[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04330765A - Dielectric isolated substrate and manufacture thereof and semiconductor integrated circuit device - Google Patents

Dielectric isolated substrate and manufacture thereof and semiconductor integrated circuit device

Info

Publication number
JPH04330765A
JPH04330765A JP10079191A JP10079191A JPH04330765A JP H04330765 A JPH04330765 A JP H04330765A JP 10079191 A JP10079191 A JP 10079191A JP 10079191 A JP10079191 A JP 10079191A JP H04330765 A JPH04330765 A JP H04330765A
Authority
JP
Japan
Prior art keywords
insulating film
crystal silicon
region
silicon wafer
element formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10079191A
Other languages
Japanese (ja)
Other versions
JP2681420B2 (en
Inventor
Hidetoshi Arakawa
秀俊 荒川
Hironori Inoue
洋典 井上
Shigeru Takahashi
茂 高橋
Yoshitaka Sugawara
良孝 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Power Semiconductor Device Ltd
Original Assignee
Hitachi Ltd
Hitachi Haramachi Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Haramachi Electronics Ltd filed Critical Hitachi Ltd
Priority to JP3100791A priority Critical patent/JP2681420B2/en
Publication of JPH04330765A publication Critical patent/JPH04330765A/en
Application granted granted Critical
Publication of JP2681420B2 publication Critical patent/JP2681420B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To enable a filler to be deposited in dividing trenches for dividing a single crystal silicon wafer into multiple element formation regions. CONSTITUTION:Isolation trenches 20 are formed around respective element formation regions 20 in the state wherein a single crystal silicon regins 24 are left in the positions corresponding to the four corners of respective element formation regions 20 out of the regions around the regions 20 formed on a single silicon wafer 10 so that polycrystal silicons 34 may be deposited in the isolation trenches 30.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は誘電体分離基板に係り、
特に、支持体上に形成された単結晶シリコンウエハが絶
縁膜によって複数の素子形成領域に分割された誘電体分
離基板とその製造方法及び誘電体分離基板を用いて形成
された半導体集積回路装置に関する。
[Industrial Application Field] The present invention relates to a dielectric isolation substrate.
In particular, it relates to a dielectric isolation substrate in which a single crystal silicon wafer formed on a support is divided into a plurality of element forming regions by an insulating film, a method for manufacturing the same, and a semiconductor integrated circuit device formed using the dielectric isolation substrate. .

【0002】0002

【従来の技術】LSIは基板上に多数の半導体素子が集
積されて構成されており、これらLSIのうち素子間の
絶縁耐圧が数十V〜数百Vと大きな高耐圧のものでは、
それぞれの半導体素子を酸化膜のような絶縁膜で完全に
分離する必要があるところから、基板として誘電体分離
基板が用いられている。誘電体分離基板を形成するに際
しては、多結晶シリコンから成る支持体の表面に、誘電
膜を介して単結晶シリコンウエハを接合し、この単結晶
シリコンウエハに複数の半導体形成領域を形成する構造
が採用されている。ところが従来の誘電体分離基板では
、単結晶シリコンと多結晶シリコンの熱膨張係数の違い
から基板に反りや歪みが発生するという問題があった。 そこで、特開昭61−59852号公報に記載されてい
るように、支持体を単結晶シリコンで構成すると共にこ
の支持体に誘電体膜を介して単結晶シリコンウエハを接
合したものが提案されている。ところがこの構造の場合
には、単結晶シリコンウエハに複数の素子形成領域を形
成するに際して、素子形成領域の周囲に分離溝を形成し
、この分離溝内に絶縁膜を介して多結晶シリコンを充填
する構成が採用されているため、分離溝へ多結晶シリコ
ンを堆積したり、単結晶シリコンウエハの表面を平担化
するのに多くの時間を要するという不具合がある。 すなわち分離溝の幅を狭くすると分離溝を形成するのが
困難であり、逆に分離溝の幅を広くすると分離溝内に多
結晶シリコンを堆積するのに時間がかかることになる。 更に各素子形成領域の周囲に形成された分離溝のうち各
素子形成領域の四隅に対応した溝は他の分離溝の溝より
も幅が広いため、各四隅に対応した溝の中央部において
多結晶シリコンを堆積した際に凹部が形成されることが
ある。この凹部を埋めるには他の部分に多量の多結晶シ
リコンを堆積させなければならず、後の工程で多結晶シ
リコンを除去するのに時間を要することになる。そこで
、特開平1−187944号公報に記載されているよう
に、分離溝のうち素子形成領域の四隅に対応した各領域
の中央部にピラーを配置し、分離溝内に多結晶シリコン
を堆積する際に、素子形成領域の四隅に対応した分離溝
内に凹部が形成されるのを防止するようにしたものが提
案されている。
2. Description of the Related Art LSIs are composed of a large number of semiconductor elements integrated on a substrate. Among these LSIs, high voltage withstand voltages ranging from several tens of volts to several hundred volts between elements are
A dielectric isolation substrate is used as a substrate because it is necessary to completely isolate each semiconductor element with an insulating film such as an oxide film. When forming a dielectric isolation substrate, a single crystal silicon wafer is bonded to the surface of a support made of polycrystalline silicon via a dielectric film, and a plurality of semiconductor formation regions are formed on this single crystal silicon wafer. It has been adopted. However, conventional dielectric isolation substrates have had the problem that warpage and distortion occur in the substrate due to the difference in thermal expansion coefficients between single crystal silicon and polycrystalline silicon. Therefore, as described in Japanese Patent Application Laid-open No. 61-59852, it has been proposed that the support is made of single-crystal silicon and a single-crystal silicon wafer is bonded to this support via a dielectric film. There is. However, in the case of this structure, when forming multiple element formation regions on a single crystal silicon wafer, separation grooves are formed around the element formation areas, and polycrystalline silicon is filled into these separation grooves through an insulating film. This configuration has the disadvantage that it takes a lot of time to deposit polycrystalline silicon into the separation grooves and to flatten the surface of the single-crystal silicon wafer. That is, if the width of the isolation trench is narrowed, it becomes difficult to form the isolation trench, and conversely, if the width of the isolation trench is made wide, it takes time to deposit polycrystalline silicon within the isolation trench. Furthermore, among the isolation grooves formed around each element formation area, the grooves corresponding to the four corners of each element formation area are wider than the other isolation grooves, so there are multiple grooves in the center of the grooves corresponding to each of the four corners. Recesses may be formed when depositing crystalline silicon. In order to fill this recess, a large amount of polycrystalline silicon must be deposited in other parts, and it will take time to remove the polycrystalline silicon in a later process. Therefore, as described in Japanese Patent Application Laid-Open No. 1-187944, pillars are placed in the center of each region of the isolation trench corresponding to the four corners of the element formation region, and polycrystalline silicon is deposited within the isolation trench. In this case, a method has been proposed in which recesses are prevented from being formed in isolation grooves corresponding to the four corners of the element formation region.

【0003】0003

【発明が解決しようとする課題】しかしながら、分離溝
が交叉する部位の中央にピラーを配置する構成では、半
導体集積回路の分離溝は通常数μm以下と非常に微細で
あるところから、ピラーを素子形成領域と分離した状態
で形成しても、その後の洗浄工程などにおいてピラーが
破損し易く、分離溝内に多結晶シリコンなどを堆積する
際の歩留まりが低下するという不具合がある。特に高耐
圧、大電流を扱うパワーICにおいては、分離溝は数1
0μmの深さがあるところから、この問題はより顕著と
なる。また分離溝が交叉する部位の中央に半導体材料に
よるピラーを配置することは、数μmの精密な加工が要
求され、精度の問題からも分離溝の間隔をウエハ内で均
一に一定とすることは困難である。また分離溝としてT
字型のものを形成するものも提案されているが、分離溝
としてT字型のものを形成する方法では、IC素子のレ
イアウトの自由度が低下し、ICのチップサイズを小型
化するのが困難となる。  本発明の目的は、単結晶シ
リコンウエハを複数の素子形成領域に分割するための分
離溝内に充填物を均一に堆積することができる誘電体分
離基板とその製造方法及び誘電体分離基板を用いた半導
体集積回路装置を提供することにある。
[Problems to be Solved by the Invention] However, in a structure in which a pillar is placed in the center of a region where isolation grooves intersect, it is difficult to place a pillar in a device because isolation grooves in semiconductor integrated circuits are usually very fine, several μm or less. Even if the pillars are formed separately from the formation region, the pillars are likely to be damaged during the subsequent cleaning process, and there is a problem that the yield when depositing polycrystalline silicon or the like in the separation grooves is reduced. Particularly in power ICs that handle high voltage and large current, the number of isolation grooves is several 1.
This problem becomes more pronounced from a depth of 0 μm. In addition, placing a pillar made of semiconductor material at the center of the area where the separation grooves intersect requires precision processing of several μm, and due to precision issues, it is difficult to maintain a uniform spacing of the separation grooves within the wafer. Have difficulty. Also, T is used as a separation groove.
A method of forming a T-shaped isolation trench has been proposed, but the method of forming a T-shaped isolation trench reduces the degree of freedom in the layout of the IC element, making it difficult to reduce the IC chip size. It becomes difficult. An object of the present invention is to provide a dielectric separation substrate that can uniformly deposit a filler in separation grooves for dividing a single crystal silicon wafer into a plurality of element forming regions, a method for manufacturing the same, and a dielectric separation substrate using the dielectric separation substrate. It is an object of the present invention to provide a semiconductor integrated circuit device that has improved performance.

【0004】0004

【課題を解決するための手段】前記目的を達成するため
に、本発明は、第1の基板として、支持体に絶縁膜を介
して接合された単結晶シリコンウエハが複数の領域に分
割され、各領域が多角形形状の素子形成領域に形成され
、各素子形成領域の周囲のうち各素子形成領域の各角部
に対応した隅のほぼ中央部の各領域を除いた領域に他の
素子形成領域との境界を示す分離溝が形成され、各分離
溝内に絶縁膜を介して充填物が堆積され、各素子形成領
域が分離溝内の絶縁物を間にして互いに電気的に絶縁さ
れ、前記中央部の領域が各素子形成領域から分離した単
結晶シリコン領域として形成されている誘電体分離基板
を構成したものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a first substrate in which a single crystal silicon wafer bonded to a support via an insulating film is divided into a plurality of regions, Each region is formed as a polygonal element forming area, and other elements are formed in the area around each element forming area except for each area in the approximate center of the corner corresponding to each corner of each element forming area. Isolation trenches are formed to indicate boundaries with the regions, a filler is deposited in each isolation trench via an insulating film, and each element formation region is electrically insulated from each other with the insulator in the isolation trench in between. The dielectric isolation substrate is configured such that the central region is formed as a single crystal silicon region separated from each element forming region.

【0005】第2の基板として、支持体に絶縁膜を介し
て接合された単結晶シリコンウエハが複数の素子形成領
域に分割され、各素子形成領域の周囲のうち各素子形成
領域の四隅に対応したほぼ中央部の各領域を除いた領域
に他の素子形成領域との境界を示す分離溝が形成され、
各分離溝内に絶縁膜を介して充填物が堆積され、各素子
形成領域が分離溝を間にして互いに電気的に絶縁され、
前記中央部の領域が各素子形成領域から分離した単結晶
シリコン領域として形成されている誘電体分離基板を構
成したものである。
[0005] As a second substrate, a single crystal silicon wafer bonded to a support via an insulating film is divided into a plurality of element formation areas, and four corners of the periphery of each element formation area correspond to the four corners of each element formation area. A separation groove is formed in the area excluding each area in the approximately central part, which indicates the boundary with other element formation areas.
A filling is deposited in each isolation trench via an insulating film, and each element forming region is electrically insulated from each other with the isolation trench in between.
The dielectric isolation substrate is configured such that the central region is formed as a single crystal silicon region separated from each element forming region.

【0006】第1または第2の基板を含む第3の基板と
して、絶縁性充填物はシリコン酸化膜で構成されている
誘電体分離基板を構成したものである。
[0006] As the third substrate including the first or second substrate, the insulating filler constitutes a dielectric isolation substrate made of a silicon oxide film.

【0007】第1の製造方法として、支持体上に絶縁膜
を介して単結晶シリコンウエハを接合し、単結晶シリコ
ンウエハの表面に絶縁膜を形成し、この絶縁膜を残すパ
ターンとして、単結晶シリコンウエハを複数の領域に分
割し、かつ各領域を多角形形状の素子形成領域に形成し
、さらに各素子形成領域の周囲のうち各素子形成領域の
各角部に対応した隅の各領域を介して各素子形成領域を
互いに接続するマスクパターンを形成し、絶縁膜を剥離
するパターンとして、領域と各素子形成領域の周囲のう
ち各素子形成領域の各角部に対応した隅の領域を除いた
領域に形成されて他の素子形成領域との境界を示す剥離
パターンを形成し、各パターンに従って単結晶シリコン
ウエハ表面の絶縁膜にエッチング処理を施し、エッチン
グ処理された単結晶シリコンウエハのうち絶縁膜の剥離
された領域に分離溝を形成し、単結晶シリコンウエハ表
面の絶縁膜を除去した後各分離溝の壁面に絶縁膜を形成
し、この絶縁膜の形成により各素子形成領域を絶縁膜を
介して互いに電気的に分離し、その後各分離溝内に充填
物を堆積し、続いて単結晶シリコンウエハの表面を平担
にする誘電体基板の製造方法を採用したものである。
[0007] As a first manufacturing method, a single crystal silicon wafer is bonded onto a support via an insulating film, an insulating film is formed on the surface of the single crystal silicon wafer, and a single crystal silicon wafer is formed as a pattern in which this insulating film is left. A silicon wafer is divided into a plurality of regions, each region is formed into a polygonal element formation region, and each corner region corresponding to each corner of each element formation region is divided into polygonal element formation regions. A mask pattern is formed to connect each element forming area to each other through the mask pattern, and a pattern for peeling off the insulating film is formed by removing the corner area corresponding to each corner of each element forming area among the area and the periphery of each element forming area. A peeling pattern is formed in the etched area to indicate the boundary with other element formation areas, and the insulating film on the surface of the single crystal silicon wafer is etched according to each pattern. An isolation groove is formed in the area where the film has been peeled off, and after removing the insulating film on the surface of the single crystal silicon wafer, an insulating film is formed on the wall of each isolation groove. This method employs a method of manufacturing a dielectric substrate in which the single-crystal silicon wafer is electrically isolated from each other through the trenches, a filler is deposited in each isolation trench, and the surface of the single-crystal silicon wafer is then flattened.

【0008】第2の製造として、支持体上に絶縁膜を介
して単結晶シリコンウエハを接合し、単結晶シリコンウ
エハの表面に絶縁膜を形成し、この絶縁膜を残すパター
ンとして、単結晶シリコンウエハを複数の素子形成領域
に分割し、かつ各素子形成領域の周囲のうち各素子形成
領域の四隅に対応した各領域を介して各素子形成領域を
互いに接続するマスクパターンを形成し、絶縁膜を剥離
するパターンとして、領域と各素子形成領域の周囲のう
ち各素子形成領域の四隅に対応した各領域を除いた領域
に形成されて他の素子形成領域との境界を示す剥離パタ
ーンを形成し、各パターンに従って単結晶シリコンウエ
ハ表面の絶縁膜にエッチング処理を施し、エッチング処
理された単結晶シリコンウエハのうち絶縁膜の剥離され
た領域に分離溝を形成し、単結晶シリコンウエハ表面の
絶縁膜を除去した後各分割溝の壁面に絶縁膜を形成し、
この絶縁膜の形成により各素子形成領域を絶縁膜を介し
て互いに電気的に分離し、その後各分離溝内に充填物を
堆積し、続いて単結晶シリコンウエハの表面を平担にす
る誘電体基板の製造方法を採用したものである。
In the second manufacturing process, a single-crystal silicon wafer is bonded to a support via an insulating film, an insulating film is formed on the surface of the single-crystal silicon wafer, and a pattern in which this insulating film is left is formed using a single-crystal silicon wafer. The wafer is divided into a plurality of element formation areas, and a mask pattern is formed to connect the element formation areas to each other through areas corresponding to the four corners of each element formation area around the periphery of each element formation area, and an insulating film is formed. As a peeling pattern, a peeling pattern is formed around the area and each element forming area excluding each area corresponding to the four corners of each element forming area and indicating the boundary with other element forming areas. , etching the insulating film on the surface of the single-crystal silicon wafer according to each pattern, forming a separation groove in the area where the insulating film has been peeled off of the etched single-crystal silicon wafer, and etching the insulating film on the surface of the single-crystal silicon wafer. After removing, an insulating film is formed on the wall of each dividing groove,
By forming this insulating film, each element formation region is electrically isolated from each other via the insulating film, and then a filler is deposited in each isolation trench, followed by a dielectric material that flattens the surface of the single-crystal silicon wafer. This method adopts the manufacturing method of the substrate.

【0009】第1の装置として、第1,第2または第3
の誘電体分離基板上に半導体素子が形成されている半導
体集積回路装置を構成したものである。
[0009] As the first device, the first, second or third
This is a semiconductor integrated circuit device in which a semiconductor element is formed on a dielectric isolation substrate.

【0010】第2の装置として、第1または第3の方法
によって製造された誘電体分離基板上に半導体素子が形
成されている半導体集積回路装置を構成したものである
The second device is a semiconductor integrated circuit device in which a semiconductor element is formed on a dielectric isolation substrate manufactured by the first or third method.

【0011】[0011]

【作用】上記した手段によれば、各素子形成領域の各角
部に対応した隅のほぼ中央部の各領域あるいは各素子形
成領域の四隅に対応したほぼ中央部の各領域には各素子
形成領域から分離した単結晶シリコン領域が形成されて
いるため、一定の堆積量ですべての分離溝を完全に充填
することができ、製造時間を短縮することができると共
に絶縁性充填物の堆積量を少なくすることができる。
[Operation] According to the above means, each element is formed in each area approximately at the center of the corner corresponding to each corner of each element forming area or each area approximately at the center corresponding to the four corners of each element forming area. Since a single crystal silicon region is formed that is separated from the other regions, all isolation trenches can be completely filled with a constant deposition amount, which reduces manufacturing time and reduces the amount of insulating fill deposited. It can be reduced.

【0012】0012

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1は誘電体分離基板の製造方法を説明するた
めの工程図であり、図2は図1に示す製造方法によって
製造された誘電体分離基板の要部平面図である。図1及
び図2において、誘電体分離基板を製造するに際して、
まず単結晶シリコンウエハ10を用意する(a)。次い
で単結晶シリコンウエハで構成された支持体12を用意
し、この支持体12の表面及び裏面に酸化シリコンから
成る絶縁膜14,16を約2μmを形成する。この後支
持体12と単結晶シリコン10とを絶縁膜16を介して
張り合せ、これらに高温の熱処理を加えて2枚のシリコ
ンウエハを接合する(b)。次に、単結晶シリコン10
の不要な部分を研磨あるいはエッチング法によって除去
し、単結晶シリコン10を所望の電気特性を有する半導
体素子を形成するに必要な厚み約30μmの単結晶シリ
コン薄膜とする。この後単結晶シリコン10の表面に、
この後のエッチング工程で単結晶シリコン10の表面を
マスクするための酸化膜18を約2μm形成する(c)
。この酸化膜18を形成するに際しては、(C)に示さ
れるように、酸化膜18を残すパターンとして、単結晶
シリコン10を複数の素子形成領域に分割し、各素子形
成領域の四隅を連結部22、単結晶シリコン領域24を
介して接続するマスクパターン26を形成し、酸化膜1
8を剥離するパターンとして、各素子形成領域20の境
界を示す剥離パターン28を形成する。この剥離パター
ン28は分離溝を形成する際に、各分離溝の幅が一定と
なる様に形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a process diagram for explaining a method for manufacturing a dielectric isolation substrate, and FIG. 2 is a plan view of a main part of the dielectric isolation substrate manufactured by the manufacturing method shown in FIG. In FIGS. 1 and 2, when manufacturing the dielectric isolation substrate,
First, a single crystal silicon wafer 10 is prepared (a). Next, a support 12 made of a single crystal silicon wafer is prepared, and insulating films 14 and 16 made of silicon oxide are formed on the front and back surfaces of the support 12 to a thickness of about 2 μm. Thereafter, the support 12 and the single crystal silicon 10 are pasted together via the insulating film 16, and a high temperature heat treatment is applied to them to bond the two silicon wafers (b). Next, single crystal silicon 10
By removing unnecessary portions of the single crystal silicon 10 by polishing or etching, the single crystal silicon 10 is made into a single crystal silicon thin film having a thickness of approximately 30 μm, which is necessary for forming a semiconductor element having desired electrical characteristics. After this, on the surface of the single crystal silicon 10,
In the subsequent etching process, an oxide film 18 of about 2 μm is formed to mask the surface of the single crystal silicon 10 (c)
. When forming this oxide film 18, as shown in (C), the single crystal silicon 10 is divided into a plurality of element formation regions, and the four corners of each element formation region are connected to a connecting part. 22, forming a mask pattern 26 connected via the single crystal silicon region 24, and forming the oxide film 1
A peeling pattern 28 indicating a boundary between each element forming region 20 is formed as a pattern for peeling off the wafer 8 . This peeling pattern 28 is formed when forming the separation grooves so that the width of each separation groove is constant.

【0013】次に、エッチング工程に移り、酸化膜18
のうちマスクパターン26に対応した部位を残して剥離
パターン28の部位を剥離し、このとき各素子形成領域
20は連結部22、単結晶シリコン領域20を介して互
いに接続されている。この後ドライエッチングなどの方
法を用いて剥離パターン28に対応した部位に深さ約3
0μmの分離溝30を形成する(d)。更にこのとき単
結晶シリコン10の表面から酸化膜18を除去する。こ
のときの状態が(D)に示されている。このとき各分離
溝30は同一の幅で形成され、各素子形成領域の四隅は
連結部22、単結晶シリコン領域24を介して接続され
ている。すなわち各分離溝は互いに交叉することなく、
素子形成領域20の周囲のうち単結晶シリコン領域24
の領域を除いて分離溝30が形成されている。
Next, an etching process is started, and the oxide film 18 is etched.
The parts corresponding to the peeling patterns 28 are removed, leaving the parts corresponding to the mask patterns 26, and at this time, the element forming regions 20 are connected to each other via the connecting parts 22 and the single crystal silicon regions 20. After this, using a method such as dry etching, the area corresponding to the peeling pattern 28 is etched to a depth of approximately 3.
A separation groove 30 of 0 μm is formed (d). Furthermore, at this time, the oxide film 18 is removed from the surface of the single crystal silicon 10. The state at this time is shown in (D). At this time, each isolation trench 30 is formed with the same width, and the four corners of each element formation region are connected via the connecting portion 22 and the single crystal silicon region 24. In other words, each separation groove does not cross each other,
Single crystal silicon region 24 around the element formation region 20
A separation groove 30 is formed except for the area.

【0014】次に、各分離溝30の壁面に酸化シリコン
から成る絶縁膜32を約2μm形成する(e)。このと
き分離溝30は酸化膜32の形成によってその幅が狭く
なると共に、酸化膜32の酸化作用によって各素子形成
領域20の周囲及び単結晶シリコン領域24の周囲が浸
食され、各素子形成領域20が絶縁膜32を介して互い
に電気的に分離される。すなわち連結部22の幅は狭い
ので絶縁膜32の酸化作用によって浸食され、単結晶シ
リコン領域24が各素子形成領域20と絶縁膜32を介
して電気的に分離される。単結晶シリコン領域24は連
結部22を介して各素子形成領域20に接続された状態
から各素子形成領域20に分離されるため、各素子形成
領域20から分離されるときに折れたりすることはない
。そして分離溝30の壁面及び各素子形成領域20の表
面に絶縁膜32が形成されると単結晶シリコン10の表
面は(E)に示されるような状態となる。この後気相成
長(CVD)法により分離溝30内に多結晶シリコン3
4を堆積する(f)。この場合各分離溝30はすべて同
一の寸法に形成されているので、一定の堆積時間ですべ
ての分離溝30内に多結晶シリコン34を均一に堆積さ
せることができる。すなわち各素子形成領域20の四隅
には単結晶シリコン領域24が形成されているので、分
離溝30内に凹部が形成されることなく多結晶シリコン
34を堆積させることができる。この後単結晶シリコン
10の表面に形成された不用の多結晶シリコン34及び
絶縁膜32を除去し、単結晶シリコン10の表面を平担
にすることにより(g)、図2に示されるような誘電体
分離基板36が形成される。
Next, an insulating film 32 made of silicon oxide is formed to a thickness of approximately 2 μm on the wall surface of each isolation trench 30 (e). At this time, the width of the isolation trench 30 becomes narrow due to the formation of the oxide film 32, and the periphery of each element formation region 20 and the periphery of the single crystal silicon region 24 is eroded due to the oxidation action of the oxide film 32. are electrically isolated from each other via an insulating film 32. That is, since the width of the connecting portion 22 is narrow, it is eroded by the oxidation action of the insulating film 32, and the single crystal silicon region 24 is electrically isolated from each element forming region 20 via the insulating film 32. Since the single crystal silicon region 24 is connected to each element formation region 20 via the connecting portion 22 and then separated into each element formation region 20, it will not break when separated from each element formation region 20. do not have. When the insulating film 32 is formed on the wall surface of the isolation trench 30 and the surface of each element forming region 20, the surface of the single crystal silicon 10 becomes as shown in (E). After this, polycrystalline silicon 3 is formed in the separation trench 30 by a vapor phase growth (CVD) method.
Deposit 4 (f). In this case, since all the isolation trenches 30 are formed to have the same dimensions, polycrystalline silicon 34 can be uniformly deposited in all the isolation trenches 30 in a fixed deposition time. That is, since single-crystal silicon regions 24 are formed at the four corners of each element formation region 20, polycrystalline silicon 34 can be deposited without forming a recess in isolation trench 30. Thereafter, unnecessary polycrystalline silicon 34 and insulating film 32 formed on the surface of single crystal silicon 10 are removed to make the surface of single crystal silicon 10 flat (g), as shown in FIG. A dielectric isolation substrate 36 is formed.

【0015】前記実施例においては各素子形成領域20
の四隅に対応した部位に単結晶シリコン領域24を形成
するものについて述べたが、図3及び図4に示されるよ
うに、単結晶シリコン10を3つの素子形成領域20に
分割し、各素子形成領域20の間に分離溝30と単結晶
シリコン領域24を形成することも可能であり、図5及
び図6に示されるように、単結晶シリコン10を2つの
素子形成領域20に分割し、各素子形成領域20の境界
に分離溝30を形成すると共に単結晶シリコン領域24
を形成することも可能である。この場合各誘電体分離基
板を形成した状態の要部平面図を図4及び図6に示す。 前記各実施例においても、前記実施例と同様に、各分離
溝が互いに交叉することなく形成されているため、各分
離溝30内に多結晶シリコン34を均一に充填させるこ
とができる。また前記実施例と同様に、多結晶シリコン
34の堆積量を少なくすることができ、堆積時間及びそ
の後に多結晶シリコンを除去するためのドライエッチン
グ工程におけるドライエッチング時間を短縮することが
できる。
In the above embodiment, each element forming region 20
As shown in FIGS. 3 and 4, the single crystal silicon 10 is divided into three element forming areas 20, and each element forming area is It is also possible to form a separation trench 30 and a single crystal silicon region 24 between the regions 20, and as shown in FIGS. 5 and 6, the single crystal silicon 10 can be divided into two element formation regions 20, and A separation groove 30 is formed at the boundary of the element formation region 20 and the single crystal silicon region 24
It is also possible to form In this case, a plan view of the main part with each dielectric isolation substrate formed is shown in FIGS. 4 and 6. In each of the embodiments described above, the isolation grooves 30 are formed without intersecting with each other, as in the embodiments described above, so that each isolation groove 30 can be uniformly filled with polycrystalline silicon 34. Further, as in the embodiment described above, the amount of deposited polycrystalline silicon 34 can be reduced, and the deposition time and the dry etching time in the subsequent dry etching process for removing polycrystalline silicon can be shortened.

【0016】また前記各実施例において、分離溝を充填
する材料として多結晶シリコン34を用いたが、他の材
料、例えばシリコン酸化膜などを用いることも可能であ
る。
Further, in each of the embodiments described above, polycrystalline silicon 34 was used as the material for filling the isolation trenches, but other materials such as silicon oxide film may also be used.

【0017】[0017]

【発明の効果】以上説明したように、本発明によれば、
単結晶シリコンウエハに複数の素子形成領域を形成する
に際して、各素子形成領域の境界となる分離溝を交叉さ
せることなく各分離溝間に単結晶シリコン領域を形成す
るようにしたため、分離溝の幅をすべて同一の幅にする
ことができ、分離溝内に充填物を均一に堆積させること
ができ、充填物の堆積量を少なくすることができると共
に充填物の堆積時間及び充填物の除去時間を短縮するこ
とができ、生産コストの向上に寄与することができる。 また半導体素子を構成する素子のレイアウトの自由度を
失なうこともないので、半導体素子のチップサイズが大
きくなるのを防止することができる。
[Effects of the Invention] As explained above, according to the present invention,
When forming multiple element formation regions on a single-crystal silicon wafer, the width of the isolation grooves can be reduced by forming single-crystal silicon regions between each isolation groove without crossing the separation grooves that serve as the boundaries of each element formation area. can be made to have the same width, the filling can be deposited uniformly in the separation groove, the amount of deposited filling can be reduced, and the time for depositing the filling and the time for removing the filling can be reduced. This can contribute to improving production costs. Further, since the degree of freedom in layout of the elements constituting the semiconductor element is not lost, it is possible to prevent the chip size of the semiconductor element from increasing.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】誘電体分離基板の製造方法を説明するための工
程図である。
FIG. 1 is a process diagram for explaining a method for manufacturing a dielectric isolation substrate.

【図2】誘電体分離基板の要部平面図である。FIG. 2 is a plan view of essential parts of a dielectric isolation substrate.

【図3】本発明の他の実施例を示す誘電体分離基板の要
部平面図である。
FIG. 3 is a plan view of a main part of a dielectric isolation substrate showing another embodiment of the present invention.

【図4】図3の完成後の状態を示す要部平面図である。4 is a plan view of main parts showing the state after completion of FIG. 3; FIG.

【図5】本発明の更に他の実施例を示す要部平面図であ
る。
FIG. 5 is a plan view of main parts showing still another embodiment of the present invention.

【図6】図5に示すものの完成後の状態を示す要部平面
図である。
FIG. 6 is a plan view of main parts showing the state shown in FIG. 5 after completion.

【符号の説明】[Explanation of symbols]

10  単結晶シリコンウエハ 12  支持体 14,16  絶縁膜 18  酸化膜 20  素子形成領域 22  連結部 24  単結晶シリコン領域 26  マスクパターン 28  剥離パターン 30  分離溝 32  絶縁膜 10 Single crystal silicon wafer 12 Support 14, 16 Insulating film 18 Oxide film 20 Element formation area 22 Connecting part 24 Single crystal silicon region 26 Mask pattern 28 Peeling pattern 30 Separation groove 32 Insulating film

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】  支持体に絶縁膜を介して接合された単
結晶シリコンウエハが複数の領域に分割され、各領域が
多角形形状の素子形成領域に形成され、各素子形成領域
の周囲のうち各素子形成領域の各角部に対応した隅のほ
ぼ中央部の各領域を除いた領域に他の素子形成領域との
境界を示す分離溝が形成され、各分離溝内に絶縁膜を介
して充填物が堆積され、各素子形成領域が分離溝内の絶
縁物を間にして互いに電気的に絶縁され、前記中央部の
領域が各素子形成領域から分離した単結晶シリコン領域
として形成されている誘電体分離基板。
1. A single-crystal silicon wafer bonded to a support via an insulating film is divided into a plurality of regions, each region is formed into a polygonal element formation region, and a portion of the periphery of each element formation region is divided into a plurality of regions. Isolation grooves are formed in the area excluding each area at the approximate center of the corner corresponding to each corner of each element formation area to indicate a boundary with other element formation areas. A filling is deposited, and each element forming region is electrically insulated from each other with an insulator in the isolation trench between them, and the central region is formed as a single crystal silicon region separated from each element forming region. Dielectric isolation substrate.
【請求項2】  支持体に絶縁膜を介して接合された単
結晶シリコンウエハが複数の素子形成領域に分割され、
各素子形成領域の周囲のうち各素子形成領域の四隅に対
応したほぼ中央部の各領域を除いた領域に他の素子形成
領域との境界を示す分離溝が形成され、各分離溝内に絶
縁膜を介して充填物が堆積され、各素子形成領域が分離
溝を間にして互いに電気的に絶縁され、前記中央部の領
域が各素子形成領域から分離した単結晶シリコン領域と
して形成されている誘電体分離基板。
2. A single crystal silicon wafer bonded to a support via an insulating film is divided into a plurality of element formation regions,
Isolation grooves are formed around each element formation area, except for the approximately central areas corresponding to the four corners of each element formation area, and are formed to indicate boundaries with other element formation areas. Filling is deposited through the film, each element forming region is electrically insulated from each other with a separation groove in between, and the central region is formed as a single crystal silicon region separated from each element forming region. Dielectric isolation substrate.
【請求項3】  絶縁性充填物はシリコン酸化膜で構成
されている請求項1または2記載の誘電体分離基板。
3. The dielectric isolation substrate according to claim 1, wherein the insulating filling is composed of a silicon oxide film.
【請求項4】  支持体上に絶縁膜を介して単結晶シリ
コンウエハを接合し、単結晶シリコンウエハの表面に絶
縁膜を形成し、この絶縁膜を残すパターンとして、単結
晶シリコンウエハを複数の領域に分割し、かつ各領域を
多角形形状の素子形成領域に形成し、さらに各素子形成
領域の周囲のうち各素子形成領域の各角部に対応した隅
の領域を介して各素子形成領域を互いに接続するマスク
パターンを形成し、絶縁膜を剥離するパターンとして、
各素子形成領域の周囲のうち各素子形成領域の各角部に
対応した隅の各領域を除いた領域に形成されて他の素子
形成領域との境界を示す剥離パターンを形成し、各パタ
ーンに従って単結晶シリコンウエハ表面の絶縁膜にエッ
チング処理を施し、エッチング処理された単結晶シリコ
ンウエハのうち絶縁膜の剥離された領域に分離溝を形成
し、単結晶シリコンウエハ表面の絶縁膜を除去した後各
分離溝の壁面に絶縁膜を形成し、この絶縁膜の形成によ
り各素子形成領域を絶縁膜を介して互いに電気的に分離
し、その後各分離溝内に充填物を堆積し、続いて単結晶
シリコンウエハの表面を平担にする誘電体基板の製造方
法。
4. A single-crystal silicon wafer is bonded onto a support via an insulating film, an insulating film is formed on the surface of the single-crystal silicon wafer, and a plurality of single-crystal silicon wafers are bonded to form a pattern in which this insulating film is left. Each region is divided into regions, each region is formed into a polygonal element formation region, and each element formation region is formed through a corner region corresponding to each corner of each element formation region out of the periphery of each element formation region. Form a mask pattern to connect the two to each other, and as a pattern to peel off the insulation film
A peeling pattern is formed around each element forming area except for each corner area corresponding to each corner of each element forming area to indicate a boundary with other element forming areas, and according to each pattern, After etching the insulating film on the surface of the single-crystal silicon wafer, forming separation grooves in the areas of the etched single-crystal silicon wafer where the insulating film has been removed, and removing the insulating film on the surface of the single-crystal silicon wafer. An insulating film is formed on the wall surface of each isolation trench, and by forming this insulating film, each element formation region is electrically isolated from each other via the insulating film, and then a filler is deposited in each isolation trench, and then a filler is deposited in each isolation trench. A method for manufacturing a dielectric substrate that flattens the surface of a crystalline silicon wafer.
【請求項5】  支持体上に絶縁膜を介して単結晶シリ
コンウエハを接合し、単結晶シリコンウエハの表面に絶
縁膜を形成し、この絶縁膜を残すパターンとして、単結
晶シリコンウエハを複数の素子形成領域に分割し、かつ
各素子形成領域の周囲のうち各素子形成領域の四隅に対
応した各領域を介して各素子形成領域を互いに接続する
マスクパターンを形成し、絶縁膜を剥離するパターンと
して、領域と各素子形成領域の周囲のうち各素子形成領
域の四隅に対応した各領域を除いた領域に形成されて他
の素子形成領域との境界を示す剥離パターンを形成し、
各パターンに従って単結晶シリコンウエハ表面の絶縁膜
にエッチング処理を施し、エッチング処理された単結晶
シリコンウエハのうち絶縁膜の剥離された領域に分離溝
を形成し、単結晶シリコンウエハ表面の絶縁膜を除去し
た後各分離溝の壁面に絶縁膜を形成し、この絶縁膜の形
成により各素子形成領域を絶縁膜を介して互いに電気的
に分離し、その後各分離溝内に充填物を堆積し、続いて
単結晶シリコンウエハの表面を平担にする誘電体基板の
製造方法。
5. A single-crystal silicon wafer is bonded onto a support via an insulating film, an insulating film is formed on the surface of the single-crystal silicon wafer, and a plurality of single-crystal silicon wafers are bonded as a pattern in which this insulating film is left. A pattern for separating the insulating film by forming a mask pattern that divides the device forming regions and connecting the device forming regions to each other through regions corresponding to the four corners of each device forming region out of the periphery of each device forming region. A peeling pattern is formed around the area and each element forming area excluding each area corresponding to the four corners of each element forming area to indicate a boundary with another element forming area,
The insulating film on the surface of the single-crystal silicon wafer is etched according to each pattern, and separation grooves are formed in the regions of the etched single-crystal silicon wafer where the insulating film has been peeled off. After the removal, an insulating film is formed on the wall surface of each isolation trench, and by forming this insulating film, each element formation region is electrically isolated from each other via the insulating film, and then a filler is deposited in each isolation trench, Next is a method for manufacturing a dielectric substrate that flattens the surface of a single-crystal silicon wafer.
【請求項6】  請求項1,2または3記載の誘電体分
離基板上に半導体素子が形成されている半導体集積回路
装置。
6. A semiconductor integrated circuit device comprising a semiconductor element formed on the dielectric isolation substrate according to claim 1, 2 or 3.
【請求項7】  請求項5または6記載の方法によって
製造された誘電体分離基板上に半導体素子が形成されて
なる半導体集積回路装置。
7. A semiconductor integrated circuit device comprising a semiconductor element formed on a dielectric isolation substrate manufactured by the method according to claim 5 or 6.
JP3100791A 1991-05-02 1991-05-02 Method for manufacturing dielectric substrate Expired - Fee Related JP2681420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3100791A JP2681420B2 (en) 1991-05-02 1991-05-02 Method for manufacturing dielectric substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3100791A JP2681420B2 (en) 1991-05-02 1991-05-02 Method for manufacturing dielectric substrate

Publications (2)

Publication Number Publication Date
JPH04330765A true JPH04330765A (en) 1992-11-18
JP2681420B2 JP2681420B2 (en) 1997-11-26

Family

ID=14283261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3100791A Expired - Fee Related JP2681420B2 (en) 1991-05-02 1991-05-02 Method for manufacturing dielectric substrate

Country Status (1)

Country Link
JP (1) JP2681420B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0955681A2 (en) * 1994-09-28 1999-11-10 Nippon Telegraph And Telephone Corporation Optical semiconductor device and method of fabricating the same
JP2007220718A (en) * 2006-02-14 2007-08-30 Toyota Motor Corp Semiconductor substrate, method of manufacturing same and semiconductor device
JP2009194325A (en) * 2008-02-18 2009-08-27 Denso Corp Method of manufacturing semiconductor device, and semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159852A (en) * 1984-08-31 1986-03-27 Toshiba Corp Manufacture of semiconductor device
JPS6161432A (en) * 1984-09-03 1986-03-29 Nec Corp Semiconductor device
JPH01187944A (en) * 1987-11-23 1989-07-27 Texas Instr Inc <Ti> Method of forming isolating trench structure in semiconductor material
JPH02267963A (en) * 1989-04-08 1990-11-01 Nec Corp Manufacture of semiconductor storage device
JPH0362946A (en) * 1989-07-31 1991-03-19 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159852A (en) * 1984-08-31 1986-03-27 Toshiba Corp Manufacture of semiconductor device
JPS6161432A (en) * 1984-09-03 1986-03-29 Nec Corp Semiconductor device
JPH01187944A (en) * 1987-11-23 1989-07-27 Texas Instr Inc <Ti> Method of forming isolating trench structure in semiconductor material
JPH02267963A (en) * 1989-04-08 1990-11-01 Nec Corp Manufacture of semiconductor storage device
JPH0362946A (en) * 1989-07-31 1991-03-19 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0955681A2 (en) * 1994-09-28 1999-11-10 Nippon Telegraph And Telephone Corporation Optical semiconductor device and method of fabricating the same
EP0955681A3 (en) * 1994-09-28 2000-11-29 Nippon Telegraph And Telephone Corporation Optical semiconductor device and method of fabricating the same
US6403986B1 (en) 1994-09-28 2002-06-11 Nippon Telegraph And Telephone Corporation Optical semiconductor device and method of fabricating the same
US6790697B2 (en) 1994-09-28 2004-09-14 Nippon Telegraph And Telephone Corporation Optical semiconductor device and method of fabricating the same
JP2007220718A (en) * 2006-02-14 2007-08-30 Toyota Motor Corp Semiconductor substrate, method of manufacturing same and semiconductor device
JP2009194325A (en) * 2008-02-18 2009-08-27 Denso Corp Method of manufacturing semiconductor device, and semiconductor device

Also Published As

Publication number Publication date
JP2681420B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
JPH01315159A (en) Dielectric-isolation semiconductor substrate and its manufacture
JP2699359B2 (en) Semiconductor substrate manufacturing method
JP2681420B2 (en) Method for manufacturing dielectric substrate
JPS6155252B2 (en)
JPH01302740A (en) Dielectric isolation semiconductor substrate
JP3099446B2 (en) Semiconductor substrate having dielectric isolation region
JPH0488657A (en) Semiconductor device and manufacture thereof
JPS62229855A (en) Manufacture of semiconductor device
JPH04307735A (en) Manufacture of semiconductor device
JPH02260442A (en) Dielectric isolation type semiconductor substrate
JPS59167029A (en) Manufacture of semiconductor device
JPS61144036A (en) Semiconductor device and manufacture thereof
JP3321527B2 (en) Method for manufacturing semiconductor device
JPH0212854A (en) Manufacture of dielectric isolated semiconductor integrated circuit substrate
JPS61168240A (en) Insulating and separating method of semiconductor layer by dielectric unit
JPS6248040A (en) Insulator isolated substrate and manufacture thereof
JPH0637177A (en) Semiconductor wafer and its manufacture
JPS6221269B2 (en)
JPH05175325A (en) Dielectric isolation board and manufacturing method
JPH01181439A (en) Dielectric-isolation semiconductor substrate and manufacture thereof
JPS61174736A (en) Manufacture of dielectric separating substrate
JPH0552066B2 (en)
JPH08222625A (en) Manufacture of dielectric isolation board
JPS59218748A (en) Manufacture of complementary dielectric isolation substrate
JPS62156831A (en) Method for obtaining single crystal silicon region isolated electrically

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees