese dioxide layer, the oxide film, which is a dielectric, is easily damaged, resulting in disadvantages such as increased leakage current.

また、TCNQ塩を固体電解質として使用するコンデン
サはTCNQ塩の比抵抗が小さく、高周波特性に優れて
いるが、熱安定性に欠ける。
In addition, capacitors using TCNQ salt as a solid electrolyte have low resistivity and excellent high frequency characteristics, but lack thermal stability.

最近になって、導電性高分子膜を固体電解質とするコン
デンサが提案され、この方法によれば、まず化学酸化重
合法により導電性高分子の薄膜を形成させ、該導電性高
分子膜を陽極として、電解重合法により、導電性高分子
膜を積層するなどが検討されている(例えば特開昭64
−32619号(HOIG  9102))。
Recently, a capacitor using a conductive polymer film as a solid electrolyte has been proposed. According to this method, a thin conductive polymer film is first formed by a chemical oxidation polymerization method, and then the conductive polymer film is used as an anode. As such, the use of electrolytic polymerization to stack conductive polymer films is being considered (for example, in JP-A-64
-32619 (HOIG 9102)).

次に従来の製造方法について説明する。第3図に示す如
く、弁作用を有するアルミ粉末の焼結体或はアルミ金属
箔(1)を電解酸化または空気酸化により、その表面に
誘電体酸化皮膜(2)を作る。
Next, a conventional manufacturing method will be explained. As shown in FIG. 3, a dielectric oxide film (2) is formed on the surface of a sintered body of aluminum powder or aluminum metal foil (1) having a valve action by electrolytic oxidation or air oxidation.

まず、化学酸化重合の場合、誘電体酸化皮膜(2)上に
酸化剤を含む溶液を塗布した後、導電性高分子の単量体
を含む溶液に接触させて、誘電体酸化皮膜層(2)の上
に化学酸化重合による導電性高分子層(3)を形成し、
表面を導電化する。この作業には問題がないが、膜の強
度及び電気特性的にコンデンサとして満足できる皮膜が
得られない等の問題がある。
First, in the case of chemical oxidative polymerization, a solution containing an oxidizing agent is applied onto the dielectric oxide film (2), and then the dielectric oxide film layer (2) is brought into contact with a solution containing a conductive polymer monomer. ), a conductive polymer layer (3) is formed by chemical oxidation polymerization,
Make the surface conductive. Although there are no problems with this operation, there are problems such as the inability to obtain a film that is satisfactory as a capacitor in terms of film strength and electrical properties.

次に電解重合においては、第3図および第4図に示す如
く、支持電解質および導電性高分子単量体を含む電解液
(9)中に、前述の化学酸化重合により導電性高分子層
(3)が形成され且つ金属箔(1)に接続されたコンデ
ンサ用リード線(5)を備えるコンデンサ素子(6)を
浸漬し、化学酸化重合により形成された導電性高分子膜
(3)に白金、カーボン等よりなる外部電極(8)を接
触させ、定電圧且つ定電流直流電源(10)から正電圧
を供給する。また、その直流電源(10)の負電圧をス
テンレス等によりなる電解重合用対極電極(11)に供
給し、電解酸化重合を行なう。この電解重合においては
、電解液(9)により差はあるが、一般に良質の電解重
合による導電性高分子膜(4)が得られるが、絶縁体で
ある誘電体酸化皮膜(2)上に導電性高分子皮膜(4)
を形成させる際、その供電方法が非常に困難である。例
えば誘電体酸化皮膜(2)上に前処理として化学酸化重
合による導電性高分子膜(3)を形成させ、その膜に外
部より外部電極(8)を接触させる給電方式が一般に採
用されているが、この方式によると、個々の電極接触度
合により電流密度が一定でなく、均一な膜形成が困難で
あり、かつ外部電極(8)にも導電性高分子膜(4a)
が形成されるので、この無駄な高分子膜(4a)による
材料の量的損失が大きい。更にこの導電性高分子膜(4
a)により素子(6)および化学酸化重合導電性高分子
膜(3)に強固に接着された外部電極(8)を素子(6
)から無理に分離する際、導電性高分子膜(4)の一部
(4b)が欠落するが、その時、酸化皮膜(3)を傷つ
けるため漏れ電流の劣化等の諸問題がある。尚、(7)
は電解酸化重合導電性高分子膜(4)の上に銀ペースト
を塗布し、その上に導電的に接着して設けたコンデンサ
の陰極リードである。
Next, in electrolytic polymerization, as shown in FIGS. 3 and 4, a conductive polymer layer ( A capacitor element (6) having a capacitor lead wire (5) formed thereon and connected to a metal foil (1) is immersed in a conductive polymer film (3) formed by chemical oxidation polymerization, and platinum is applied to the conductive polymer film (3) formed by chemical oxidation polymerization. , an external electrode (8) made of carbon or the like is brought into contact with the external electrode (8), and a positive voltage is supplied from a constant voltage and constant current DC power source (10). Further, the negative voltage of the DC power source (10) is supplied to a counter electrode (11) for electrolytic polymerization made of stainless steel or the like to perform electrolytic oxidative polymerization. In this electrolytic polymerization, although there are differences depending on the electrolytic solution (9), a conductive polymer film (4) of good quality is generally obtained by electrolytic polymerization. Polymer film (4)
The method of supplying power is extremely difficult when forming a . For example, a power supply method is generally adopted in which a conductive polymer film (3) is formed by chemical oxidation polymerization as a pretreatment on a dielectric oxide film (2), and an external electrode (8) is brought into contact with the film from the outside. However, according to this method, the current density is not constant depending on the degree of contact between the individual electrodes, making it difficult to form a uniform film, and the external electrode (8) also has a conductive polymer film (4a).
is formed, so the quantitative loss of material due to this wasteful polymer film (4a) is large. Furthermore, this conductive polymer film (4
The external electrode (8) firmly adhered to the element (6) and the chemically oxidized conductive polymer film (3) by a) is attached to the element (6).
), a part (4b) of the conductive polymer film (4) is missing, but at that time, the oxide film (3) is damaged, causing various problems such as deterioration of leakage current. Furthermore, (7)
1 is a cathode lead of a capacitor in which a silver paste is coated on an electrolytically oxidized conductive polymer film (4) and is conductively adhered thereon.

また、第5図(a)に示す如く化学重合導電性高分子膜
(3)の下端を切断して金属露出部(1a)を設け、リ
ード線(5)を介して電解電源を供給し、金属露出部(
1a)の表面にそのまま電解重合により電解酸化重合導
電性高分子膜(4)を形成し、その後、第5図(b)に
示す如く、金属箔(1)と接触する導電性高分子膜(4
)を酸化剤または還元剤を用いて絶縁層(13)を形成
して絶縁化している(特開昭64−76713号参照)
。この場合には、給電部での不均一な膜成長が生じたり
、さらには部分的な絶縁化(12)という作業性に問題
があり、特にチップ対応の小さなコンデンサでは非常に
困難である。
Further, as shown in FIG. 5(a), the lower end of the chemically polymerized conductive polymer film (3) is cut to provide a metal exposed portion (1a), and electrolytic power is supplied via the lead wire (5). Exposed metal part (
An electrolytic oxidation polymerized conductive polymer film (4) is directly formed on the surface of the metal foil (1a) by electrolytic polymerization, and then, as shown in FIG. 4
) is insulated by forming an insulating layer (13) using an oxidizing agent or a reducing agent (see JP-A-64-76713).
. In this case, non-uniform film growth occurs in the power feeding section, and there are also problems with workability such as partial insulation (12), which is particularly difficult for small capacitors compatible with chips.

(ハ)発明が解決しようとする課題 導電性高分子膜の形成の際、先ず誘電体酸化皮膜上に化
学酸化重合等によって導電性高分子膜を形成し、その後
該導電性高分子膜を陽極として導電体を接触させ、電解
重合を行うが、電解重合用導電体を取去る時に導電性高
分子膜の損傷やピンホール、また誘電体酸化皮膜の損傷
によってコンデンサの特性が劣化するという問題がある
(c) Problems to be Solved by the Invention When forming a conductive polymer film, a conductive polymer film is first formed on a dielectric oxide film by chemical oxidative polymerization, etc., and then the conductive polymer film is used as an anode. Electrolytic polymerization is performed by bringing a conductor into contact with the capacitor, but when the conductor for electrolytic polymerization is removed, the capacitor's characteristics deteriorate due to damage to the conductive polymer film, pinholes, and damage to the dielectric oxide film. be.

(ニ)課題を解決するための手段 導電性高分子膜を電解重合によって生成する場合、電解
重合に用いた電解重合用導電体をコンデンサの陰極取り
出し端子として使用する。
(d) Means for Solving the Problems When a conductive polymer film is produced by electrolytic polymerization, the conductor for electrolytic polymerization used in electrolytic polymerization is used as a cathode lead-out terminal of a capacitor.

(ホ)作 用 電解重合に用いる電解重合用導電体を取去るときに生じ
る導電性高分子膜の損傷やピンホールがなくなり、等個
直列抵抗(ESR)が向上する。
(E) Function Damage and pinholes in the conductive polymer film that occur when removing the conductor for electrolytic polymerization used in electrolytic polymerization are eliminated, and the equal series resistance (ESR) is improved.

また、誘電体酸化皮膜の損傷が防止できるため漏れ電流
の劣化が抑制される。
Furthermore, since damage to the dielectric oxide film can be prevented, deterioration of leakage current is suppressed.

(へ)実施例 高純度のアルミニウム粉末を焼結成形(1)し、電解液
中で電気化学的にアルミニウム表面に酸化物(2)を生
成させ、誘電体酸化皮膜(2)を作る。
(F) Example High-purity aluminum powder is sintered and shaped (1), and an oxide (2) is electrochemically generated on the aluminum surface in an electrolytic solution to form a dielectric oxide film (2).

次に酸化剤を含む溶液に浸漬し、均一に分散した後、ピ
ロール、チオフェン、アニリン、フラン等の導電性高分
子の単量体を含む溶液に接触させ、誘電体酸化皮膜(2
)上に化学酸化重合によって導電性高分子の薄膜(3)
を均一に形成させ、酸化皮膜表面を導電化する。次に第
1図および第2図に示す如く、化学酸化重合によって生
成した導電性高分子膜(3)上にコンデンサの電極引出
端子兼電解重合用導電体(13)を接触接続し、ピロー
ル、チオフェン、アニリン、フラン等の導電性高分子の
単量体が溶解された電解液中に浸漬する。尚、(13)
はステンレス容器(陰極)である。導電性高分子膜(3
)に接触させた導電体(14)を陽極とし、導電性高分
子単量体を含む電解液(9)を陰極とし、定電流電源(
10)から定電流(0、5m A −1m A/P、1
〜2Hr)で電解重合を行い、均一で強固な導電性高分
子膜(4)を生成する。
Next, the dielectric oxide film (2
) on which a thin film of conductive polymer is formed by chemical oxidative polymerization (3)
is formed uniformly to make the surface of the oxide film conductive. Next, as shown in FIGS. 1 and 2, a conductor (13) for electrolytic polymerization which also serves as an electrode lead-out terminal of a capacitor is connected to the conductive polymer film (3) produced by chemical oxidative polymerization. It is immersed in an electrolytic solution in which conductive polymer monomers such as thiophene, aniline, and furan are dissolved. Furthermore, (13)
is a stainless steel container (cathode). Conductive polymer film (3
) is used as an anode, an electrolytic solution (9) containing a conductive polymer monomer is used as a cathode, and a constant current power source (
10) to constant current (0, 5m A -1m A/P, 1
Electrolytic polymerization is performed for ~2 hours) to produce a uniform and strong conductive polymer film (4).

次にカーボン(15)を含浸乾燥させる。以上の各処理
を行った素子を樹脂外装(樹脂デイツプ)又はアルミニ
ウム等の金属ケースあるいは樹脂ケースに挿入し、エポ
キシ樹脂等で封止しコンデンサを完成する。このとき上
記の電解重合時に用いた導電体(14)をコンデンサの
陰極端子として使用する。
Next, carbon (15) is impregnated and dried. The element subjected to each of the above treatments is inserted into a resin exterior (resin dip), a metal case made of aluminum, or a resin case, and sealed with an epoxy resin or the like to complete the capacitor. At this time, the conductor (14) used during the electrolytic polymerization described above is used as the cathode terminal of the capacitor.

導電体(14)は導電性を有するものなら何でも使用で
きるが、アルミニウム線、ステンレス線等に半田メツキ
CP線を溶接した電極を使用するのが望ましい。本発明
は焼結体の他、箔式についても可能であり、この実施例
に限定されるものではない。
As the conductor (14), any conductive material can be used, but it is preferable to use an electrode made by welding a solder-plated CP wire to an aluminum wire, stainless steel wire, or the like. In addition to the sintered body, the present invention is also applicable to a foil type, and is not limited to this embodiment.

第1表は本発明の実施例と従来例の特性を示すものであ
る。即ち(A)は本発明の実施例であり、電解重合に用
いた導電体(14)をコンデンサの陰極端子として使用
したものである。また(B)は従来例であり、電解重合
に用いた導電体(8)を取去り、カーボンを含浸し、乾
燥後、銀ペーストを用いて陰極引出端子を取出している
。この表から本発明の方(A)が従来例(B)より遥か
に性能が優れ測定値は資料 n=20個の平均値、容量1 u F / 25 Vv
” V、C:静電容量(測定周波数120Hz)tan
δ:損失角の正接(測定周波数120Hz)E、S、R
:等個直列抵抗(100KHz)L、C,:漏れ電流(
25V、60秒値)(ト)発明の効果 本発明の固体電解コンデンサの製造方法によれば、コン
デンサ素子の電極引き出しリード線を兼用して、ポリピ
ロール等の導電性高分子の電解重合のための給電を行な
う為、特別な給電用電極も不要で且つ素子を傷つけるこ
となく、均一な導電性高分子膜を形成でき、漏れ電流を
小さくすることが可能となる。しがも誘電体酸化皮膜上
に化学酸化重合により形成された導電性高分子膜の上に
、更に良質な導電性高分子の電解重合膜を形成すること
ができるので、コンデンサの電気特性が向上する。また
、従来の製造方法の如く別途外部電極を設ける必要がな
く、それ故製造工数が削減されて経済的にも有利であり
、製造方法としても従来例より、簡単な方法であるので
、量産化に極めて好適である。
Table 1 shows the characteristics of the embodiment of the present invention and the conventional example. That is, (A) is an example of the present invention, in which the conductor (14) used in electrolytic polymerization was used as a cathode terminal of a capacitor. Further, (B) is a conventional example in which the conductor (8) used in electrolytic polymerization is removed, impregnated with carbon, dried, and then a cathode lead terminal is taken out using silver paste. From this table, the performance of the present invention (A) is far superior to the conventional example (B).The measured value is the average value of n = 20 samples, and the capacity is 1 u F / 25 Vv.
"V, C: Capacitance (measurement frequency 120Hz) tan
δ: Tangent of loss angle (measurement frequency 120Hz) E, S, R
: Equal series resistance (100KHz) L, C, : Leakage current (
25V, 60 seconds value) (g) Effect of the invention According to the method for producing a solid electrolytic capacitor of the present invention, the electrode lead wire of the capacitor element can also be used as a lead wire for electrolytic polymerization of conductive polymers such as polypyrrole. Since power is supplied, there is no need for a special power supply electrode, and a uniform conductive polymer film can be formed without damaging the device, making it possible to reduce leakage current. However, it is possible to form an electrolytic polymer film of a higher quality conductive polymer on top of the conductive polymer film formed by chemical oxidative polymerization on the dielectric oxide film, improving the electrical characteristics of the capacitor. do. In addition, there is no need to provide a separate external electrode as in the conventional manufacturing method, which reduces the number of manufacturing steps and is economically advantageous.As the manufacturing method is also simpler than the conventional method, mass production is possible. It is extremely suitable for

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の固体電解コンデンサの製
造に適用する場合の説明図面であり、第1図は電解重合
の給電状態を示す図面、第2図はコンデンサの断面図、
第3図は従来方法よるコンデンサの断面図、第4図は電
解重合の給電状態を示す図面、第5図および第6図は従
来の製造方法の他の実施例を説明するための図面であり
、第5図はコンデンサの断面図である。 (1)・・・弁作用を有する金属箔、(2)・・・誘電
体酸化皮膜、(3)・・・化学酸化重合による導電性高
分子層、(4)・・・電解重合による導電性高分子膜、
(5)・・・コンデンサ用リード線、(6)・・・コン
デンサ素子、(7)・・・コンデンサの陰極リード、(
8)・・・外部電極、(9)・・・電解液、(10)・
・・直流電源、(11)・・・電解重合用対極電極、(
14)・・・電解重合用導電体兼コンデンサの陰極リー
ド。 第1図 第2図 第6図
1 and 2 are explanatory drawings when the present invention is applied to manufacturing a solid electrolytic capacitor, FIG. 1 is a drawing showing the power supply state of electrolytic polymerization, FIG. 2 is a sectional view of the capacitor,
FIG. 3 is a sectional view of a capacitor manufactured by the conventional method, FIG. 4 is a diagram showing the power supply state of electrolytic polymerization, and FIGS. 5 and 6 are diagrams for explaining other embodiments of the conventional manufacturing method. , FIG. 5 is a sectional view of the capacitor. (1)...Metal foil with valve action, (2)...Dielectric oxide film, (3)...Conductive polymer layer by chemical oxidation polymerization, (4)...Conductivity by electrolytic polymerization polymer membrane,
(5)... Capacitor lead wire, (6)... Capacitor element, (7)... Capacitor cathode lead, (
8)...External electrode, (9)...Electrolyte, (10)...
...DC power supply, (11)...Counter electrode for electrolytic polymerization, (
14)...Cathode lead of conductor and capacitor for electrolytic polymerization. Figure 1 Figure 2 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)(a)アルミニウムやタンタル等の弁作用を有す
る皮膜形成性金属の表面に絶縁性の誘電体酸化皮膜を形
成し、 (b)該誘電体酸化皮膜上に化学酸化重合 によりピロール、チオフエン、アニリン、フラン等の導
電性高分子膜を形成し、 (c)該導電性高分子膜に電解重合用導電 体を接触接続し、 (d)ピロール、チオフエン、アニリン、 フラン等の導電性物質の溶解された電解液中に前記導電
体の接触接続された皮膜形成用金属を浸漬し、 (e)前記導電体に正電圧を印加して電解 重合により前記導電性高分子膜上に、更に前記ピロール
、チオフエン、アニリン、フラン等の導電性高分子層を
形成させ、 該導電性高分子層を固体電解質として使用すると共に前
記導電体をコンデンサの電極引出端子に兼用使用するこ
とを特徴とする固体電解コンデンサの製造方法。
(1) (a) An insulating dielectric oxide film is formed on the surface of a film-forming metal with valve action such as aluminum or tantalum, and (b) pyrrole and thiophene are formed on the dielectric oxide film by chemical oxidation polymerization. , aniline, furan, etc., (c) a conductive material for electrolytic polymerization is contacted and connected to the conductive polymer film, (d) a conductive substance such as pyrrole, thiophene, aniline, furan, etc. (e) applying a positive voltage to the conductor to form a film on the conductive polymer film through electrolytic polymerization; A conductive polymer layer of pyrrole, thiophene, aniline, furan, etc. is formed, and the conductive polymer layer is used as a solid electrolyte, and the conductor is also used as an electrode terminal of a capacitor. Method of manufacturing solid electrolytic capacitors.
JP2140996A 1990-05-30 1990-05-30 Method for manufacturing solid electrolytic capacitor Expired - Fee Related JP3030054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2140996A JP3030054B2 (en) 1990-05-30 1990-05-30 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2140996A JP3030054B2 (en) 1990-05-30 1990-05-30 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH0434915A true JPH0434915A (en) 1992-02-05
JP3030054B2 JP3030054B2 (en) 2000-04-10

Family

ID=15281734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2140996A Expired - Fee Related JP3030054B2 (en) 1990-05-30 1990-05-30 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3030054B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234852A (en) * 1992-09-11 1994-08-23 Nec Corp Production of polyaniline or its derivative and solution thereof, method for making polyaniline or its derivative highly conductive and production of solid electrolyte condenser
JPH08143771A (en) * 1994-11-25 1996-06-04 Nec Corp Heat-resistant poltaniline, derivative therefrom, solid electrolytic capacitor, and process for producing the same
JPH08206241A (en) * 1994-02-28 1996-08-13 M G Kogyo Kk Far infrared magnet
JPH10321471A (en) * 1997-05-22 1998-12-04 Nichicon Corp Solid electrolytic capacitor and its manufacture
JP2008054931A (en) * 2006-08-31 2008-03-13 Kiyoko Kameoka Bag having both functions of shoulder bag and backpack

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11270847B1 (en) 2019-05-17 2022-03-08 KYOCERA AVX Components Corporation Solid electrolytic capacitor with improved leakage current

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234852A (en) * 1992-09-11 1994-08-23 Nec Corp Production of polyaniline or its derivative and solution thereof, method for making polyaniline or its derivative highly conductive and production of solid electrolyte condenser
JPH08206241A (en) * 1994-02-28 1996-08-13 M G Kogyo Kk Far infrared magnet
JPH08143771A (en) * 1994-11-25 1996-06-04 Nec Corp Heat-resistant poltaniline, derivative therefrom, solid electrolytic capacitor, and process for producing the same
JPH10321471A (en) * 1997-05-22 1998-12-04 Nichicon Corp Solid electrolytic capacitor and its manufacture
JP2008054931A (en) * 2006-08-31 2008-03-13 Kiyoko Kameoka Bag having both functions of shoulder bag and backpack

Also Published As

Publication number Publication date
JP3030054B2 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
US4943892A (en) Solid electrolytic capacitor and method for manufacturing the same
EP0637043A1 (en) Solid electrolytic capacitor and method for manufacturing the same
JPH09293639A (en) Solid electrolytic capacitor and manufacture thereof
KR0184637B1 (en) Method for forming a conductive film on a surface of a conductive body coated with an insulating film
US6515848B1 (en) Solid electrolytic capacitors and method for manufacturing the same
JPH04112519A (en) Manufacture of solid electrolytic capacitor
US5189770A (en) Method of making solid electrolyte capacitor
JPH0434915A (en) Manufacture of solid electrolytic capacitor
JPH0322516A (en) Manufacture of solid electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JP2002246271A (en) Method and system for producing electrolytic capacitor
JP3469756B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH0794369A (en) Solid electrolytic capacitor
JPH04274312A (en) Manufacture of solid electrolytic capacitor
JP2696982B2 (en) Solid electrolytic capacitors
JP2001155965A (en) Manufacturing method of solid electrolytic capacitor
JP2995109B2 (en) Method for manufacturing solid electrolytic capacitor
JPH11283878A (en) Method and device for manufacturing solid electrolytic capacitor
JPH02219211A (en) Manufacture of solid electrolytic capacitor
JP3184337B2 (en) Solid electrolytic capacitors
JPH0350712A (en) Electrolyte coating to electric conductor on which insulating thin film is formed
JPH0430409A (en) Manufacture of solid electrolytic capacitor
JPH0883735A (en) Manufacture of capacitor
JPH03285321A (en) Solid electrolytic capacitor
JPH0393214A (en) Manufacture of solid-state electrolytic capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees