[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04344084A - Operation control device for refrigerating apparatus - Google Patents

Operation control device for refrigerating apparatus

Info

Publication number
JPH04344084A
JPH04344084A JP3112912A JP11291291A JPH04344084A JP H04344084 A JPH04344084 A JP H04344084A JP 3112912 A JP3112912 A JP 3112912A JP 11291291 A JP11291291 A JP 11291291A JP H04344084 A JPH04344084 A JP H04344084A
Authority
JP
Japan
Prior art keywords
defrosting operation
defrosting
evaporator
evaporators
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3112912A
Other languages
Japanese (ja)
Other versions
JP2500707B2 (en
Inventor
Masaki Yamamoto
山本 政樹
Shinichi Nakaishi
中石 伸一
Hiroshi Okada
博 岡田
Hiroshi Asazuma
朝妻 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP3112912A priority Critical patent/JP2500707B2/en
Publication of JPH04344084A publication Critical patent/JPH04344084A/en
Application granted granted Critical
Publication of JP2500707B2 publication Critical patent/JP2500707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the operational efficiency of a refrigerating apparatus during the defrosting operation period of a plurality of evaporators. CONSTITUTION:A plurality of sets of an evaporator 6 and an electric expansion valve 8 are connected in parallel in a refrigerant circuit 14 in order for the frosting condition to be detected by defrosting condition detecting means Th21 and Th22 from the temp. of each of the evaporators 6a and 6b. The defrosting operation is effected by a defrosting operation control means 51 according to the degree of the frosted condition of the evaporators 6a and 6b and, when the temp. of either of the evaporators before the defrosting operation reaches a frosting starting temp., the degree of opening of the electric expansion valve for the evaporator is reduced by a means 52 for reducing the opening degree before defrosting. In this way the amount of the frost deposited on each of the evaporators 6a and 6b immediately before start of the defrosting operation is made as uniform as possible to improve the operational efficiency. During the defrosting operation period, when the temp. of either of the evaporators reaches a frost thawing temp., the opening degree of the electric expansion valve for the evaporator is reduced by a means 53 for reducing the opening degree during defrosting. By this method, the amount of the refrigerant circulating in the other evaporator is increased to shorten the defrosting operation time.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、複数の蒸発器を備えた
冷凍装置の運転制御装置に係り、特に、除霜運転効率の
向上対策に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control device for a refrigeration system equipped with a plurality of evaporators, and more particularly to measures for improving defrosting operation efficiency.

【0002】0002

【従来の技術】従来より、例えば特開昭63―1800
50号公報に開示される如く、冷媒回路中に複数の蒸発
器を互いに並列に接続してなる冷凍装置において、各蒸
発器に供給される液冷媒の減圧を行う電動膨張弁の開度
を蒸発器出口における冷媒の過熱度がその制御目標値に
収束するよう制御することにより、冷媒状態を適性に保
持しながら、要求能力に応じた各蒸発器の能力を確保し
ようとするものは、公知の技術である。
[Prior Art] Conventionally, for example, Japanese Patent Application Laid-Open No. 63-1800
As disclosed in Publication No. 50, in a refrigeration system in which a plurality of evaporators are connected in parallel in a refrigerant circuit, the opening degree of an electric expansion valve that reduces the pressure of liquid refrigerant supplied to each evaporator is determined by the evaporator. There is a known method that attempts to secure the capacity of each evaporator according to the required capacity while maintaining the refrigerant state appropriately by controlling the degree of superheating of the refrigerant at the outlet of the evaporator to converge to its control target value. It's technology.

【0003】また、例えば特開平2―78873号公報
に開示される如く、冷媒回路の吸入圧力等の蒸発器の温
度に関連する冷媒状態量から蒸発器の着霜状態を検出し
、蒸発器が着霜したときには蒸発器にホットガスを導入
する除霜運転を行い、蒸発器の着霜が融解すると、除霜
運転を終了して通常運転に復帰するように制御するよう
にした冷凍装置の運転制御装置は公知の技術である。
Furthermore, as disclosed in, for example, Japanese Patent Laid-Open No. 2-78873, the frosting state of the evaporator is detected from the refrigerant state quantity related to the temperature of the evaporator, such as the suction pressure of the refrigerant circuit, and the evaporator is Operation of a refrigeration system that performs defrosting operation by introducing hot gas into the evaporator when frost forms, and when the frost on the evaporator melts, the defrosting operation ends and normal operation is resumed. The control device is a known technology.

【0004】0004

【発明が解決しようとする課題】ところで、複数の蒸発
器を備えた冷凍装置において、上記後方のうち後者のも
のを適用すると、一つの蒸発器が着霜状態になった時で
も、他の蒸発器がまだ着霜していないことがある。すな
わち、着霜は主として通常運転中における積分能力に依
存するので、各蒸発器の積分能力が異なれば着霜時期は
異なる。
[Problem to be Solved by the Invention] By the way, in a refrigeration system equipped with a plurality of evaporators, if the latter of the above is applied, even when one evaporator becomes frosted, the other evaporators The container may not have frosted yet. That is, since frost formation mainly depends on the integration capacity during normal operation, the frost formation timing differs if the integration capacity of each evaporator differs.

【0005】特に、室外ユニットに複数の熱源側熱交換
器を組み込んで、暖房運転時に蒸発器となる各熱源側熱
交換器から冷風を室外に吹出すようにした空気調和装置
においても、通常はいずれの熱源側熱交換器の積分能力
もほぼ等しいはずであるが、周囲の建物との関係等でフ
ァンの送風に偏流をきたすことがある。このような原因
等で各熱源側熱交換器間の積分能力に差がある場合、一
つの熱源側熱交換器が着霜しても、他の熱源側熱交換器
ではまだ着霜していない。したがって、そのまま除霜運
転を開始すると、冷凍装置全体の運転効率が悪化する一
方、他の熱源側熱交換器も着霜するまで通常運転を続行
すると、先に着霜を生じた熱源側熱交換器の着霜が過大
になり、信頼性を損ねたり、除霜運転時間が余りに長く
なってその間空調等の冷凍装置の機能が犠牲になる虞れ
があった。
[0005] In particular, even in an air conditioner in which a plurality of heat source side heat exchangers are incorporated into an outdoor unit and cold air is blown outdoors from each heat source side heat exchanger that serves as an evaporator during heating operation, Although the integral capacity of both heat source side heat exchangers should be approximately equal, the air flow of the fan may be biased due to the relationship with surrounding buildings. If there is a difference in the integral capacity between the heat exchangers on the heat source side due to such reasons, even if one heat exchanger on the heat source side forms frost, frost has not yet formed on the other heat exchangers on the heat source side. . Therefore, if you start defrosting operation as it is, the operating efficiency of the entire refrigeration system will deteriorate, but if you continue normal operation until other heat source side heat exchangers also frost, the heat source side heat exchanger that has frosted first will There was a risk that excessive frost would form on the container, impairing its reliability, or that the defrosting operation time would become too long, thereby sacrificing the functionality of the refrigeration equipment, such as air conditioning.

【0006】本発明は斯かる点に鑑みてなされたもので
あり、その目的は、除霜運転の開始前又は除霜運転中に
おいて、各蒸発器の着霜状態に応じて、各蒸発器の減圧
弁となる電動膨張弁の開度を適度に制御する手段を講ず
ることにより、各蒸発器の着霜量や着霜の融解状態を可
及的に均一化し、もって、冷凍装置の運転効率の向上を
図ることにある。
[0006] The present invention has been made in view of the above-mentioned points, and its object is to control the frosting of each evaporator according to the frosting state of each evaporator before or during defrosting operation. By taking measures to appropriately control the opening degree of the electric expansion valve that serves as a pressure reducing valve, the amount of frost on each evaporator and the state of melting of the frost can be made as uniform as possible, thereby improving the operating efficiency of the refrigeration equipment. The aim is to improve.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
、本発明の解決手段は、各蒸発器の着霜状態に応じて電
動膨張弁の開度を変更させ、蒸発器能力を調節すること
により、着霜量の均一化を図ることにある。
[Means for Solving the Problems] In order to achieve the above object, the solving means of the present invention changes the opening degree of the electric expansion valve according to the frosting state of each evaporator to adjust the evaporator capacity. This aims to equalize the amount of frost formation.

【0008】具体的に請求項1の発明の講じた手段は、
図1に示すように(破線部分は含まず)、圧縮機(1)
及び凝縮器が接続される主冷媒配管(11)に対して、
各々蒸発器(6)と電動膨張弁(8)とが直列に接続さ
れる複数の分岐配管(11a),(11b)を互いに並
列に接続してなる閉回路の冷媒回路(14)を備えた冷
凍装置を前提とする。
Specifically, the measures taken by the invention of claim 1 are as follows:
As shown in Figure 1 (dotted line area not included), compressor (1)
and the main refrigerant pipe (11) to which the condenser is connected,
A closed refrigerant circuit (14) is provided in which a plurality of branch pipes (11a) and (11b) are connected in parallel to each other, each having an evaporator (6) and an electric expansion valve (8) connected in series. A refrigeration system is assumed.

【0009】そして、冷凍装置の運転制御装置として、
上記各蒸発器(6a),(6b)の温度又はこれに関連
する冷媒状態量から蒸発器(6a),(6b)の着霜状
態を個別に検出する着霜状態検出手段(Th21 ),
(Th22)と、上記冷凍装置の運転中、上記各着霜状
態検出手段(Th21 ),(Th22 )の出力を受
け、各蒸発器(6a),(6b)の着霜状態に応じて、
上記蒸発器(6a),(6b)の除霜運転をするよう制
御する除霜運転制御手段(51)とを設ける。
[0009] As an operation control device for a refrigeration system,
frosting state detection means (Th21) for individually detecting the frosting state of the evaporators (6a), (6b) from the temperature of each of the evaporators (6a), (6b) or the refrigerant state quantity related thereto;
(Th22), and during the operation of the refrigeration system, receives the output of each of the frosting state detection means (Th21) and (Th22), and depending on the frosting state of each evaporator (6a) and (6b),
A defrosting operation control means (51) is provided for controlling the defrosting operation of the evaporators (6a) and (6b).

【0010】さらに、冷凍装置の運転中、上記各着霜状
態検出手段(Th21),(Th22 )の出力を受け
、いずれかの蒸発器(6a又は6b)の温度が着霜開始
温度に達したとき、当該蒸発器(6a又は6b)の電動
膨張弁(8a又は8b)の開度を絞るよう開度にするよ
う制御する除霜前開度低減手段(52)を設ける構成と
したものである。
[0010]Furthermore, during operation of the refrigeration system, when the temperature of one of the evaporators (6a or 6b) reaches the frosting start temperature in response to the output of each of the frosting state detection means (Th21) and (Th22), In this case, a pre-defrost opening reduction means (52) is provided which controls the opening of the electric expansion valve (8a or 8b) of the evaporator (6a or 6b) to be narrowed.

【0011】請求項2の発明の講じた手段は、上記請求
項1の発明において、除霜運転制御手段(51)を、い
ずれか一つの蒸発器(6a又は6b)の温度が所定の着
霜量に対応する除霜開始温度に達すると、すべての蒸発
器(6a),(6b)の除霜運転を開始するように構成
したことにある。
The means taken by the invention of claim 2 is that in the invention of claim 1, the defrosting operation control means (51) is controlled so that the temperature of either one of the evaporators (6a or 6b) reaches a predetermined frosting level. This is because the defrosting operation of all the evaporators (6a) and (6b) is started when the defrosting start temperature corresponding to the amount is reached.

【0012】請求項3の発明の講じた手段は、上記請求
項1又は2の発明における冷媒回路(14)をサイクル
の切換え可能に構成し、除霜運転制御手段(51)を逆
サイクル除霜運転を行うものとする。
The means taken by the invention of claim 3 is that the refrigerant circuit (14) in the invention of claim 1 or 2 is configured to be able to switch cycles, and the defrosting operation control means (51) is configured to perform reverse cycle defrosting. The driver shall be responsible for driving.

【0013】さらに、除霜運転中、各着霜状態検出手段
(Th21 ),(Th22 )の出力を受け、いずれ
かの蒸発器(6a又は6b)の温度が着霜の融解温度に
達したとき、当該蒸発器(6a又は6b)の電動膨張弁
(8a又は8b)の開度を絞るよう制御する除霜中開度
低減手段(53)を設ける構成としたものである。
Furthermore, during the defrosting operation, when the temperature of either evaporator (6a or 6b) reaches the melting temperature of frosting based on the output of each frosting state detection means (Th21) and (Th22), , the opening reduction means (53) during defrosting is provided to control the opening degree of the electric expansion valve (8a or 8b) of the evaporator (6a or 6b) to be narrowed down.

【0014】請求項4の発明の講じた手段は、上記請求
項1,2,又は3の発明において、除霜運転制御手段(
51)を、すべての蒸発器(6a),(6b)の温度が
着霜の融解温度に達した時に除霜運転を終了するように
構成したものである。
The means taken by the invention of claim 4 is that in the invention of claim 1, 2, or 3, the defrosting operation control means (
51) is configured to end the defrosting operation when the temperature of all the evaporators (6a) and (6b) reaches the melting temperature of frosting.

【0015】[0015]

【作用】以上の構成により、請求項1の発明では、冷凍
装置の運転中、各着霜状態検出手段(Th21 ),(
Th22 )により、蒸発器の温度又はこれに関連する
冷媒状態量から各蒸発器(6a),(6b)の着霜状態
が検出されると、その着霜状態に応じ、除霜運転制御手
段(51)により、除霜運転を行うよう制御される。
[Operation] With the above configuration, in the invention of claim 1, each of the frosting state detection means (Th21), (
When the frosting state of each evaporator (6a), (6b) is detected from the temperature of the evaporator or the related refrigerant state quantity by Th22), the defrosting operation control means (Th22) is activated according to the frosting state. 51), the defrosting operation is controlled.

【0016】そして、除霜運転開始前において、各着霜
状態検出手段(Th21 ),(Th22)により検出
されるいずれかの蒸発器(例えば6a)の温度が着霜開
始温度に達すると、除霜前開度低減手段(52)により
、当該蒸発器(6a)の電動膨張弁(8a)の開度が絞
られるので、当該蒸発器(6a)の能力が低減し、除霜
運転開始直前における各蒸発器(6a),(6b)の積
算能力が可及的に均一化される。したがって、各蒸発器
(6a),(6b)の着霜を融解するための除霜運転が
効率よく行われ、冷凍装置全体の運転効率が向上するこ
とになる。
[0016] Before starting the defrosting operation, when the temperature of any one of the evaporators (for example, 6a) detected by each of the frosting state detection means (Th21) and (Th22) reaches the frosting start temperature, the defrosting operation starts. Since the pre-frost opening reducing means (52) reduces the opening of the electric expansion valve (8a) of the evaporator (6a), the capacity of the evaporator (6a) is reduced, and each The integrated capacities of the evaporators (6a) and (6b) are made as uniform as possible. Therefore, the defrosting operation for melting the frost on each evaporator (6a) and (6b) is efficiently performed, and the operating efficiency of the entire refrigeration system is improved.

【0017】請求項2の発明では、上記請求項1の発明
において、除霜運転制御手段(51)により、いずれか
一方の蒸発器(例えば6a)の着霜量が所定量となる除
霜開始温度に達すると除霜運転が行われるので、上記請
求項1の発明の作用と相俟って、いずれかの蒸発器(例
えば6b)の着霜量が過大になることなく、効率のよい
除霜運転が行われる。
In the invention of claim 2, in the invention of claim 1, the defrosting operation control means (51) starts defrosting when the amount of frost on either one of the evaporators (for example, 6a) reaches a predetermined amount. Since the defrosting operation is performed when the temperature is reached, in combination with the effect of the invention of claim 1, efficient defrosting can be achieved without the amount of frost forming on any of the evaporators (for example, 6b) becoming excessive. Frost operation is carried out.

【0018】請求項3の発明では、除霜運転制御手段(
51)による除霜運転中、いずれかの蒸発器(例えば6
b)の温度が融解温度に達すると、除霜中開度低減手段
(53)により、当該蒸発器(6b)の電動膨張弁(8
b)の開度が絞られるので、当該蒸発器(6b)への冷
媒循環量が減少し、その分他の蒸発器(6a)への冷媒
循環量が増大して着霜の融解が促進される。したがって
、各蒸発器(6a),(6b)の着霜の融解度合いが可
及的に均一化され、除霜運転時間が短縮されるので、冷
凍装置の運転効率が向上することになる。
In the invention of claim 3, the defrosting operation control means (
51) during defrosting operation, one of the evaporators (e.g. 6
When the temperature of b) reaches the melting temperature, the defrosting opening reduction means (53) closes the electric expansion valve (8) of the evaporator (6b).
Since the opening of b) is narrowed, the amount of refrigerant circulating to the evaporator (6b) decreases, and the amount of refrigerant circulating to the other evaporator (6a) increases accordingly, promoting the melting of frost. Ru. Therefore, the degree of melting of the frost formed on each evaporator (6a), (6b) is made as uniform as possible, and the defrosting operation time is shortened, so that the operating efficiency of the refrigeration system is improved.

【0019】請求項4の発明では、除霜運転制御手段(
51)により、すべての蒸発器(6a),(6b)の着
霜が融解したときに除霜運転を終了して通常運転に復帰
するように制御されるので、冷凍装置の運転効率を良好
に維持しながら、各蒸発器(6a),(6b)の着霜が
確実に融解されることになる。
In the invention of claim 4, the defrosting operation control means (
51), the defrosting operation is ended and normal operation is resumed when the frost on all the evaporators (6a) and (6b) has melted, so the operating efficiency of the refrigeration system is improved. The frost on each evaporator (6a), (6b) is reliably melted while maintaining the temperature.

【0020】[0020]

【実施例】以下、本発明の実施例について、図2以下の
図面に基づき説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to FIG. 2 and subsequent drawings.

【0021】図2は本発明の実施例に係るマルチ型空気
調和装置の冷媒配管系統を示し、一台の室外ユニット(
A)に対して複数の室内ユニット(図示せず)が並列に
接続されている。上記室外ユニット(A)の内部には、
出力周波数を30〜70Hzの範囲で10Hz 毎に可
変に切換えられるインバ―タ(2a )により容量が調
整される第1圧縮機(1a )と、パイロット圧の高低
で差動するアンロ―ダ(2b)により容量がフルロ―ド
(100%)およびアンロ―ド(50%)状態の2段階
に調整される第2圧縮機(1b )とを逆止弁(2c)
を介して並列に接続して構成される容量可変な圧縮機(
1)と、該圧縮機(1)から吐出されるガス中の油を分
離する油分離器(4)と、冷房運転時には図中実線の如
く切換わり暖房運転時には図中破線の如く切換わる四路
切換弁(5)と、冷房運転時に凝縮器、暖房運転時に蒸
発器となる2台の熱源側熱交換器(6a),(6b)と
、冷房運転時には冷媒流量を調節し、暖房運転時には冷
媒の絞り作用を行う2台の室外電動膨張弁(8a),(
8b)と、液化した冷媒を貯蔵するレシ―バ(9)と、
アキュムレ―タ(10)とが主要機器として配設されて
いる。
FIG. 2 shows a refrigerant piping system of a multi-type air conditioner according to an embodiment of the present invention.
A) A plurality of indoor units (not shown) are connected in parallel. Inside the outdoor unit (A),
A first compressor (1a) whose capacity is adjusted by an inverter (2a) whose output frequency is variably switched in 10Hz increments in the range of 30 to 70Hz, and an unloader (2b) which operates differentially depending on the pilot pressure. ), the capacity of which is adjusted in two stages: fully loaded (100%) and unloaded (50%), and a check valve (2c).
variable capacity compressors (
1), an oil separator (4) that separates oil from the gas discharged from the compressor (1), and an oil separator (4) that switches as shown in the solid line in the figure during cooling operation and as shown in the broken line in the figure during heating operation. A road switching valve (5) and two heat source side heat exchangers (6a) and (6b) that function as a condenser during cooling operation and an evaporator during heating operation, adjust the refrigerant flow rate during cooling operation, and function as an evaporator during heating operation. Two outdoor electric expansion valves (8a) that perform a throttling action on the refrigerant.
8b), a receiver (9) for storing the liquefied refrigerant,
An accumulator (10) is provided as the main equipment.

【0022】そして、上記圧縮機(1)、レシ―バ(9
)及びアキュムレ―タ(10)は主冷媒配管(11)に
より順次直列に接続され、上記各熱源側熱交換器(6a
),(6b)及び各室外電動膨張弁(8a),(8b)
はそれぞれ2つの分岐配管(11a),(11b)によ
り直列に接続されるとともに、各分岐配管(11a),
(11b)は主冷媒配管(11)に対して互いに並列に
接続されていて、冷媒が循環する閉回路の冷媒回路(1
4)が構成されている。
[0022]Then, the compressor (1) and the receiver (9)
) and the accumulator (10) are sequentially connected in series by the main refrigerant pipe (11), and each heat source side heat exchanger (6a
), (6b) and each outdoor electric expansion valve (8a), (8b)
are connected in series by two branch pipes (11a) and (11b), respectively, and each branch pipe (11a),
The refrigerant circuits (11b) are connected in parallel to the main refrigerant pipes (11), and are closed refrigerant circuits (11b) in which refrigerant circulates.
4) is configured.

【0023】ここで、上記室外ユニット(A)の各機器
は一つのケ―シング(図示せず)内に収納されており、
上記各熱源側熱交換器(6a),(6b)のうち一方の
熱源側熱交換器(6a)は、高風量と低風量とに切換え
可能な第1ファン(31a)及び定風量の第2ファン(
31b)の通風路に設置され、他方の熱源側熱交換器(
6b)には、高風量と定風量とに切換え可能な第3ファ
ン(31c)の通風路に設置されている。そして、各熱
源側熱交換器(6a),(6b)に対応して2つの空気
吹出口が設けられ、個別に室外空気との熱交換を行うよ
うにしたいわゆる二面熱交換器に構成されている。
Here, each device of the outdoor unit (A) is housed in one casing (not shown),
One of the heat source side heat exchangers (6a) and (6b) has a first fan (31a) that can be switched between a high air volume and a low air volume, and a second fan that has a constant air volume. fan(
31b), and the other heat source side heat exchanger (
6b) is installed in the ventilation path of a third fan (31c) that can be switched between high air volume and constant air volume. Two air outlets are provided corresponding to each of the heat source side heat exchangers (6a) and (6b), and the structure is configured into a so-called two-sided heat exchanger that individually performs heat exchange with outdoor air. ing.

【0024】次に、吐出管と液管側とを吐出ガス(ホッ
トガス)のバイパス可能に接続する暖房過負荷制御用バ
イパス路(41)が設けられている。該バイパス路(4
1)は2つの熱源側熱交換器(6a),(6b)に対応
する2つの分岐路(41a),(41b)に分岐してお
り、これらは互いに同一の構成されているので、一方の
分岐路(41a)についてのみ説明するに、該分岐路(
41a)には、熱源側熱交換器(6a)と共通の空気通
路に設置された補助熱交換器(42a)と、キャピラリ
チュ―ブ(43a)とが順次直列に接続されている。 上記構成はもう一方の分岐路(41b)についても同様
である。そして、暖房過負荷制御用バイパス路(41)
の合流部に、冷媒の高圧時に開作動する電磁開閉弁(4
4)が介設されている。
Next, a heating overload control bypass path (41) is provided which connects the discharge pipe and the liquid pipe side so that the discharge gas (hot gas) can be bypassed. The bypass path (4
1) branches into two branch paths (41a) and (41b) corresponding to the two heat source side heat exchangers (6a) and (6b), and since these have the same configuration, one Only the branch road (41a) will be explained.
41a), an auxiliary heat exchanger (42a) installed in a common air passage with the heat source side heat exchanger (6a), and a capillary tube (43a) are successively connected in series. The above configuration is the same for the other branch path (41b). And heating overload control bypass path (41)
At the confluence of the refrigerant, there is an electromagnetic on-off valve (4
4) is provided.

【0025】ここで、冷房運転時には常時上記電磁開閉
弁(44)がオンつまり開状態になって、吐出ガスの一
部を主冷媒回路(14)から暖房過負荷制御用バイパス
路(41)にバイパスすることにより、吐出ガスの一部
を補助熱交換器(42a),(42b)で凝縮させて熱
源側熱交換器(6a),(6b)の能力を補助するとと
もに、各キャピラリチュ―ブ(43a),(43b)で
熱源側熱交換器(6a),(6b)側の圧力損失とのバ
ランスを取るようにしている。また、暖房運転時には、
高圧が過上昇したときに、ただちに上記電磁開閉弁(4
4)を開くのではなく、まず、圧縮機(1)の容量を低
下させ、それでも高圧側圧力の過上昇が続行すると、一
方の室外電動膨張弁(8a)を全閉にすることにより、
蒸発能力を下げて、室内側の低能力状態に対応させるよ
うにしている。そして、上記室外電動膨張弁(8a)の
全閉制御によっても、過負荷状態が解消しないときのみ
、電磁開閉弁(44)を開いて、吐出ガスの一部を各補
助熱交換器(42a),(42b)で凝縮させて熱源側
熱交換器(6b)の蒸発能力とのバランスを取るように
なされている。
[0025] During cooling operation, the electromagnetic on-off valve (44) is always on or in an open state, and a part of the discharged gas is transferred from the main refrigerant circuit (14) to the heating overload control bypass path (41). By bypassing, a part of the discharged gas is condensed in the auxiliary heat exchangers (42a), (42b) to support the capacity of the heat source side heat exchangers (6a), (6b), and each capillary tube (43a) and (43b) are used to balance the pressure loss on the heat source side heat exchangers (6a) and (6b). Also, during heating operation,
When the high pressure rises excessively, the electromagnetic on-off valve (4)
4) Instead of opening the valve, first reduce the capacity of the compressor (1), and if the high-pressure side pressure continues to rise excessively, fully close one of the outdoor electric expansion valves (8a).
The evaporation capacity is lowered to accommodate the low capacity indoors. Then, only when the overload condition is not resolved even with the fully closed control of the outdoor electric expansion valve (8a), the electromagnetic on-off valve (44) is opened and a portion of the discharged gas is transferred to each auxiliary heat exchanger (42a). , (42b) to balance the evaporation capacity of the heat source side heat exchanger (6b).

【0026】さらに、(51)は主冷媒回路(14)の
液ラインと各圧縮機(1a),(1b)の吸入側との間
を接続し、冷暖房運転時に吸入ガスの過熱度を調節する
ためのリキッドインジェクションバイパス路であって、
該各バイパス路(51)は途中で二つの分岐路(51a
),(51b)に分岐し、分岐路(51a),(51b
)には、各圧縮機(1a),(1b)のオン・オフと連
動して開閉するインジェクション用電磁弁(52a),
(52b)と、キャピラリチュ―ブ(53a),(53
b)とがそれぞれ介設されている。
Further, (51) connects the liquid line of the main refrigerant circuit (14) and the suction side of each compressor (1a), (1b), and adjusts the degree of superheating of the suction gas during heating and cooling operation. A liquid injection bypass path for
Each bypass road (51) has two branch roads (51a) on the way.
), (51b), and branch paths (51a), (51b).
) includes an injection solenoid valve (52a) that opens and closes in conjunction with the on/off of each compressor (1a), (1b),
(52b), capillary tubes (53a), (53
b) are respectively provided.

【0027】また、(15)は、吸入管中の吸入冷媒と
液管中の液冷媒との熱交換により吸入冷媒を冷却させて
、連絡配管における冷媒の過熱度の上昇を補償するため
の吸入管熱交換器である。
In addition, (15) is a method for cooling the suction refrigerant by heat exchange between the suction refrigerant in the suction pipe and the liquid refrigerant in the liquid pipe to compensate for the increase in the degree of superheating of the refrigerant in the connecting pipe. It is a tube heat exchanger.

【0028】なお、上記各主要機器以外に補助用の諸機
器が設けられている。(7a),(7b)は各熱源側熱
交換器(6a),(6b)の液側入口に設けられた過冷
却器、(21)は第2圧縮機(1b )のバイパス路(
20)に介設されて、第2圧縮機(1b )の停止時お
よびアンロ―ド状態時に「開」となり、フルロ―ド状態
で「閉」となるアンロ―ダ用電磁弁、(22)は上記バ
イパス路(20)に介設されたキャピラリチュ―ブ、(
24)は吐出管と吸入管とを接続する均圧ホットガスバ
イパス路(23)に介設されて、サ―モオフ状態等によ
る圧縮機(1)の停止時、再起動前に一定時間開作動す
る均圧用電磁弁、(25)はキャピラリチュ―ブ(26
)を介して上記油分離器(4)から各圧縮機(1a),
(1b)に油を戻すための油戻し管、(27)はキャピ
ラリチュ―ブ(28)を介して各圧縮機(1a),(1
b)のド―ム間を接続する均油管である。
[0028] In addition to the above-mentioned main equipment, various auxiliary equipment are provided. (7a) and (7b) are supercoolers provided at the liquid side inlets of each heat source side heat exchanger (6a) and (6b), and (21) is a bypass path (21) of the second compressor (1b).
20) is an unloader solenoid valve which is "open" when the second compressor (1b) is stopped and in the unloaded state, and "closed" when the second compressor (1b) is in the fully loaded state. A capillary tube interposed in the bypass path (20), (
24) is installed in the pressure-equalizing hot gas bypass line (23) that connects the discharge pipe and the suction pipe, and is opened for a certain period of time before restarting when the compressor (1) is stopped due to a thermo-off state, etc. The pressure equalizing solenoid valve (25) is the capillary tube (26
) from the oil separator (4) to each compressor (1a),
An oil return pipe (27) for returning oil to (1b) is connected to each compressor (1a) and (1) via a capillary tube (28).
This is an oil equalizing pipe that connects the domes in b).

【0029】さらに、空気調和装置にはセンサ類が配置
されていて、(Th1)は室外ユニット(A)のケ―シ
ング外面に設置され、室外空気の温度T1を検出する外
気サ―ミスタ、(Th21 ),(Th22 )はそれ
ぞれ各熱源側熱交換器(6a),(6B)の液管側に配
設され、熱源側熱交換器(6a),(6b)が蒸発器と
なる暖房運転時には各熱源側熱交換器(6a),(6b
)の温度を個別に検出する第1,第2ディアイサ、(T
h31 ),(Th32 )はそれぞれ各圧縮機(1a
),(1b)の吐出管に配置され、吐出冷媒の温度を検
出する吐出管サ―ミスタ、(Th41),(Th42 
)はそれぞれ各分岐配管(11a),(11b)のガス
側つまり暖房運転時に吸入ラインとなる部位に配置され
、吸入される過熱冷媒の温度を検出する吸入管サ―ミス
タ、(P1)は吐出ラインに配置され、高圧側圧力を検
出する高圧圧力センサ、(P2)は吸入ラインに配置さ
れ、低圧側圧力を検出する低圧圧力センサである。なお
、空気調和装置の暖房運転時、上記各吸入管サ―ミスタ
(Th41 ),(Th42 )で検出される過熱冷媒
温度T4 と、各ディアイサ(Th21 ),(Th2
2 )で検出される蒸発温度T2n(n =1,2)と
の温度差から冷媒の過熱度Sh を検出するようになさ
れている。
Furthermore, sensors are arranged in the air conditioner, and (Th1) is an outside air thermistor (Th1) installed on the outer surface of the casing of the outdoor unit (A) to detect the temperature T1 of the outdoor air. Th21 ) and (Th22 ) are respectively arranged on the liquid pipe side of each heat source side heat exchanger (6a) and (6B), and during heating operation when the heat source side heat exchanger (6a) and (6b) act as an evaporator. Each heat source side heat exchanger (6a), (6b
), the first and second diasters individually detect the temperature of (T
h31 ) and (Th32 ) are each compressor (1a
), (1b) are arranged in the discharge pipes to detect the temperature of the discharged refrigerant, (Th41), (Th42
) are arranged on the gas side of each branch pipe (11a) and (11b), that is, on the part that becomes the suction line during heating operation, and detect the temperature of the superheated refrigerant being sucked in, and (P1) is the discharge pipe thermistor. A high pressure sensor (P2) is arranged in the suction line and detects the pressure on the high pressure side, and a low pressure sensor (P2) is arranged in the suction line and detects the pressure on the low pressure side. In addition, during heating operation of the air conditioner, the superheated refrigerant temperature T4 detected by each of the above-mentioned suction pipe thermistors (Th41) and (Th42) and each de-icer (Th21) and (Th2)
The degree of superheating Sh of the refrigerant is detected from the temperature difference with the evaporation temperature T2n (n = 1, 2) detected in step 2).

【0030】上記各センサは、空気調和装置の運転を制
御するコントロ―ラ(図示せず)に信号線で接続されて
おり、コントロ―ラにより、各センサで検出される冷媒
等の状態に応じて、各機器の作動を制御するようになさ
れている。
[0030] Each of the above sensors is connected by a signal line to a controller (not shown) that controls the operation of the air conditioner. It is designed to control the operation of each device.

【0031】空気調和装置の暖房運転時、四路切換弁(
5)の接続状態が図中破線側に切換わり、圧縮機(1)
から吐出されるガス冷媒が室内ユニットで室内空気との
熱交換により凝縮,液化され、液冷媒となってレシ―バ
(9)に貯溜された後、各分岐配管(11a),(11
b)に分岐して流れ、各室外電動膨張弁(8a),(8
b)で減圧され、各熱源側熱交換器(6a),(6b)
で蒸発して圧縮機(1)に吸入されるように循環する。 また、冷房運転時には、四路切換弁(5)が図中実線側
に切換わり、冷媒の循環方向は上記冷房運転時とは逆向
きとなって、吐出冷媒が各分岐配管(11a),(11
b)に分岐して流れ、各熱源側熱交換器(6a),(6
b)で室外空気との熱交換により凝縮,液化され、レシ
―バ(9)に貯溜された後、室内ユニットで室内空気と
の熱交換によりガス冷媒となって圧縮機(1)に戻るよ
うに循環する。
[0031] During heating operation of the air conditioner, the four-way switching valve (
5) is switched to the dashed line side in the figure, and the compressor (1)
The gas refrigerant discharged from the indoor unit is condensed and liquefied by heat exchange with the indoor air, becomes a liquid refrigerant, and is stored in the receiver (9).
b), and each outdoor electric expansion valve (8a), (8
b), and each heat source side heat exchanger (6a), (6b)
It is circulated so that it is evaporated and sucked into the compressor (1). Also, during cooling operation, the four-way switching valve (5) is switched to the solid line side in the figure, and the refrigerant circulation direction is opposite to that during the cooling operation, so that the discharged refrigerant is transferred to each branch pipe (11a), ( 11
b), and flows through each heat source side heat exchanger (6a), (6
In b), it is condensed and liquefied by heat exchange with outdoor air, stored in the receiver (9), and then returned to the compressor (1) as a gas refrigerant by heat exchange with indoor air in the indoor unit. circulates.

【0032】次に、コントロ―ラの制御内容について、
図3及び図4のフロ―チャ―トに基づき説明する。
Next, regarding the control contents of the controller,
This will be explained based on the flowcharts of FIGS. 3 and 4.

【0033】図3は空気調和装置の運転制御の内容を示
し、ステップST1で、暖房要求か否かを判別し、暖房
要求であれば、ステップST2で、運転中か否かを判別
し、運転中であれば、ステップST3で、各ディアイサ
(Th21 ),(Th22 )で検出される各熱源側
熱交換器(6a),(6b)の温度T2n(n =1,
2)(ディアイサ温度)について、式  T2n<0.
5×T1 −5が成立するか否かを判別し、いずれかの
ディアイサ温度T2nについてこの関係が成立すると、
当該熱源側熱交換器(6a又は6b)の着霜が開始した
と判断し、ステップST4に進んで、当該熱源側熱交換
器(6a又は6b)側の警報フラグDEFST1 を「
1」に設定する。
FIG. 3 shows the details of the operation control of the air conditioner. In step ST1, it is determined whether or not there is a heating request. If it is a heating request, in step ST2, it is determined whether or not it is in operation, and the operation is started. If inside, in step ST3, the temperature T2n (n = 1,
2) Regarding (dialysis temperature), the formula T2n<0.
It is determined whether or not 5×T1 −5 holds true, and if this relationship holds true for any de-Icer temperature T2n,
It is determined that frost formation has started on the heat source side heat exchanger (6a or 6b), and the process proceeds to step ST4, where the alarm flag DEFST1 on the heat source side heat exchanger (6a or 6b) is set to "
1”.

【0034】さらに、ステップST5で、各ディアイサ
温度T2nについて、式  T2n<0.5×T1 −
10が成立するか否か判別し、この関係が成立すると、
いずれかの熱源側熱交換器(6a又は6b)の着霜量が
所定量に達したため除霜運転を行う必要があると判断し
、ステップST6で、待機制御用5分タイマ(図示せず
)のカウントを開始して、ステップST7で、5分タイ
マがカウントアップするまで上記制御を繰り返す。そし
て、5分タイマがカウントアップすると、ステップST
8で警報フラグDEFST1 を「0」にした後、ステ
ップST9で除霜フラグDEFST2 を「1」に設定
して、後述の除霜運転を開始する。一方、5分タイマの
カウント中に、上記ステップST5の判別で、式  T
2n<0.5×T1 −10が成立しないときには、デ
ィアイサ(Th21 又はTh22 )の誤検知の可能
性があると判断し、ステップST10に移行して、5分
タイマをリセットした後、ステップST1に戻って、上
記制御を繰り返す。
Furthermore, in step ST5, the formula T2n<0.5×T1 −
10 is established, and if this relationship is established,
It is determined that it is necessary to perform a defrosting operation because the amount of frost on one of the heat source side heat exchangers (6a or 6b) has reached a predetermined amount, and in step ST6, a 5-minute timer for standby control (not shown) is activated. The above control is repeated until the 5-minute timer counts up in step ST7. Then, when the 5 minute timer counts up, step ST
After the alarm flag DEFST1 is set to "0" in step ST9, the defrosting flag DEFST2 is set to "1" in step ST9, and a defrosting operation to be described later is started. On the other hand, during the counting of the 5-minute timer, the formula T
When 2n<0.5×T1 −10 does not hold, it is determined that there is a possibility of false detection of the de-Icer (Th21 or Th22), and the process moves to step ST10, where the 5-minute timer is reset, and then the process moves to step ST1. Go back and repeat the above control.

【0035】なお、上記ステップST1,ST2,ST
3の制御で、それぞれ暖房要求でないとき,運転中のと
き,又は式  T2n<0.5×T1 −5が成立しな
いときには、ステップST11に移行して、警報フラグ
DEFST1 及び除霜フラグDEFST2 をいずれ
も「0」に設定する。
[0035] Note that the above steps ST1, ST2, ST
In the control of step 3, when there is no heating request, when the operation is in progress, or when the formula T2n<0.5×T1 -5 does not hold, the process moves to step ST11 and both the alarm flag DEFST1 and the defrosting flag DEFST2 are set. Set to "0".

【0036】次に、図4は各室外電動膨張弁(8a又は
8b)の開度制御の内容を示し、ステップSR1で暖房
要求か否かを判別し、暖房要求であれば、ステップSR
2で運転中か否かを判別して、運転中でなければ、ステ
ップSR3に進んで、弁開度を全閉にする。次に、ステ
ップSR4で、上記図3の制御で設定される除霜フラグ
DEFST2 が「1」か否かを判別し、除霜フラグD
EFST2 が「1」でなければ、ステップSR5で、
さらに警報フラグDEFST1 が「1」か否かを判別
する。そして、警報フラグDEFST1 が「1」でな
ければ、ステップSR6に進んで過熱度の制御目標値S
hsを標準的な値5(℃)に設定する一方、警報フラグ
DEFST1 が「1」であれば、ステップSR7に移
行して、着霜が開始した熱源側熱交換器(6a又は6b
)の着霜の進行を抑制すべく過熱度の制御目標値Shs
を20(℃)と高く変更することにより、弁開度を絞り
、当該熱源側熱交換器(6a又は6b)の蒸発能力を低
下させる。また、上記ステップSR4の判別で、DEF
ST2=1のときには、後述の除霜運転中の開度制御に
移行する(図7参照)。
Next, FIG. 4 shows the contents of the opening degree control of each outdoor electric expansion valve (8a or 8b). In step SR1, it is determined whether or not there is a heating request. If it is a heating request, step SR
In step 2, it is determined whether or not the valve is in operation, and if it is not in operation, the process proceeds to step SR3, where the valve opening degree is fully closed. Next, in step SR4, it is determined whether the defrost flag DEFST2 set by the control shown in FIG.
If EFST2 is not "1", in step SR5,
Furthermore, it is determined whether the alarm flag DEFST1 is "1" or not. If the alarm flag DEFST1 is not "1", the process proceeds to step SR6, where the superheat degree control target value S
hs is set to the standard value 5 (℃), and if the alarm flag DEFST1 is "1", the process moves to step SR7 and the heat source side heat exchanger (6a or 6b) where frosting has started is set.
) control target value Shs for the degree of superheating in order to suppress the progress of frost formation.
By changing the temperature to a high value of 20 (° C.), the valve opening degree is narrowed and the evaporation capacity of the heat source side heat exchanger (6a or 6b) is reduced. In addition, in the determination in step SR4 above, DEF
When ST2=1, the control shifts to opening degree control during defrosting operation, which will be described later (see FIG. 7).

【0037】なお、ステップSR1の判別で暖房要求で
ないときには、ステップSR9に移行し、運転中か否か
を判別して、運転中であれば、ステップSR10に進ん
で弁開度を全開(2000パルス)にし、運転中でなけ
れば、ステップSR11に移行して弁開度を200パル
スと低開度に設定するようにしている。
If it is determined in step SR1 that there is no heating request, the process moves to step SR9, and it is judged whether or not the operation is in progress. If the operation is in progress, the process proceeds to step SR10, where the valve opening degree is fully opened (2000 pulses). ), and if the engine is not in operation, the process moves to step SR11 and the valve opening is set to a low opening of 200 pulses.

【0038】次に、除霜運転時における制御内容につい
て、図5〜図7に基づき説明する。図5は除霜運転時に
おけるディアイサ(Th21 ),(Th22 )の代
表値T2 を決定するための制御の内容を示し、ステッ
プSP1で、各ディアイサ(Th21 ),(Th22
 )側で検出されるディアイサ温度T21,T22同士
の高低を比較し、T21>T22であれば、ステップS
P2でT2 =T22とし、T21<T22であれば、
ステップSP3でT2 =T21とする。つまり、各デ
ィアイサ(Th21 ),(Th22 )の検出値T2
1,T21のうち、低いほうを代表値T2 として決定
する。
Next, the control contents during the defrosting operation will be explained based on FIGS. 5 to 7. FIG. 5 shows the details of the control for determining the representative value T2 of the de-Icer (Th21), (Th22) during the defrosting operation.
) side and compare the heights of the de-icer temperatures T21 and T22 detected, and if T21>T22, step S
If T2 = T22 at P2, and T21<T22,
In step SP3, T2 = T21. In other words, the detection value T2 of each diaster (Th21), (Th22)
1 and T21, the lower one is determined as the representative value T2.

【0039】また、図6は除霜運転中の制御内容を示し
、ステップST21で、四路切換弁(5)を冷房サイク
ル側に切換えて逆サイクルによる除霜運転を開始すると
同時に、除霜運転時間の上限を10分間とするための1
0分タイマ(図示せず)のカウントを開始し、ステップ
ST22で、上記の制御で決定されたディアイサ温度の
代表値T2 が所定温度12.5(℃)よりも高くなる
と、ステップST23で10分タイマがカウントアップ
するまで除霜運転を行い、10分タイマがカウントアッ
プすると、いずれの熱源側熱交換器(6a),(6b)
の着霜も融解したと判断し、ステップST24で通常暖
房運転に復帰する。
FIG. 6 shows the control contents during the defrosting operation. In step ST21, the four-way selector valve (5) is switched to the cooling cycle side to start the defrosting operation in the reverse cycle, and at the same time, the defrosting operation is started. 1 to set the upper limit of time to 10 minutes
A 0-minute timer (not shown) starts counting, and in step ST22, when the representative value T2 of the de-Icer temperature determined by the above control becomes higher than the predetermined temperature 12.5 (°C), the timer starts counting for 10 minutes in step ST23. Defrost operation is performed until the timer counts up, and when the 10 minute timer counts up, either heat source side heat exchanger (6a), (6b)
It is determined that the frost has also melted, and the normal heating operation is resumed in step ST24.

【0040】また、図7は除霜運転中における室外電動
膨張弁(8a),(8b)の開度の制御内容を示し、ス
テップSR21で、各熱源側熱交換器(6a),(6b
)のディアイサ温度T21(又はT22)と着霜の融解
温度12.5(℃)とを比較して、T21>12.5(
℃)か否かを判別し、T21(又はT22)>12.5
(℃)でなければ、ステップSR22で弁開度を全開と
する一方、T21(又はT22)>12.5(℃)であ
れば、ステップSR23に進んで弁開度を半開1000
パルスに設定する。
FIG. 7 shows the control contents of the opening degrees of the outdoor electric expansion valves (8a) and (8b) during the defrosting operation. In step SR21, each heat source side heat exchanger (6a) and (6b
) and the frost melting temperature 12.5 (°C), T21>12.5 (
℃), and determine whether T21 (or T22) > 12.5
If T21 (or T22) > 12.5 (°C), the valve opening is set to fully open in step SR22, but if T21 (or T22) > 12.5 (°C), the process proceeds to step SR23 and the valve opening is set to half open at 1000.
Set to pulse.

【0041】上記各フロ―チャ―トにおいて、ステップ
ST21〜ST23の制御により、請求項1の発明にい
う除霜運転制御手段51が構成され、ステップSR7の
制御により、除霜前開度低減手段(52)が構成されて
いる。また、ステップSR23の制御により、除霜中開
度低減手段(53)が構成されている。
In each of the above flowcharts, the control in steps ST21 to ST23 constitutes the defrosting operation control means 51 according to the invention of claim 1, and the control in step SR7 constitutes the pre-defrost opening reduction means ( 52) is configured. Furthermore, the control in step SR23 constitutes a defrosting opening reduction means (53).

【0042】したがって、上記実施例の請求項1の発明
に対応する制御では、空気調和装置の暖房運転中、各デ
ィアイサ(着霜状態検出手段)(Th21 ),(Th
22 )により、蒸発器温度つまり熱源側熱交換器(6
a),(6b)の温度T21,T22又はこれに関連す
る冷媒状態量から熱源側熱交換器(6a),(6b)の
着霜状態が検出されると、その着霜状態に応じ、除霜運
転制御手段(51)により、除霜運転(上記実施例では
逆サイクルによる除霜運転)を行うよう制御される。
Therefore, in the control corresponding to the invention of claim 1 of the above embodiment, during the heating operation of the air conditioner, each de-icer (frosting state detection means) (Th21), (Th
22), the evaporator temperature, that is, the heat source side heat exchanger (6
When the frosting state of the heat source side heat exchangers (6a), (6b) is detected from the temperatures T21, T22 of a), (6b) or the refrigerant state quantities related thereto, the defrosting is performed according to the frosting state. The defrosting operation (defrosting operation by reverse cycle in the above embodiment) is controlled by the frost operation control means (51).

【0043】そのとき、除霜運転前において、上記実施
例のように各熱源側熱交換器(蒸発器)(6a),(6
b)が同一ケ―シングに収納されている場合にも、各フ
ァン(31a)〜(31c)の偏流等によって、各熱源
側熱交換器(6a),(6b)の着霜状態は均一ではな
く、いずれか一方の熱源側熱交換器(例えば6a)の積
算能力が特に大きくて先に着霜することがある。したが
って、従来のもののように、各蒸発器の着霜条件の相違
を考慮せずに暖房運転を続行すると、他方の熱源側熱交
換器(6b)の着霜が除霜運転開始条件まで達していな
いのにも拘らず除霜運転を行うことにより空気調和装置
の効率の悪化を招いたり、両熱源側熱交換器(6a),
(6b)の除霜運転開始条件が成立するまで暖房運転を
続行することにより過度の着霜を生ぜしめ、信頼性を損
ねたりする等の不具合が生じる。
At that time, before the defrosting operation, each heat source side heat exchanger (evaporator) (6a), (6
b) are housed in the same casing, the frosting state of each heat source side heat exchanger (6a), (6b) may not be uniform due to uneven flow of each fan (31a) to (31c), etc. However, the integrated capacity of one of the heat source side heat exchangers (for example, 6a) is particularly large, and frost may form first. Therefore, if the heating operation is continued without considering the difference in the frost formation conditions of each evaporator as in the conventional one, the frost formation on the other heat source side heat exchanger (6b) will not reach the defrosting operation start condition. Performing a defrosting operation even though there is no defrosting operation may cause a deterioration in the efficiency of the air conditioner, or the heat exchanger on both heat source sides (6a),
Continuing the heating operation until the defrosting operation start condition (6b) is satisfied causes problems such as excessive frost formation and loss of reliability.

【0044】それに対し、上記実施例では、除霜運転開
始前において、各ディアイサ(着霜状態検出手段)(T
h21 ),(Th22 )により検出されるいずれか
の蒸発器温度つまり熱源側熱交換器(例えば6a)の温
度T21が着霜開始温度に達すると、除霜前開度低減手
段(52)により、当該熱源側熱交換器(6a)の減圧
弁である室外電動膨張弁(8a)の開度が絞られるので
、当該熱源側熱交換器(6a)の能力が低減し、除霜運
転開始前における各熱源側熱交換器(6a),(6b)
の積算能力が可及的に均一化される。したがって、各熱
源側熱交換器(6a),(6b)の着霜を融解するため
の除霜運転が効率よく行われ、空気調和装置全体の運転
効率が向上することになる。
In contrast, in the above embodiment, each de-icer (frosting state detection means) (T
h21) and (Th22), that is, the temperature T21 of the heat source side heat exchanger (for example, 6a) reaches the frosting start temperature, the pre-defrost opening reduction means (52) Since the opening degree of the outdoor electric expansion valve (8a), which is the pressure reducing valve of the heat source side heat exchanger (6a), is reduced, the capacity of the heat source side heat exchanger (6a) is reduced, and each Heat source side heat exchanger (6a), (6b)
The integration capabilities of the two are made as uniform as possible. Therefore, the defrosting operation for melting the frost on each of the heat source side heat exchangers (6a) and (6b) is performed efficiently, and the operating efficiency of the entire air conditioner is improved.

【0045】なお、上記実施例では、いわゆるヒ―トポ
ンプ回路を有する空気調和装置の室外ユニット(A)の
ケ―シング内に2つの熱源側熱交換器(6a),(6b
)を配設したいわゆる2面熱交の場合について説明した
が、本発明は斯かる実施例に限定されるものではなく、
例えば多数の蒸発器を冷媒回路に配設した冷凍機につい
ても適用しうる。ただし、上記実施例のような2面熱交
形の室外ユニット(A)を有する空気調和装置では、ビ
ルの屋上に室外ユニット(A)を設置した場合に、周囲
の状況によって一方の熱源側熱交換器への送風が隣接す
るビルによって遮られる等送風の偏流を生じることが多
いので、特に本発明による効果が大きい。
In the above embodiment, two heat source side heat exchangers (6a) and (6b) are installed in the casing of the outdoor unit (A) of the air conditioner having a so-called heat pump circuit.
) has been described, but the present invention is not limited to such an embodiment.
For example, the present invention can also be applied to a refrigerator in which a large number of evaporators are arranged in a refrigerant circuit. However, in an air conditioner having a two-sided heat exchange type outdoor unit (A) like the above embodiment, when the outdoor unit (A) is installed on the roof of a building, depending on the surrounding situation, one heat source side may The effect of the present invention is particularly great because the air flow to the exchanger is often blocked by an adjacent building, resulting in uneven air flow.

【0046】また、上記実施例では、各室外電動膨張弁
(8a),(8b)の開度が過熱度制御される場合につ
いて説明したが、本発明は斯かる実施例に限定されるも
のではなく、例えば複数の蒸発器を配置した冷凍機にお
いて、各庫内の要求能力に応じた能力制御を行うような
運転制御装置に対しても適用しうる。
Furthermore, in the above embodiment, a case has been described in which the degree of opening of each outdoor electric expansion valve (8a), (8b) is controlled by degree of superheating, but the present invention is not limited to such embodiment. For example, the present invention can also be applied to an operation control device that performs capacity control according to the required capacity in each refrigerator in a refrigerator having a plurality of evaporators.

【0047】さらに、上記実施例では、着霜が生じた熱
源側熱交換器(例えば6a)の室外電動膨張弁(8a)
の開度を目標過熱度の値を高く変更することにより絞る
ようにしたが、室外電動膨張弁(8a)の開度の絞り制
御は斯かる実施例に限定されるものではなく、例えば一
律に半開(1000パルス)や全閉にするような制御を
行ってもよい。
Furthermore, in the above embodiment, the outdoor motorized expansion valve (8a) of the heat source side heat exchanger (for example, 6a) where frost has formed
Although the opening degree of the outdoor electric expansion valve (8a) is restricted by changing the value of the target degree of superheat to a higher value, the restriction control of the opening degree of the outdoor electric expansion valve (8a) is not limited to this example, and may be uniformly performed, for example. Control such as half-opening (1000 pulses) or fully closing may be performed.

【0048】また、請求項1の発明において、除霜運転
制御手段(51)による除霜運転は上記実施例のような
逆サイクルによるものだけでなく、例えばホットガスバ
イパスによる除霜運転であってもよいことはいうまでも
ない。
Further, in the invention of claim 1, the defrosting operation by the defrosting operation control means (51) is not limited to the reverse cycle as in the above embodiment, but may also be a defrosting operation using a hot gas bypass, for example. Needless to say, this is a good thing.

【0049】次に、上記実施例では、請求項2の発明に
対応して、除霜運転制御手段(51)により、いずれか
一方の熱源側熱交換器(例えば6a)の着霜量が所定量
となる除霜開始温度に達すると除霜運転を行うようにし
たが、本発明は斯かる実施例に限定されるものではなく
、例えば両熱源側熱交換器(6a),(6b)の温度が
除霜開始温度に達したときに除霜運転を行うようにして
もよい。ただし、請求項2の発明のごとく、いずれか一
方の熱源側熱交換器(例えば6a)の温度が除霜開始温
度に達したときに除霜運転を行うようにした場合、いず
れか一方の熱源側熱交換器(例えば6b)の着霜量が過
大になることが確実に防止され、上記請求項1の発明の
作用と相俟って、確実にしかも効率のよい除霜運転を行
うことができるという利点がある。
Next, in the above embodiment, corresponding to the invention of claim 2, the defrosting operation control means (51) controls the amount of frosting on one of the heat source side heat exchangers (for example, 6a) to a desired level. Although the defrosting operation is carried out when a certain defrosting start temperature is reached, the present invention is not limited to this embodiment. The defrosting operation may be performed when the temperature reaches the defrosting start temperature. However, as in the invention of claim 2, if the defrosting operation is performed when the temperature of one of the heat source side heat exchangers (for example, 6a) reaches the defrosting start temperature, one of the heat source side heat exchangers (for example, 6a) It is possible to reliably prevent the amount of frost on the side heat exchanger (for example, 6b) from becoming excessive, and in combination with the effect of the invention of claim 1, it is possible to perform defrosting operation reliably and efficiently. It has the advantage of being possible.

【0050】次に、上記実施例における請求項3の発明
に対応する部分では、除霜運転制御手段(51)による
除霜運転中、いずれかの熱源側熱交換器(例えば6b)
の温度T22が融解温度に達すると、除霜中開度低減手
段(53)により、当該熱源側熱交換器(6b)の室外
電動膨張弁(8b)の開度が絞られるので、当該熱源側
熱交換器(6b)への冷媒循環量が減少し、その分他の
熱源側熱交換器(6a)への冷媒循環量が増大する。し
たがって、各熱源側熱交換器(6a),(6b)の着霜
の融解度合いが可及的に均一化され、除霜運転時間が短
縮されるので、空気調和装置の運転効率が向上すること
になる。
Next, in the part corresponding to the invention of claim 3 in the above embodiment, during the defrosting operation by the defrosting operation control means (51), any of the heat source side heat exchangers (for example, 6b)
When the temperature T22 reaches the melting temperature, the opening degree reduction means (53) during defrosting reduces the opening degree of the outdoor electric expansion valve (8b) of the heat source side heat exchanger (6b). The amount of refrigerant circulated to the heat exchanger (6b) decreases, and the amount of refrigerant circulated to the other heat source side heat exchanger (6a) increases accordingly. Therefore, the degree of melting of frost on each heat source side heat exchanger (6a), (6b) is made as uniform as possible, and the defrosting operation time is shortened, so that the operating efficiency of the air conditioner is improved. become.

【0051】なお、上記実施例では、請求項4の発明に
対応して、除霜運転の終了の判断時を両熱源側熱交換器
(6a),(6b)の着霜が融解したときとしたが、本
発明は斯かる実施例に限定されるものではなく、例えば
各熱源側熱交換器(6a),(6b)の平均的な温度が
所定値に達したときに除霜運転を終了するような制御(
例えば上記実施例における低圧圧力センサ(P2)の検
出値が所定値に達したときに通常運転に復帰するような
制御)も可能である。ただし、請求項4の発明のように
両熱源側熱交換器(6a),(6b)の温度が着霜の融
解温度に達したときに除霜運転を終了して通常運転に復
帰するよう制御することにより、各熱源側熱交換器(6
a),(6b)の着霜が確実に融解される。したがって
、上記請求項3の発明による効果と相俟って、空気調和
装置の運転効率を良好に維持しながら、確実に除霜を行
いうる利点がある。
[0051] In the above embodiment, in accordance with the invention of claim 4, the end of the defrosting operation is determined when the frost on both heat source side heat exchangers (6a) and (6b) is melted. However, the present invention is not limited to such embodiments; for example, the defrosting operation may be terminated when the average temperature of each heat source side heat exchanger (6a), (6b) reaches a predetermined value. Controls like (
For example, control such as returning to normal operation when the detected value of the low pressure sensor (P2) in the above embodiment reaches a predetermined value is also possible. However, as in the invention of claim 4, when the temperature of both heat source side heat exchangers (6a) and (6b) reaches the melting temperature of frost, the defrosting operation is controlled to end and normal operation is resumed. By doing this, each heat source side heat exchanger (6
The frost formed in a) and (6b) is reliably melted. Therefore, together with the effect of the invention of claim 3, there is an advantage that defrosting can be reliably performed while maintaining good operating efficiency of the air conditioner.

【0052】また、上記実施例では、熱源側熱交換器(
6a),(6b)の着霜状態を液管に配置されたディア
イサ(Th21 ),(Th22 )で検出したが、例
えば各吸入管センサ(Th41 ),(Th42 )で
検出される吸入冷媒温度や、吸入管センサ(Th41 
),(Th42 )の代わりに圧力センサにより検出さ
れる蒸発圧力相当飽和温度、つまり蒸発器温度に関連す
る冷媒状態量から着霜状態を検出しても同様の効果を得
ることができる。
Furthermore, in the above embodiment, the heat source side heat exchanger (
6a) and (6b) were detected by the de-icers (Th21) and (Th22) placed in the liquid pipes, but for example, the suction refrigerant temperature and , Suction pipe sensor (Th41
), (Th42), the same effect can be obtained by detecting the frosting state from the evaporation pressure equivalent saturation temperature detected by a pressure sensor, that is, the refrigerant state quantity related to the evaporator temperature.

【0053】[0053]

【発明の効果】以上説明したように、請求項1の発明に
よれば、複数個の蒸発器と電動膨張弁とを冷媒回路内に
互いに並列に配置してなる冷媒回路を備えた冷凍装置の
運転制御装置として、各蒸発器の温度から検出される各
蒸発器の着霜状態に応じて除霜運転を行うとともに、い
ずれかの蒸発器が着霜すると、当該蒸発器の電動膨張弁
の開度を絞るようにしたので、当該蒸発器の能力低下に
より霜運転開始直前における各蒸発器の積算能力を可及
的に均一化することができ、よって、冷凍装置全体の運
転効率の向上を図ることができる。
As explained above, according to the invention of claim 1, a refrigeration system equipped with a refrigerant circuit in which a plurality of evaporators and electric expansion valves are arranged in parallel with each other in the refrigerant circuit. As an operation control device, it performs defrosting operation according to the frosting state of each evaporator detected from the temperature of each evaporator, and when any evaporator frosts, it opens the electric expansion valve of that evaporator. Since the capacity of the evaporator is reduced, the integrated capacity of each evaporator immediately before the start of frost operation can be equalized as much as possible, thereby improving the operating efficiency of the entire refrigeration system. be able to.

【0054】請求項2の発明によれば、上記請求項1の
発明において、冷凍装置の運転中にいずれか一方の蒸発
器の温度が所定の着霜量に対応する除霜開始温度に達す
ると除霜運転を行うようにしたので、上記請求項1の発
明の効果に加えて、確実に除霜を行うことができる。
According to the invention of claim 2, in the invention of claim 1, when the temperature of one of the evaporators reaches the defrosting start temperature corresponding to the predetermined amount of frost formation during operation of the refrigeration system, Since the defrosting operation is performed, in addition to the effect of the invention of claim 1, defrosting can be reliably performed.

【0055】請求項3の発明によれば、上記請求項1又
は2の発明において、除霜運転中、いずれかの蒸発器の
温度が着霜の融解温度に達すると、当該蒸発器の電動膨
張弁の開度を絞るようにしたので、他の蒸発器への冷媒
循環量を増大させることにより、各蒸発器の着霜の融解
度合いを可及的に均一化することができ、よって、除霜
運転時間の短縮を図り冷凍装置の運転効率の向上を図る
ことができる。
According to the invention of claim 3, in the invention of claim 1 or 2, when the temperature of any one of the evaporators reaches the melting temperature of frost during the defrosting operation, the electric expansion of the evaporator is activated. Since the opening degree of the valve is reduced, by increasing the amount of refrigerant circulating to other evaporators, it is possible to equalize the degree of frost melting in each evaporator as much as possible. It is possible to shorten the frost operation time and improve the operating efficiency of the refrigeration system.

【0056】請求項4の発明によれば、上記請求項1,
2又は3の発明において、除霜運転中、すべての蒸発器
の着霜が融解したときに除霜運転を終了して通常運転に
復帰するようにしたので、冷凍装置の運転効率を良好に
維持しながら、各蒸発器の着霜を確実に融解させること
ができる。
According to the invention of claim 4, the above-mentioned claim 1,
In the invention of 2 or 3, the defrosting operation is ended and normal operation is resumed when all the evaporator frost has melted during the defrosting operation, so that the operating efficiency of the refrigeration equipment is maintained well. At the same time, frost on each evaporator can be reliably melted.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】発明の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of the invention.

【図2】実施例に係る空気調和装置の冷媒配管系統図で
ある。
FIG. 2 is a refrigerant piping system diagram of the air conditioner according to the embodiment.

【図3】除霜運転前における運転制御の内容を示すフロ
―チャ―ト図である。
FIG. 3 is a flowchart showing the details of operation control before defrosting operation.

【図4】除霜運転前における電動膨張弁の開度制御の内
容を示すフロ―チャ―ト図である。
FIG. 4 is a flowchart showing the details of opening control of the electric expansion valve before defrosting operation.

【図5】除霜運転中におけるディアイサの代表値決定制
御の内容を示すフロ―チャ―ト図である。
FIG. 5 is a flowchart showing the details of the representative value determination control of the de-Icer during the defrosting operation.

【図6】除霜運転中における運転制御の内容を示すフロ
―チャ―ト図である。
FIG. 6 is a flowchart showing the details of operation control during defrosting operation.

【図7】除霜運転中における電動膨張弁の開度制御の内
容を示すフロ―チャ―ト図である。
FIG. 7 is a flowchart showing details of opening control of the electric expansion valve during defrosting operation.

【符号の説明】[Explanation of symbols]

1          圧縮機 6a,6b  熱源側熱交換器(蒸発器)8a,8b 
 室外電動膨張弁 11        主冷媒配管 11a,11b  分岐配管 14        主冷媒回路
1 Compressor 6a, 6b Heat source side heat exchanger (evaporator) 8a, 8b
Outdoor electric expansion valve 11 Main refrigerant piping 11a, 11b Branch piping 14 Main refrigerant circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  圧縮機(1)及び凝縮器が接続される
主冷媒配管(11)に対して、各々蒸発器(6)と電動
膨張弁(8)とが直列に接続される複数の分岐配管(1
1a),(11b)を互いに並列に接続してなる閉回路
の冷媒回路(14)を備えた冷凍装置において、上記各
蒸発器(6a),(6b)の温度又はこれに関連する冷
媒状態量から蒸発器(6a),(6b)の着霜状態を個
別に検出する着霜状態検出手段(Th21),(Th2
2 )と、上記冷凍装置の運転中、上記各着霜状態検出
手段(Th21 ),(Th22 )の出力を受け、各
蒸発器(6a),(6b)の着霜状態に応じて、上記蒸
発器(6a),(6b)の除霜運転をするよう制御する
除霜運転制御手段(51)とを備えるとともに、冷凍装
置の運転中、上記各着霜状態検出手段(Th21 ),
(Th22 )の出力を受け、いずれかの蒸発器(6a
又は6b)の温度が着霜開始温度に達したとき、当該蒸
発器(6a又は6b)の電動膨張弁(8a又は8b)の
開度を絞るよう制御する除霜前開度低減手段(52)を
備えたことを特徴とする冷凍装置の運転制御装置。
Claim 1: A plurality of branches each having an evaporator (6) and an electric expansion valve (8) connected in series to a main refrigerant pipe (11) to which a compressor (1) and a condenser are connected. Piping (1
1a) and (11b) connected in parallel to each other, the temperature of each of the evaporators (6a) and (6b) or the refrigerant state quantity related thereto. Frosting state detection means (Th21), (Th2) for individually detecting the frosting state of the evaporators (6a), (6b)
2) During the operation of the refrigeration system, the output of each of the frosting state detection means (Th21) and (Th22) is received, and the evaporation is detected according to the frosting state of each evaporator (6a) and (6b). A defrosting operation control means (51) for controlling the defrosting operation of the refrigeration equipment (6a) and (6b), and each of the above-mentioned frosting state detection means (Th21),
(Th22), one of the evaporators (6a
or 6b) when the temperature reaches the frosting start temperature, a pre-defrosting opening reduction means (52) that controls the opening of the electric expansion valve (8a or 8b) of the evaporator (6a or 6b) to be narrowed. An operation control device for a refrigeration system, characterized by comprising:
【請求項2】  請求項1記載の冷凍装置の運転制御装
置において、除霜運転制御手段(51)は、いずれか一
つの蒸発器(6a又は6b)の温度が所定の着霜量に対
応する除霜開始温度に達すると、すべての蒸発器(6a
),(6b)の除霜運転を開始するものであることを特
徴とする冷凍装置の運転制御装置。
2. In the operation control device for a refrigeration apparatus according to claim 1, the defrosting operation control means (51) is arranged such that the temperature of either one of the evaporators (6a or 6b) corresponds to a predetermined frost amount. When the defrosting start temperature is reached, all evaporators (6a
), (6b).
【請求項3】  請求項1又は2記載の冷凍装置の運転
制御装置において、冷媒回路(14)はサイクルの切換
え可能に構成され、除霜運転制御手段(51)は逆サイ
クル除霜運転を行うものであるとともに、除霜運転中、
各着霜状態検出手段(Th21 ),(Th22 )の
出力を受け、いずれかの蒸発器(6a又は6b)の温度
が着霜の融解温度に達したとき、当該蒸発器(6a又は
6b)の電動膨張弁(8a又は8b)の開度を絞るよう
制御する除霜中開度低減手段(53)を備えたことを特
徴とする冷凍装置の運転制御装置。
3. In the operation control device for a refrigeration system according to claim 1 or 2, the refrigerant circuit (14) is configured to be able to switch between cycles, and the defrosting operation control means (51) performs a reverse cycle defrosting operation. In addition, during defrosting operation,
Upon receiving the output of each frost state detection means (Th21) and (Th22), when the temperature of either evaporator (6a or 6b) reaches the melting temperature of frost, the evaporator (6a or 6b) An operation control device for a refrigeration system, characterized in that it includes a defrosting opening reduction means (53) that controls the opening of an electric expansion valve (8a or 8b) to be narrowed.
【請求項4】  請求項1,2,又は3記載の冷凍装置
の運転制御装置において、除霜運転制御手段(51)は
、すべての蒸発器(6a),(6b)の温度が着霜の融
解温度に達した時に除霜運転を終了するものであること
を特徴とする冷凍装置の運転制御装置。
4. In the operation control device for a refrigeration equipment according to claim 1, 2 or 3, the defrosting operation control means (51) is configured such that the temperature of all the evaporators (6a), (6b) is at a level at which frost is formed. An operation control device for a refrigeration device, characterized in that the defrosting operation ends when the melting temperature is reached.
JP3112912A 1991-05-17 1991-05-17 Refrigeration system operation controller Expired - Fee Related JP2500707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3112912A JP2500707B2 (en) 1991-05-17 1991-05-17 Refrigeration system operation controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3112912A JP2500707B2 (en) 1991-05-17 1991-05-17 Refrigeration system operation controller

Publications (2)

Publication Number Publication Date
JPH04344084A true JPH04344084A (en) 1992-11-30
JP2500707B2 JP2500707B2 (en) 1996-05-29

Family

ID=14598601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3112912A Expired - Fee Related JP2500707B2 (en) 1991-05-17 1991-05-17 Refrigeration system operation controller

Country Status (1)

Country Link
JP (1) JP2500707B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224190A (en) * 2007-03-15 2008-09-25 Aisin Seiki Co Ltd Refrigerating cycle device
JP2014066420A (en) * 2012-09-26 2014-04-17 Hitachi Appliances Inc Freezer
WO2016157774A1 (en) * 2015-03-30 2016-10-06 株式会社デンソー Control device and vehicle air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224190A (en) * 2007-03-15 2008-09-25 Aisin Seiki Co Ltd Refrigerating cycle device
JP2014066420A (en) * 2012-09-26 2014-04-17 Hitachi Appliances Inc Freezer
WO2016157774A1 (en) * 2015-03-30 2016-10-06 株式会社デンソー Control device and vehicle air conditioner
JP2016191476A (en) * 2015-03-30 2016-11-10 株式会社デンソー Control device and air conditioner for vehicle

Also Published As

Publication number Publication date
JP2500707B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
US6938430B2 (en) Refrigerating device
JP5641875B2 (en) Refrigeration equipment
JP4760974B2 (en) Refrigeration equipment
CN112119273B (en) Refrigeration cycle device
WO2007139010A1 (en) Freezing device
JP2003240391A (en) Air conditioner
JP2002228297A (en) Refrigerating device
JP3785893B2 (en) Air conditioner
CN118922677A (en) Air conditioning device
JP4622901B2 (en) Air conditioner
KR102288427B1 (en) Method for Defrosting of Air Conditioner for Both Cooling and Heating
JPH043865A (en) Freezing cycle device
JPH04344085A (en) Defrosting operation control device for refrigerating apparatus
WO2017026115A1 (en) Refrigeration device
JP2500707B2 (en) Refrigeration system operation controller
JP4023387B2 (en) Refrigeration equipment
JP2745828B2 (en) Operation control device for refrigeration equipment
JPH07243711A (en) Two-stage cooler
JP2684845B2 (en) Operation control device for air conditioner
JP2011158144A (en) Refrigeration device
JPH04214158A (en) Operation controller for refrigerating device
JP2001272144A (en) Air conditioner
JPH0799286B2 (en) Wet control device for air conditioner
JP3036519B2 (en) Refrigeration equipment
JP2006183987A (en) Refrigerating device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080313

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100313

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees