[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0433948A - Polycarbonate resin composition and impact-resistance improver for polycarbonate resin - Google Patents

Polycarbonate resin composition and impact-resistance improver for polycarbonate resin

Info

Publication number
JPH0433948A
JPH0433948A JP14047190A JP14047190A JPH0433948A JP H0433948 A JPH0433948 A JP H0433948A JP 14047190 A JP14047190 A JP 14047190A JP 14047190 A JP14047190 A JP 14047190A JP H0433948 A JPH0433948 A JP H0433948A
Authority
JP
Japan
Prior art keywords
polar
vinyl
weight
monomer
vinyl monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14047190A
Other languages
Japanese (ja)
Inventor
Shoichi Yoshitani
吉谷 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP14047190A priority Critical patent/JPH0433948A/en
Publication of JPH0433948A publication Critical patent/JPH0433948A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a resin composition having especially improved thickness- dependent impact resistance without damaging excellent physical characteristics and mechanical properties, by blending a polycarbonate resin with an improver for impact resistance composed of a specific multi-phase structure thermoplastic resin. CONSTITUTION:A resin composition comprising (A) 100pts.wt. polycarbonate resin and (B) 1-100pts.wt. multi-phase structure thermoplastic resin which is composed of B1: 5-95wt.% copolymer consisting of a nonpolar alpha-olefin and a non-conjugated diene-based monomer or a polar vinyl-based monomer and B2: 95-5wt.% vinyl-based (co)polymer and having 0.001-10mum particle diameter of dispersed resin, such as a multi-phase structure thermoplastic resin obtained by impregnating an aqueous dispersion of the component B1 with a vinyl-based monomer, a radically (co)polymerizable organic peroxide and a radical polymerization initiator until the impregnation ratio reaches >=10wt.% and then heating to copolymerize the vinyl monomer with the peroxide.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ポリカーボネート樹脂の優れた物理的特性、
機械的性質を維持し、耐衝撃性に優れ、特に耐衝撃性の
厚み依存性が改良されたポリカーボネート樹脂組成物お
よびポリカーボネート樹脂用耐衝撃性改良剤に関するも
のであり、電気および電子機械部品、精密機械部品、自
動車部品などの広い分野で使用され得るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the excellent physical properties of polycarbonate resin,
It relates to a polycarbonate resin composition that maintains mechanical properties, has excellent impact resistance, and in particular has improved thickness dependence of impact resistance, and an impact resistance modifier for polycarbonate resin, and is suitable for electrical and electronic mechanical parts, precision parts, etc. It can be used in a wide range of fields such as mechanical parts and automobile parts.

〔従来の技術〕[Conventional technology]

ポリカーボネート樹脂は靭性、可撓性、衝撃強度等の機
械特性、耐熱性、電気特性等の物理的特性、成形品の寸
法精度等に優れているので自動車部品、電気絶縁材料、
機械部品、各種ハウジング等に広く使用されている。
Polycarbonate resin has excellent mechanical properties such as toughness, flexibility, and impact strength, physical properties such as heat resistance and electrical properties, and dimensional accuracy of molded products, so it is used in automobile parts, electrical insulation materials,
Widely used for mechanical parts, various housings, etc.

しかしながら、ポリカーボネート樹脂は耐衝撃性の厚み
依存性が大きく、肉厚が薄い場合には耐衝撃性が良好で
あるが肉厚が厚い場合には耐衝撃性が著しく低下するた
め肉厚成形品には使用できないという問題点があった。
However, the impact resistance of polycarbonate resin is highly dependent on the thickness; when the wall thickness is thin, the impact resistance is good, but when the wall thickness is thick, the impact resistance decreases significantly, so it is not suitable for thick molded products. The problem was that it could not be used.

したがって、ポリカーボネート樹脂の耐衝撃性の厚み依
存性を改善することが可能となれば前記のポリカーボネ
ート樹脂の物理的特性、機械的性質、寸法精度等の優れ
た肉厚成形品を得ることが可能となり様々な分野への応
用展開が可能となる。
Therefore, if it were possible to improve the thickness dependence of the impact resistance of polycarbonate resin, it would be possible to obtain thick-walled molded products with excellent physical properties, mechanical properties, dimensional accuracy, etc. of the polycarbonate resin. It becomes possible to develop applications in various fields.

ポリカーボネート樹脂の耐衝撃性の厚み依存性を解決す
ることを目的として、特開平1−308449号公報に
ポリカーボネート樹脂にシラン変性重合体と特定のエチ
レン共重合体を配合する方法、また特開平1−3084
50号公報にはポリカーボネート樹脂にエポキシ含有架
橋共重合体を配合する方法が開示されており、それぞれ
ポリカーボネート樹脂の厚み依存性が改善されることが
示されている。
In order to solve the thickness dependence of impact resistance of polycarbonate resin, JP-A-1-308449 discloses a method of blending a silane-modified polymer and a specific ethylene copolymer with a polycarbonate resin, and JP-A-1-308449 discloses a method of blending a silane-modified polymer and a specific ethylene copolymer with a polycarbonate resin. 3084
Publication No. 50 discloses a method of blending an epoxy-containing crosslinked copolymer with a polycarbonate resin, and each method has been shown to improve the thickness dependence of the polycarbonate resin.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、特開平1−308449号公報、及び特
開平1−308450号公報のように特定の重合体を配
合する方法では、ポリカーボネート樹脂の耐衝撃性の厚
み依存性はある程度改善されるものの、特定の重合体と
ポリカーボネート樹脂との相溶性が乏しいためポリカー
ボネート樹脂の優れた物理的特性、機械的性質が損なわ
れてしまうばかりか得られた成形品が層状剥離現象を起
こしたり、金型への付着現象を起こしたりするという問
題点があった。
However, although the thickness dependence of the impact resistance of polycarbonate resin is improved to some extent by the method of blending specific polymers as in JP-A-1-308449 and JP-A-1-308450, The poor compatibility between the polymer and polycarbonate resin not only impairs the excellent physical and mechanical properties of the polycarbonate resin, but also causes delamination of the obtained molded product and adhesion to the mold. There was a problem that it could cause

本発明は、ポリカーボネート樹脂の優れた物理的特性、
機械的性質を維持し、層状剥離現象や付着現象がなく、
特に耐衝撃性の厚み依存性が改良されたポリカーボネー
ト樹脂組成物およびポリカーボネート樹脂用耐衝撃性改
良剤を提供することを目的とする。
The present invention is characterized by the excellent physical properties of polycarbonate resin,
Maintains mechanical properties and has no delamination or adhesion phenomena.
In particular, it is an object of the present invention to provide a polycarbonate resin composition with improved thickness dependence of impact resistance and an impact resistance improver for polycarbonate resin.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者は、これら従来の問題を解決すべく鋭
意研究した結果、ポリカーボネート樹脂に、特定の多相
構造熱可塑性樹脂をブレンドして得た樹脂組成物は、耐
衝撃性、特に耐衝撃性の厚み依存性が著しく改善される
とともに、物理的特性、機械的特性、成形性に優れ、ま
た特定の多相構造層熱可塑性樹脂のポリカーボネート樹
脂への分散性にも優れることを見いだし本発明を完成さ
せるに至った。
Therefore, as a result of intensive research to solve these conventional problems, the present inventor found that a resin composition obtained by blending a specific multiphase thermoplastic resin with a polycarbonate resin has high impact resistance, especially impact resistance. It has been discovered that the thickness dependence of properties is significantly improved, and the physical properties, mechanical properties, and moldability are excellent, and the dispersibility of a specific multiphase structure layer thermoplastic resin into polycarbonate resin is also excellent. was completed.

すなわち、第1の発明は、下記の(1)  (II)を
含むポリカーボネート樹脂組成物である。
That is, the first invention is a polycarbonate resin composition containing the following (1) (II).

(1)ポリカーボネート樹脂100重量部、(II)非
極性α−オレフィンと非共役ジエン系単量体または極性
ビニル系単量体とからなる共重合体5〜95重量%と、
少なくとも1種のビニル単量体からなるビニル系(共)
重合体95〜5重量%とからなり1分散樹脂の粒子径が
0.001〜10μmである多相構造熱可塑性樹脂1〜
100重量部。
(1) 100 parts by weight of polycarbonate resin, (II) 5 to 95% by weight of a copolymer consisting of a non-polar α-olefin and a non-conjugated diene monomer or a polar vinyl monomer;
Vinyl type (co) consisting of at least one vinyl monomer
Polyphase thermoplastic resin 1 to 95 to 5% by weight of a polymer and having a particle size of 0.001 to 10 μm in one dispersed resin
100 parts by weight.

また、第2の発明は、非極性α−オレフィンと非共役ジ
エン系単量体または極性ビニル系単量体とからなる共重
合体の水性懸濁液に、少なくとも1種のビニル単量体、
ラジカル(共)重合性有機過酸化物の少なくとも1種お
よびラジカル重合開始剤を加え、ラジカル重合開始剤の
分解が実質的に起こらない条件で加熱し、該ビニル単量
体、ラジカル(共)重合性有機過酸化物およびラジカル
重合開始剤を非極性α−オレフィンと非共役ジエン系単
量体または極性ビニル系単量体とからなる共重合体に含
浸せしめ、その含浸率が初めの10重景%以上に達した
とき、この水性懸濁液の温度を上昇させ、ビニル単量体
とラジカル(共)重合性有機過酸化物とを、非極性α−
オレフィンと非共役ジエン系単量体または極性ビニル系
単量体とからなる共重合体中で共重合せしめたグラフト
化前駆体(A)、または(A)に、非極性α−オレフィ
ンと非共役ジエン系単量体または極性ビニル系単量体と
からなる共重合体(B)0〜99重量%、及び/または
少なくとも1種のビニル単量体を重合して得られるビニ
ル系(共)重合体(C)0〜99重量%を予め100〜
300℃の範囲で溶融混合して得た多相構造熱可塑性樹
脂を主成分としてなることを特徴とするポリカーボネー
ト樹脂用耐衝撃性改良剤である。
In addition, the second invention provides at least one vinyl monomer,
At least one radical (co)polymerizable organic peroxide and a radical polymerization initiator are added, heated under conditions that substantially do not decompose the radical polymerization initiator, and the vinyl monomer is radically (co)polymerized. A copolymer consisting of a non-polar α-olefin and a non-conjugated diene monomer or a polar vinyl monomer is impregnated with a polar organic peroxide and a radical polymerization initiator, and the impregnation rate is as high as the first 10 times. % or more, the temperature of this aqueous suspension is raised to convert the vinyl monomer and radical (co)polymerizable organic peroxide into non-polar α-
A grafting precursor (A) copolymerized in a copolymer consisting of an olefin and a nonconjugated diene monomer or a polar vinyl monomer, or a grafting precursor (A) copolymerized with a nonpolar α-olefin and a nonconjugated A copolymer (B) consisting of a diene monomer or a polar vinyl monomer (B) 0 to 99% by weight, and/or a vinyl (co)polymer obtained by polymerizing at least one vinyl monomer. Combined (C) 0 to 99% by weight in advance from 100 to 99% by weight
This is an impact resistance modifier for polycarbonate resin, characterized in that the main component is a multi-phase structured thermoplastic resin obtained by melt-mixing in a range of 300°C.

さらに第3の発明は、非極性α−オレフィンと非共役ジ
エン系単量体または極性ビニル系単量体とからなる共重
合体の性態濁液に、少なくとも1種のビニル単量体およ
びラジカル重合開始剤を加え、ラジカル重合開始剤の分
解が実質的に起こらない条件下で加熱し、該ビニル単量
体およびラジカル重合開始剤を非極性α−オレフィンと
非共役ジエン系単量体または極性ビニル系単量体とから
なる共重合体に含浸せしめ、その含浸率が初めの10重
景%以上に達したとき、この水性懸濁液の温度を上昇さ
せ、ビニル単量体を、非極性α−オレフィンと非共役ジ
エン系単量体または極性ビニル系単量体とからなる共重
合体中で共重合せしめて得た多相構造熱可塑性樹脂(D
)、または(D)に、非極性α−オレフィンと非共役ジ
エン系単量体または極性ビニル系単量体とからなる共重
合体(B)0〜99重量%、及び/または少なくとも1
種のビニル単量体を重合して得られるビニル系(共)重
合体(C)0〜99重量%を予め100〜300℃の範
囲で溶融混合して得た多相構造熱可塑性樹脂を主成分と
してなることを特徴とするポリカーボネート樹脂用耐衝
撃性改良剤である。
Furthermore, the third invention is a copolymer suspension comprising a non-polar α-olefin and a non-conjugated diene monomer or a polar vinyl monomer, and at least one vinyl monomer and a radical. A polymerization initiator is added and heated under conditions that do not substantially cause decomposition of the radical polymerization initiator, and the vinyl monomer and radical polymerization initiator are combined with a non-polar α-olefin and a non-conjugated diene monomer or a polar polymerization initiator. When the copolymer consisting of a vinyl monomer is impregnated into the copolymer and the impregnation rate reaches the initial 10% or more, the temperature of this aqueous suspension is raised to convert the vinyl monomer into a non-polar A multiphase thermoplastic resin (D
), or (D), 0 to 99% by weight of a copolymer (B) consisting of a non-polar α-olefin and a non-conjugated diene monomer or a polar vinyl monomer, and/or at least 1
Mainly a multiphase thermoplastic resin obtained by melt-mixing 0 to 99% by weight of a vinyl (co)polymer (C) obtained by polymerizing seed vinyl monomers at a temperature of 100 to 300°C. This is an impact resistance modifier for polycarbonate resin, characterized in that it is used as a component.

本発明において使用されるポリカーボネート樹脂は、4
,4−ジヒドロキシジフェニル−2,2−プロパン(通
称ビスフェノールA)をはじめとする4、4−ジオキシ
ジアリルアルカン系ポリカーボネートであるが、その中
でも特に4,4−ジヒドロキシジフェニル−2,2−プ
ロパンのポリカーボネートで、数平均分子量15,00
0〜8o、oooのものが好ましい。
The polycarbonate resin used in the present invention is 4
,4-dihydroxydiphenyl-2,2-propane (commonly known as bisphenol A). Polycarbonate, number average molecular weight 15,00
0 to 8o, ooo is preferred.

これらのポリカーボネートは任意の方法で製造される1
例えば、4,4−ジヒドロキシジフェニル−2,2−プ
ロパンのポリカーボネートの製造には、ジオキシ化合物
として4,4−ジヒドロキシジフェニル−2,2−プロ
パンを用いて、苛性アリカリ水溶液および溶剤存在下に
ホスゲンを吹き込んで製造する方法、または4,4−ジ
ヒドロキシジフェニル−2,2−プロパンと炭酸ジエス
テルを触媒存在下でエステル交換させて製造する方法等
を例示することができる。
These polycarbonates can be manufactured by any method 1
For example, in the production of polycarbonate of 4,4-dihydroxydiphenyl-2,2-propane, 4,4-dihydroxydiphenyl-2,2-propane is used as the dioxy compound, and phosgene is added in the presence of an aqueous caustic alkali solution and a solvent. Examples include a method of manufacturing by blowing, and a method of manufacturing by transesterifying 4,4-dihydroxydiphenyl-2,2-propane and diester carbonate in the presence of a catalyst.

本発明において使用される多相構造熱可塑性樹脂中の非
極性α−オレフィンと非共役ジエン系単量体または極性
ビニル系単量体とからなる共重合体とは、1種または2
種以上の非極性α−オレフィンと1種または2種以上の
非共役ジエン系単量体、または、1種または2種以上の
極性ビニル系単量体を共重合せしめた重合体である。
The copolymer composed of a non-polar α-olefin and a non-conjugated diene monomer or a polar vinyl monomer in the multiphase thermoplastic resin used in the present invention refers to one or two copolymers.
It is a polymer obtained by copolymerizing one or more nonpolar α-olefins with one or more nonconjugated diene monomers, or one or more polar vinyl monomers.

ここでいう非極性α−オレフィン単量体として、例えば
エチレン、プロピレン、ブテン−1,4−メチルペンテ
ン−1、ヘキセン−1、デセン−1、オクテン−1等が
挙げられる。また非共役ジエン系単量体として1例えば
エチリデンノルボルネン。
Examples of the nonpolar α-olefin monomers mentioned here include ethylene, propylene, butene-1,4-methylpentene-1, hexene-1, decene-1, octene-1, and the like. Further, as a non-conjugated diene monomer, for example, ethylidene norbornene.

1.4−へキサジエン、1,5−へキサジエン、ジシク
ロペンタジェン、2−メチル−1,5−へキサジエン、
1,4−シクロへブタジェン、1゜4−シクロオクタジ
エン等を挙げることができる。
1.4-hexadiene, 1,5-hexadiene, dicyclopentadiene, 2-methyl-1,5-hexadiene,
Examples include 1,4-cyclohebutadiene and 1°4-cyclooctadiene.

また極性ビニル系単量体としては、非極性α−オレフィ
ン系単量体と共重合可能なビニル基を持った単量体であ
って、例えばアクリル酸、メタクリル酸、フマル酸、マ
レイン酸、無水マレイン酸。
Examples of polar vinyl monomers include monomers having a vinyl group that can be copolymerized with nonpolar α-olefin monomers, such as acrylic acid, methacrylic acid, fumaric acid, maleic acid, anhydride, etc. Maleic acid.

イタコン酸、無水イタコン酸、ビシクロ(2,2゜1)
−5−ヘプテン−2,3−ジカルボン酸等のα、β−不
飽和カルボン酸、アクリル酸メチル、アクリル酸エチル
、アクリル酸イソプロピル、アクリル酸n−ブチル、ア
クリル酸イソブチル、アクリル酸t−ブチル、アクリル
酸2−エチルヘキシル、メタクリル酸メチル、メタクリ
ル酸エチル。
Itaconic acid, itaconic anhydride, bicyclo(2,2゜1)
α,β-unsaturated carboxylic acids such as -5-heptene-2,3-dicarboxylic acid, methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate.

メタクリル酸n−ブチル、メタクリル酸イソブチル等の
α、β−不飽和カルボン酸エステル、酢酸ビニル、プロ
ピオン酸ビニル、カプロン酸ビニル。
α, β-unsaturated carboxylic acid esters such as n-butyl methacrylate and isobutyl methacrylate, vinyl acetate, vinyl propionate, vinyl caproate.

カプリル酸ビニル、ラウリン酸ビニル、ステアリン酸ビ
ニル、トリフルオル酢酸ビニル等のビニルエステル類が
あげられる。
Examples include vinyl esters such as vinyl caprylate, vinyl laurate, vinyl stearate, and vinyl trifluoroacetate.

上記非極性α−オレフィンと非共役ジエン系単量体また
は極性ビニル系単量体とからなる共重合体の具体例とし
ては、エチレン−プロピレン−エチリデンノルボルネン
共重合体ゴム、エチレン−プロピレン−1,4−へキサ
ジエン共重合体ゴム、エチレン−プロピレン−ジシクロ
ペンタジェン共重合体ゴム、エチレン−アクリル酸共重
合体、エチレン−アクリル酸メチル共重合体、エチレン
−アクリル酸エチル共重合体、エチレン−アクリル酸イ
ソプロピル共重合体、エチレン−アクリル酸n−ブチル
共重合体、エチレン−アクリル酸イソブチル共重合体、
エチレン−アクリル酸2−エチルヘキシル共重合体、エ
チレン−メタクリル酸メチル共重合体、エチレン−メタ
クリル酸エチル共重合体、エチレン−メタクリル酸n−
ブチル共重合体、エチレン−メタクリル酸イソブチル共
重合体、エチレン−酢酸ビニル共重合体、エチレン−プ
ロピオン酸ビニル共重合体等があげられる。
Specific examples of copolymers made of the non-polar α-olefin and a non-conjugated diene monomer or a polar vinyl monomer include ethylene-propylene-ethylidene norbornene copolymer rubber, ethylene-propylene-1, 4-hexadiene copolymer rubber, ethylene-propylene-dicyclopentadiene copolymer rubber, ethylene-acrylic acid copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene- Isopropyl acrylate copolymer, ethylene-n-butyl acrylate copolymer, ethylene-isobutyl acrylate copolymer,
Ethylene-2-ethylhexyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl methacrylate copolymer, ethylene-n-methacrylate
Examples include butyl copolymer, ethylene-isobutyl methacrylate copolymer, ethylene-vinyl acetate copolymer, ethylene-vinyl propionate copolymer, and the like.

本発明において使用される多相構造熱可塑性樹脂中のビ
ニル系(共)重合体とは、具体的には、スチレン、核置
換スチレン例えばメチルスチレン、ジメチルスチレン、
エチルスチレン、イソプロピルスチレン、クロルスチレ
ン、α−置換スチレン例えばα−メチルスチレン、α−
エチルスチレン等のビニル芳香族単量体;アクリル酸も
しくはメタクリル酸の炭素数1〜7のアルキルエステル
Specifically, the vinyl (co)polymer in the multiphase thermoplastic resin used in the present invention includes styrene, nuclear-substituted styrene such as methylstyrene, dimethylstyrene,
Ethylstyrene, isopropylstyrene, chlorstyrene, α-substituted styrenes such as α-methylstyrene, α-
Vinyl aromatic monomers such as ethylstyrene; C1-7 alkyl esters of acrylic acid or methacrylic acid.

例えば、(メタ)アクリル酸のメチル−、エチル、プロ
ピル−、イソプロピル−、ブチル−等の(メタ)アクリ
ル酸エステル単量体;2−ヒドロキシエチルメタクリレ
ート、ヒドロキシプロピルメタクリレート、ポリエチレ
ングリコールモノメタクリレート、ポリプロピレングリ
コールモノメタクリレート等の(メタ)アクリル酸ヒド
ロキシアルキルエステル単量体;アクリロニトリルもし
くはメタクリレートリル等のシアン化ビニル単量体;酢
酸ビニル、プロピオン酸ビニル等のビニルエステル単量
体;アクリルアミド、メタクリルアミド等の(メタ)ア
クリルアミド単量体; (メタ)アクリル酸、マレイン
酸、フマール酸、イタコン酸、シトラコン酸、クロトン
酸等の不飽和カルボン酸およびそのアミド、イミド、エ
ステル、無水物等の誘導体等のビニル単量体の1種又は
2種以上を重合して得られた(共)重合体である。
For example, (meth)acrylic acid ester monomers such as methyl, ethyl, propyl, isopropyl, and butyl of (meth)acrylic acid; 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, polyethylene glycol monomethacrylate, polypropylene glycol (meth)acrylic acid hydroxyalkyl ester monomers such as monomethacrylate; vinyl cyanide monomers such as acrylonitrile or methacrylate; vinyl ester monomers such as vinyl acetate and vinyl propionate; Meth)acrylamide monomer; Vinyl monomers such as unsaturated carboxylic acids such as (meth)acrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, crotonic acid, and derivatives such as their amides, imides, esters, anhydrides, etc. It is a (co)polymer obtained by polymerizing one or more types of polymers.

これらの中でも、ビニル芳香族単量体、シアン化ビニル
単量体、(メタ)アクリル酸エステル単量体およびビニ
ルエステル単量体が好ましく使用される。特に、シアン
化ビニル単量体0〜50重量%およびビニル芳香族単量
体50〜100重量%からなるビニル系共重合体、また
は(メタ)アクリル酸エステル単量体を50重量%以上
含むビニル系(共)重合体は、ポリカーボネート樹脂へ
の分散性が良好なため最も好ましい態様となる。
Among these, vinyl aromatic monomers, vinyl cyanide monomers, (meth)acrylic acid ester monomers and vinyl ester monomers are preferably used. In particular, vinyl copolymers consisting of 0 to 50% by weight of vinyl cyanide monomers and 50 to 100% by weight of vinyl aromatic monomers, or vinyl containing 50% by weight or more of (meth)acrylate monomers. A system (co)polymer is the most preferred embodiment because it has good dispersibility in polycarbonate resin.

本発明でいう多相構造熱可塑性樹脂とは、非極的性α−
オレフィンと非共役ジエン系単量体または極性ビニル系
単量体とからなる共重合体、及び/またはビニル系(共
)重合体マトリックス中に。
The thermoplastic resin with a multiphase structure as used in the present invention refers to a nonpolar α-
In a copolymer consisting of an olefin and a nonconjugated diene monomer or a polar vinyl monomer, and/or a vinyl (co)polymer matrix.

それと異なる成分であるビニル系(共)重合体、または
非極的性α−オレフィンと非共役ジエン系単量体または
極性ビニル系単量体とからなる共重合体が球状に均一に
分散しているものをいう。
A vinyl (co)polymer, which is a different component, or a copolymer consisting of a nonpolar α-olefin and a nonconjugated diene monomer or a polar vinyl monomer is uniformly dispersed in a spherical shape. refers to something that exists.

分散している重合体の粒子径は0.001〜10μm、
好ましくは0.01〜5μmである。分散樹脂粒子径が
0.001μm未満の場合あるいは5μmを超えると、
ポリカーボネート樹脂にブレンドしたときの分散性が低
く、例えば外観の悪化あるいは機械的性質が低下するた
め好ましくなし)。
The particle size of the dispersed polymer is 0.001 to 10 μm,
Preferably it is 0.01 to 5 μm. When the dispersed resin particle size is less than 0.001 μm or exceeds 5 μm,
(Not preferred because it has low dispersibility when blended with polycarbonate resin, resulting in deterioration of appearance or deterioration of mechanical properties, for example).

本発明の多相構造熱可塑性樹脂中のビニル系(共)重合
体の数平均重合度は5〜10000゜好ましくは10〜
5000である。
The number average degree of polymerization of the vinyl (co)polymer in the multiphase structured thermoplastic resin of the present invention is from 5 to 10,000°, preferably from 10 to
It is 5000.

数平均重合度が5未満であると1本発明の熱可塑性樹脂
組成物の耐衝撃性を向上させることは可能であるが、ポ
リカーボネート樹脂にブレンドしたときの分散性が低く
機械的物性が低下するため好ましくない。また、数平均
重合度が10000を超えると、溶融粘度が高く、成形
性が低下したり、表面光沢が低下するために好ましくな
い。
If the number average degree of polymerization is less than 5, it is possible to improve the impact resistance of the thermoplastic resin composition of the present invention, but when blended with polycarbonate resin, dispersibility is low and mechanical properties are deteriorated. Therefore, it is undesirable. Moreover, if the number average degree of polymerization exceeds 10,000, it is not preferable because the melt viscosity is high, the moldability is decreased, and the surface gloss is decreased.

本発明の多相構造熱可塑性樹脂は、非極性α−オレフィ
ンと非共役ジエン系単量体または極性ビニル系単量体と
からなる共重合体が5〜95重量%、好ましくは20〜
90重量%からなるものである。したがって、ビニル系
(共)重合体は95〜5重量%、好ましくは80〜10
重量%である9非極性α−オレフィンと非共役ジエン系
単量体または極性ビニル系単量体とからなる共重合体が
5重量%未満であると、耐衝撃性改良効果が不十分であ
り好ましくない。また、非極性α−オレフィンと非共役
ジエン系単量体または極性ビニル系単量体とからなる共
重合体が95重量%を超えると、耐衝撃性改良効果は十
分に得られるが1機械的性質や耐熱性が低下するために
好ましくない。
The multiphase thermoplastic resin of the present invention contains 5 to 95% by weight, preferably 20 to 95% by weight of a copolymer consisting of a nonpolar α-olefin and a nonconjugated diene monomer or a polar vinyl monomer.
It consists of 90% by weight. Therefore, the vinyl (co)polymer is 95 to 5% by weight, preferably 80 to 10% by weight.
If the amount by weight of the copolymer consisting of 9 non-polar α-olefin and a non-conjugated diene monomer or polar vinyl monomer is less than 5 weight %, the effect of improving impact resistance will be insufficient. Undesirable. Furthermore, if the copolymer consisting of a non-polar α-olefin and a non-conjugated diene monomer or a polar vinyl monomer exceeds 95% by weight, a sufficient effect of improving impact resistance can be obtained; This is not preferred because properties and heat resistance deteriorate.

本発明に用いる多相構造熱可塑性樹脂を製造する際には
、一般によく知られている連鎖移動法。
When producing the multiphase structured thermoplastic resin used in the present invention, a generally well-known chain transfer method is used.

電離性放射線照射法等のいずれのグラフト化法によって
も製造が可能であるが、最も好ましいのは。
Although it can be produced by any grafting method such as ionizing radiation irradiation method, the most preferred method is.

下記に示すニガ法のいずれかによるものである。It is based on one of the Niga methods listed below.

以下、本発明に用いる多相構造熱可塑性樹脂の製造方法
を具体的に詳述する。
Hereinafter, the method for producing the multiphase thermoplastic resin used in the present invention will be specifically described in detail.

第一の方法は、非極性α−オレフィンと非共役ジエン系
単量体または極性ビニル系単量体とからなる共重合体1
00重量部を水に懸濁せしめ、別に少なくとも1種のビ
ニル単量体5〜400重量部に、下記−数式(a)また
は(b)で表されるラジカル(共)重合性有機過酸化物
の1種または2種以上の混合物を該ビニル単量体100
重量部に対して0.1〜10重量部と、10時間の半減
期を得るための分解温度が40〜90℃であるラジカル
(共)重合開始剤をビニル単量体とラジカル(共)重合
性有機過酸化物との合計100重量部に対して0.01
〜5重量部とを溶解せしめた溶液を加え、ラジカル(共
)重合開始剤の分解が実質的に起こらない条件で加熱し
、ビニル単量体、ラジカル(共)重合性有機過酸化物お
よびラジカル(共)重合開始剤を非極性α−オレフィン
と非共役ジエン系単量体または極性ビニル系単量体とか
らなる共重合体(共)重合体に含浸せしめ5その含浸率
が初めの10重量%以上に達したとき、この水性懸濁液
の温度を上昇せしめ、ビニル単量体とラジカル(共)重
合性有機過酸化物とを非極性α−オレフィンと非共役ジ
エン系単量体または極性ビニル系単量体とからなる共重
合体で共重合せしめて、グラフト化前駆体(A)を得る
The first method is to prepare a copolymer 1 consisting of a non-polar α-olefin and a non-conjugated diene monomer or a polar vinyl monomer.
00 parts by weight of a radical (co)polymerizable organic peroxide represented by the following formula (a) or (b) is suspended in water, and separately 5 to 400 parts by weight of at least one vinyl monomer. or a mixture of two or more of the above vinyl monomers.
A radical (co)polymerization initiator with a decomposition temperature of 40 to 90°C to obtain a half-life of 10 hours and a radical (co)polymerization initiator of 0.1 to 10 parts by weight based on the vinyl monomer is used. 0.01 per 100 parts by weight of organic peroxide
~5 parts by weight of the vinyl monomer, the radical (co)polymerizable organic peroxide, and the radical are heated under conditions that do not substantially cause decomposition of the radical (co)polymerization initiator. A copolymer (co)polymer consisting of a non-polar α-olefin and a non-conjugated diene monomer or a polar vinyl monomer is impregnated with a (co)polymerization initiator. % or more, the temperature of this aqueous suspension is raised to convert the vinyl monomer and radical (co)polymerizable organic peroxide into non-polar α-olefin and non-conjugated diene monomer or polar A grafting precursor (A) is obtained by copolymerizing with a copolymer consisting of a vinyl monomer.

このグラフト化前駆体(A)も多相構造熱可塑性樹脂で
ある。したがって、このグラフト化前駆体(A)を直接
ポリカーボネート樹脂(1)と共に150〜350℃の
範囲で溶融混合してもよい。
This grafted precursor (A) is also a thermoplastic resin with a multiphase structure. Therefore, this grafting precursor (A) may be directly melt-mixed with the polycarbonate resin (1) at a temperature in the range of 150 to 350°C.

またグラフト化#駆体(A)を100〜300℃の溶融
下、混線することにより本発明の多相構透熱可塑性樹脂
を得ることもできる。このときグラフト化前駆体(A)
に、別に非極性α−オレフィンと非共役ジエン系単量体
または極性ビニル系単量体とからなる共重合体(B)ま
たはビニル系(共)重合体(C)を混合し、溶融下に混
練しても多相構造熱可塑性樹脂を得ることができる。こ
のとき、非極性α−オレフィンと非共役ジエン系単量体
または極性ビニル系単量体とからなる共重合体(B)と
ビニル系(共)重合体(C)とを共に用いても良い。最
も好ましいのはグラフト化前駆体を混練し得られた多相
構造熱可塑性樹脂である。
The multiphase thermoplastic resin of the present invention can also be obtained by cross-fertilizing the grafted #precursor (A) while melting at 100 to 300°C. At this time, the grafting precursor (A)
Separately, a copolymer (B) or a vinyl (co)polymer (C) consisting of a non-polar α-olefin and a non-conjugated diene monomer or a polar vinyl monomer is mixed, and the mixture is melted. A multiphase thermoplastic resin can also be obtained by kneading. At this time, a copolymer (B) consisting of a nonpolar α-olefin and a nonconjugated diene monomer or a polar vinyl monomer and a vinyl (co)polymer (C) may be used together. . Most preferred is a thermoplastic resin with a multiphase structure obtained by kneading a grafted precursor.

前記一般式(a)で表されるラジカル(共)重合性有機
過酸化物とは1式 (式中、R□は水素原子又は炭素数1〜2のアルキル基
、R2は水素原子又はメチル基、R3およびR4はそれ
ぞれ炭素数1〜4のアルキル基、Rsは炭素数1〜12
のアルキル基、フェニル基、アルキル置換フェニル基又
は炭素数3〜12のシクロアルキル基を示す。mは1又
は2である。)で表わされる化合物である。
The radical (co)polymerizable organic peroxide represented by the general formula (a) is one formula (in the formula, R□ is a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, and R2 is a hydrogen atom or a methyl group). , R3 and R4 are each an alkyl group having 1 to 4 carbon atoms, and Rs is an alkyl group having 1 to 12 carbon atoms.
represents an alkyl group, a phenyl group, an alkyl-substituted phenyl group, or a cycloalkyl group having 3 to 12 carbon atoms. m is 1 or 2. ) is a compound represented by

また、前記一般式(b)で表わされるラジカル(共)重
合性有機過酸化物とは、式 (式中、R6は水素原子又は炭素数1〜4のアルキル基
、R7は水素原子又はメチル基、R7およびR,はそれ
ぞれ炭素数1〜4のアルキル基、R1゜は炭素数1〜1
2のアルキル基、フェニル基、アルキル置換フェニル基
又は炭素数3〜12のシクロアルキル基を示す、nはO
ll又は2である。)で表わされる化合物である。
In addition, the radical (co)polymerizable organic peroxide represented by the general formula (b) is a radical (co)polymerizable organic peroxide represented by the formula (wherein R6 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R7 is a hydrogen atom or a methyl group. , R7 and R are each an alkyl group having 1 to 4 carbon atoms, and R1° is an alkyl group having 1 to 1 carbon atoms.
2 represents an alkyl group, a phenyl group, an alkyl-substituted phenyl group, or a cycloalkyl group having 3 to 12 carbon atoms, n is O
ll or 2. ) is a compound represented by

一般式(a)で表わされるラジカル(共)重合性有機過
酸化物として、具体的には、t−プチルペルオキシメタ
クリロイロキシエチルカーボネート、t−アミルペルオ
キシアクリロイロキシエチルカーボネート、t−へキシ
ルペルオキシアクリロイロキシエチルカーボネート、1
,1,3.3−テトラメチルブチルペルオキシアクリロ
イロキシエチルカーボネート、クミルペルオキシアクリ
ロイロキシエチルカーボネート、p−イソプロピルクミ
ルペルオキシアクリロイロキシエチルカーボネート、t
−プチルペルオキシメタクリロイロキシエチルカーボネ
ート、t−アミルペルオキシアクリロイロキシエチルカ
ーボネート、t−へキシルペルオキシアクリロイロキシ
エチルカーボネート、1,1,3,3−テトラメチルブ
チルペルオキシメタクリロイロキシエチルカーボネート
Examples of the radical (co)polymerizable organic peroxide represented by general formula (a) include t-butylperoxymethacryloyloxyethyl carbonate, t-amylperoxyacryloyloxyethyl carbonate, and t-hexylperoxy Acryloyloxyethyl carbonate, 1
, 1,3.3-tetramethylbutylperoxyacryloyloxyethyl carbonate, cumylperoxyacryloyloxyethyl carbonate, p-isopropylcumylperoxyacryloyloxyethyl carbonate, t
-butylperoxymethacryloyloxyethyl carbonate, t-amylperoxyacryloyloxyethyl carbonate, t-hexylperoxyacryloyloxyethyl carbonate, 1,1,3,3-tetramethylbutylperoxymethacryloyloxyethyl carbonate.

クミルペルオキシアクリロイロキシエチルカーボネート
、p−イソプロピルクミルペルオキシアクリロイロキシ
エチルカーボネート、t−プチルペルオキシメタクリロ
イロキシエチルカーボネート、t−アミルペルオキシア
クリロイロキシエトキシエチルカーボネート、t−へキ
シルペルオキシアクリロイロキシエトキシエチルカーボ
ネート、1,1,3,3−テトラメチルブチルペルオキ
シアクリロイロキシエトキシエチルカーボネート、クミ
ルペルオキシアクリロイロキシエトキシエチルカーボネ
ート、p−イソプロピルクミルペルオキシアクリロイロ
キシエトキシエチルカーボネート、t−プチルペルオキ
シメタクリロイロキシエトキシエチルカーボネート、t
−アミルペルオキシアクリロイロキシエトキシエチルカ
ーボネート、t−へキシルペルオキシアクリロイロキシ
エトキシエチルカーボネート、1,1,3゜3−テトラ
メチルブチルペルオキシアクリロイロキシエトキシエチ
ルカーボネート、クミルペルオキシアクリロイロキシエ
トキシエチルカーボネート、p−イソプロピルクミルペ
ルオキシアクリロイロキシエトキシエチルカーボネート
、1−ブチルペルオキシアクリロイロキシイソプロピル
カーボネート、t−アミルペルオキシアクリロイロキシ
イソプロピルカーボネート、t−へキシルペルオキシア
クリロイロキシイソプロピルカーボネート、1,1,3
,3−テトラメチルブチルペルオキシアクリロイロキシ
イソプロピルカーボネート、クミルペルオキシアクリロ
イロキシイソプロピルカーボネート、p−イソプロピル
クミルペルオキシアクリロイロキシイソプロピルカーボ
ネート、t−プチルペルオキシメタクリロイロキシイソ
プロピルカーボネート、t−アミルペルオキシメタクリ
ロイロキシイソプロビルカーボネート、t−へキシルペ
ルオキシアクリロイロキシイソプロピルカーボネート、
1,1,3.3−テトラメチルブチルペルオキシアクリ
ロイロキシイソプロピルカーボネート、クミルペルオキ
シアクリロイロキシイソプロピルカーボネート、p−イ
ソプロピルクミルペルオキシアクリロイロキシイソプロ
ピルカーボネート等を例示することができる。
Cumylperoxyacryloyloxyethyl carbonate, p-isopropylcumylperoxyacryloyloxyethyl carbonate, t-butylperoxymethacryloyloxyethyl carbonate, t-amylperoxyacryloyloxyethoxyethyl carbonate, t-hexylperoxyacryloyloxy Ethoxyethyl carbonate, 1,1,3,3-tetramethylbutylperoxyacryloyloxyethoxyethyl carbonate, cumylperoxyacryloyloxyethoxyethyl carbonate, p-isopropylcumylperoxyacryloyloxyethoxyethyl carbonate, t-butylperoxy methacryloyloxyethoxyethyl carbonate, t
-Amylperoxyacryloyloxyethoxyethyl carbonate, t-hexylperoxyacryloyloxyethoxyethyl carbonate, 1,1,3゜3-tetramethylbutylperoxyacryloyloxyethoxyethyl carbonate, cumylperoxyacryloyloxyethoxyethyl carbonate , p-isopropylcumylperoxyacryloyloxyethoxyethyl carbonate, 1-butylperoxyacryloyloxyisopropyl carbonate, t-amylperoxyacryloyloxyisopropyl carbonate, t-hexylperoxyacryloyloxyisopropyl carbonate, 1,1,3
, 3-tetramethylbutylperoxyacryloyloxyisopropyl carbonate, cumylperoxyacryloyloxyisopropyl carbonate, p-isopropylcumylperoxyacryloyloxyisopropyl carbonate, t-butylperoxymethacryloyloxyisopropyl carbonate, t-amylperoxymethacryloyl Roxyisopropyl carbonate, t-hexylperoxyacryloyloxyisopropyl carbonate,
Examples include 1,1,3.3-tetramethylbutylperoxyacryloyloxyisopropyl carbonate, cumylperoxyacryloyloxyisopropyl carbonate, and p-isopropylcumylperoxyacryloyloxyisopropyl carbonate.

さらに、−数式(b)で表わされる化合物としては、t
−ブチルペルオキシアリルカーボネート、t−アミルペ
ルオキシアリルカーボネート、1−ヘキシルペルオキシ
アリルカーボネート、1,1゜3.3−テトラメチルブ
チルペルオキシアリルカ−ボネート ボネート、クミルペルオキシアリルカーボネート、t−
ブチルペルオキシメタリルカーボネート、t−アミルペ
ルオキシメタリルカーボネート、t−ヘキシルペルオキ
シメタリルカーボネート、1,1。
Furthermore, as a compound represented by formula (b), t
-Butylperoxyallyl carbonate, t-amylperoxyallyl carbonate, 1-hexylperoxyallyl carbonate, 1,1゜3.3-tetramethylbutylperoxyallyl carbonate, cumylperoxyallyl carbonate, t-
Butyl peroxy methallyl carbonate, t-amyl peroxy methallyl carbonate, t-hexyl peroxy methallyl carbonate, 1,1.

3、3−テトラメチルブチルペルオキシメタリルカーボ
ネート、P−メンタンペルオキシメタリルカーボネート
、クミルペルオキシメタリルカーボネート、t−ブチル
ペルオキシアリロキシエチルカーボネート、t−アミル
ペルオキシアリロキシエチルカーボネート、t−ヘキシ
ルペルオキシアリロキシエチルカーボネート、t−ブチ
ルペルオキシアリロキシエチルカーボネート、t−アミ
ルペルオシアリロキシエチルカーボネート、tーヘキシ
ルペルオキシメタリロキシエチルカーボネート、t−ブ
チルペルオキシアリロキシイソプロピルカーボネート、
t−アミルペルオキシアリロキシイソプロビルカーボネ
ート、t−ヘキシルペルオキシアリロキシイソプロピル
カーボネート、t−プチルペルオキシメタリロキシイソ
プロピルカーボネート、t−アミルペルオキシアリロキ
シイソプロビルカーボネート、t−ヘキシルペルオキシ
アリロキシイソプロピルカーボネート等を例示すること
ができる。 中でも、好ましくは、t−ブチルペルオキ
シアクリロイロキシエチルカーボネート、t−プチルペ
ルオキシメタクリロイロキシエチルカーボネート、t−
ブチルペルオキシアリルカーボネート、t−プチルペル
オキシメタリルカーボネー1−である。
3,3-Tetramethylbutylperoxymethallyl carbonate, P-menthaneperoxymethallyl carbonate, cumylperoxymethallyl carbonate, t-butylperoxyallyloxyethyl carbonate, t-amylperoxyallyloxyethyl carbonate, t-hexylperoxyalil carbonate Roxyethyl carbonate, t-butylperoxyallyloxyethyl carbonate, t-amylperoxyallyloxyethyl carbonate, t-hexylperoxymethallyloxyethyl carbonate, t-butylperoxyallyloxyisopropyl carbonate,
Examples include t-amylperoxyallyloxyisopropyl carbonate, t-hexylperoxyallyloxyisopropyl carbonate, t-butylperoxymetallyloxyisopropyl carbonate, t-amylperoxyallyloxyisopropyl carbonate, t-hexylperoxyallyloxyisopropyl carbonate, etc. be able to. Among these, preferred are t-butylperoxyacryloyloxyethyl carbonate, t-butylperoxymethacryloyloxyethyl carbonate, and t-butylperoxyacryloyloxyethyl carbonate.
Butylperoxyallyl carbonate, t-butylperoxymethallyl carbonate 1-.

また、第二の方法は非極性α−オレフィンと非共役ジエ
ン系単量体または極性ビニル系単量体とからなる共重合
体100重量部を水に懸濁せしめ。
In the second method, 100 parts by weight of a copolymer consisting of a non-polar α-olefin and a non-conjugated diene monomer or a polar vinyl monomer is suspended in water.

別に少なくとも1種のビニル単量体5〜400重量部に
.10時間の半減期を得るための分解温度が40〜13
0℃であるラジカル(共)重合開始剤をビニル単量体1
00重量部に対して0.01〜5重量部を溶解せしめた
溶液を加え,ラジカル重合開始剤の分解が実質的に起こ
らない条件で加熱し,ビニル単量体,およびラジカル重
合開始剤を非極性α−オレフィンと非共役ジエン系単量
体または極性ビニル系単量体とからなる共重合体に含浸
せしめ、その含浸率が初めの1o重量%以上に達したと
き、この水性懸濁液の温度を上昇せしめ、ビニル単量体
を非極性α−オレフィンと非共役ジエン系単量体または
極性ビニル系単量体とからなる共重合体中で共重合せし
めて,多相構造熱可塑性樹脂(D)を得る。
Additionally, 5 to 400 parts by weight of at least one vinyl monomer. The decomposition temperature to obtain a half-life of 10 hours is 40-13
A radical (co)polymerization initiator at 0°C is mixed with vinyl monomer 1
Add a solution of 0.01 to 5 parts by weight per 00 parts by weight and heat under conditions that do not substantially cause decomposition of the radical polymerization initiator to completely remove the vinyl monomer and radical polymerization initiator. A copolymer consisting of a polar α-olefin and a non-conjugated diene monomer or a polar vinyl monomer is impregnated, and when the impregnation rate reaches the initial 10% by weight or more, the aqueous suspension is The temperature is raised to copolymerize the vinyl monomer in a copolymer consisting of a non-polar α-olefin and a non-conjugated diene monomer or a polar vinyl monomer to form a multiphase thermoplastic resin ( D) is obtained.

この多相構造熱可塑性樹脂(D)を直接ポリカーボネー
ト樹脂(1)と共に150〜350℃の範囲で溶融混合
しても、または、多相構造熱可塑性樹脂(D)を100
〜300℃の溶融下,混練してからポリカーボネート樹
脂(I)と共に150〜350℃の範囲で溶融混合して
もよい。
Even if this multiphase structured thermoplastic resin (D) is directly melt-mixed with the polycarbonate resin (1) in the range of 150 to 350°C, or the multiphase structured thermoplastic resin (D) is
The mixture may be kneaded while melting at ~300°C, and then melt-mixed with the polycarbonate resin (I) at a temperature of 150~350°C.

このとき、多相構造熱可塑性樹脂(D)に、別に非極性
α−オレフィンと非共役ジエン系単量体または極性ビニ
ル系単量体とからなる共重合体(B)またはビニル系(
共)重合体(C)を混合し、100〜300℃の溶融下
に混練しても多相構造熱可塑性樹脂を得ることができる
。このとき、非極性α−オレフィンと非共役ジエン系単
量体または極性ビニル系単量体とからなる共重合体(B
)とビニル系(共)重合体(C)とを共に用いても良い
At this time, a copolymer (B) consisting of a non-polar α-olefin and a non-conjugated diene monomer or a polar vinyl monomer or a vinyl-based (
A multiphase thermoplastic resin can also be obtained by mixing the co)polymer (C) and kneading it while melting at 100 to 300°C. At this time, a copolymer (B
) and the vinyl (co)polymer (C) may be used together.

これらの2つの製造方法のいずれを用いても本発明の目
的を達成することができ好ましい態様となるが、中でも
第一の方法によるものが特に好ましい。 何とならば、
多相構造熱可塑性樹脂のグラフト効率が高く熱による二
次的凝集が起こらないために性能の発現がより効果的で
、得られた熱可塑性樹脂組成物の物理的特性、機械的特
性、成形性等において優れるからである。
Although the purpose of the present invention can be achieved using any of these two manufacturing methods and is a preferred embodiment, the first method is particularly preferred. If anything,
The grafting efficiency of the multiphase structured thermoplastic resin is high and secondary aggregation due to heat does not occur, so performance is more effective and the resulting thermoplastic resin composition has improved physical properties, mechanical properties, and moldability. This is because it is superior in terms of etc.

本発明において、ポリカーボネート樹脂(1)100重
量部に対して多相構造熱可塑性樹脂は1〜100重量部
、好ましくは4〜70重量部である。多相構造熱可塑性
樹脂が1重量部未満であると、本発明の目的の耐衝撃性
改良効果が小さく好ましくない。また、多相構造熱可塑
性樹脂が1゜0重量部を超えると、機械的強度および耐
熱性の低下を招き好ましくない。
In the present invention, the amount of the multiphase thermoplastic resin is 1 to 100 parts by weight, preferably 4 to 70 parts by weight, based on 100 parts by weight of the polycarbonate resin (1). If the amount of the multiphase thermoplastic resin is less than 1 part by weight, the effect of improving impact resistance, which is the objective of the present invention, is undesirable. Furthermore, if the amount of the multiphase thermoplastic resin exceeds 1.0 parts by weight, the mechanical strength and heat resistance will deteriorate, which is undesirable.

本発明の熱可塑性樹脂組成物は、ポリカーボネート樹脂
組成物を150〜350℃、好ましくは、220〜28
0℃の溶融下、混合することによって製造される。15
0℃未満の場合、溶融が不十分であったり、また溶融粘
度が高く、混合が不十分となり、成形物に相分離や層状
剥離が現れるため好ましくない。また350℃を超える
と、混合される樹脂の分解が起こり、成形物が着色した
り、機械的物性が低下したりするので好ましくない。
The thermoplastic resin composition of the present invention is prepared by heating the polycarbonate resin composition to 150 to 350°C, preferably 220 to 28°C.
Produced by mixing under melting conditions at 0°C. 15
If the temperature is lower than 0°C, melting may be insufficient or the melt viscosity may be high, resulting in insufficient mixing and phase separation or delamination may occur in the molded product, which is not preferable. Moreover, if the temperature exceeds 350°C, the resins to be mixed will decompose, resulting in coloring of the molded product and deterioration of mechanical properties, which is not preferable.

溶融混合する方法としては、バンバリーミキサ、加圧型
ニーダ−1−軸式押出機、二軸式押出機、ミキシングロ
ール等の通常熱可塑性樹脂の混線に用いられる混線機に
より行なうことができ、特に生産性、得られた樹脂の機
械的物性の点から二軸式押出機が特に好ましい。
Melt mixing can be carried out using a mixing machine commonly used for mixing thermoplastic resins, such as a Banbury mixer, a pressure kneader, a single-screw extruder, a twin-screw extruder, or a mixing roll. A twin-screw extruder is particularly preferred from the viewpoints of performance and mechanical properties of the resin obtained.

本発明では、更に本発明の要旨を逸脱しない範囲におい
て、水酸化マグネシウム、水酸化アルミニウム等の無機
難燃剤、ハロゲン系、リン系等の有機難燃剤、硫酸カル
シウム、珪酸カルシウム。
The present invention further includes inorganic flame retardants such as magnesium hydroxide and aluminum hydroxide, organic flame retardants such as halogen-based and phosphorus-based flame retardants, calcium sulfate, and calcium silicate, without departing from the gist of the present invention.

クレー、珪藻土、タルク、アルミナ、珪砂、ガラス粉1
階化鉄、金属粉、グラファイト、炭化珪素。
Clay, diatomaceous earth, talc, alumina, silica sand, glass powder 1
Iron oxide, metal powder, graphite, silicon carbide.

窒化珪素、シリカ、窒化ホウ素、窒化アルミニウム、カ
ーボンブラック、二硫化モリブデンなどの粉粒状充填剤
;雲母、ガラス板、セリサイト、パイロフィライト、ア
ルミフレークなどの金属粉、黒鉛などの平板状もしくは
鱗片状充填剤材;シラスバルーン、金属バルーン、ガラ
スバルーン、軽石などの中空状充填材、ガラス繊維、炭
素繊維、シリコンカーバイト繊維、アスベスト、ウオラ
ストナイトなどの鉱物繊維などの繊維状充填材、チタン
酸カリウムウィスカー、硫酸カルシウムウィスカー、カ
ーボンウィスカー等の単結晶繊維状充填材等の無機充填
材、木粉等の有機充填材、酸化防止剤、紫外線防止剤、
滑剤、分散剤、カップリング剤、発泡剤、架橋剤、着色
剤等の添加剤およびポリオレフィン系樹脂、ポリアミド
、ポリエステル、ボリアリレート、ABS樹脂、ポリフ
ェニレンサルファイド、弗素樹脂等のエンジニアリング
プラスチックなどを添加しても差し支えない。
Powder-like fillers such as silicon nitride, silica, boron nitride, aluminum nitride, carbon black, and molybdenum disulfide; metal powders such as mica, glass plates, sericite, pyrophyllite, and aluminum flakes, and flat or scaly materials such as graphite. Hollow fillers such as shirasu balloons, metal balloons, glass balloons, pumice, fibrous fillers such as glass fibers, carbon fibers, silicon carbide fibers, mineral fibers such as asbestos and wollastonite, titanium Inorganic fillers such as monocrystalline fibrous fillers such as acid potassium whiskers, calcium sulfate whiskers, carbon whiskers, organic fillers such as wood flour, antioxidants, ultraviolet inhibitors,
Additives such as lubricants, dispersants, coupling agents, foaming agents, crosslinking agents, colorants, and engineering plastics such as polyolefin resins, polyamides, polyesters, polyarylates, ABS resins, polyphenylene sulfide, and fluoroplastics are added. There is no problem.

〔実施例〕〔Example〕

以下、実施例により本発明をさらに詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

なお、本実施例、比較例中で測定したアイゾツト衝撃強
度9曲げ弾性率は、下記に示すJISに準拠して測定し
、射出成形品の外観については下記の方法で行なった。
The Izot impact strength 9 flexural modulus measured in the Examples and Comparative Examples was measured in accordance with JIS shown below, and the appearance of the injection molded product was determined by the method below.

[アイゾツト衝撃強度コ JIS  K−7110 アイゾツト試験片の厚みが、12.7mと3゜2−のも
のについ実施した。
[Izot impact strength JIS K-7110 The test was carried out on Izot test specimens with a thickness of 12.7 m and 3°2-.

[曲げ弾性率] JIS  K−7203 試験速度 2 wm / 曹iB [射出成形品の外観] 射出成形品の外観については、目視によりその層状剥離
の有無を判定した。
[Flexural modulus] JIS K-7203 Test speed 2 wm / SoiB [Appearance of injection molded product] Regarding the appearance of the injection molded product, presence or absence of delamination was visually determined.

参考例1(多相構造熱可塑性樹脂Aの製造)内容積5Ω
のステンレス製オートクレーブに、純水2500gを入
れ、さらに懸濁剤としてポリビニルアルコール2.5g
を溶解させた。この中に非極性α−オレフィンと非共役
ジエンとからなる共重合体(商品名「三井エラストマー
 K−97204、三井石油化学工業(株)製、エチレ
ン−プロピレン−ジエン共重合ゴム ムーニー粘度(M
L  I+4,100℃)40、ヨウ素価 22)70
0gを入れ、撹拌して分散させた。別にラジカル重合開
始剤としてベンゾイルペルオキシド(商品名「ナイパー
」、日本油脂(株)製)1゜5g、ラジカル(共)重合
性有機過酸化物としてt−プチルペルオキシメタクリロ
イロキシエチルカーボネート6gをビニル単量体として
のスチレン単量体210gおよびアクリロニトリル単量
体90gに溶解させ、この溶液を前記オートクレーブ中
に投入撹拌した。次いで、オートクレーブを60〜65
℃に昇温し、2時間撹拌することによって、ラジカル重
合開始剤およびラジカル(共)重合性有機過酸化物を含
むビニル単量体を非極性α−オレフィン重合体中に含浸
させた0次いで、含浸されたビニル単量体、ラジカル(
共)重合性有機過酸化物およびラジカル重合開始剤の合
計量が初めの10重量%以上となっていることを確認し
た後、温度を80〜85℃に上げ、その温度で7時間維
持して重合を完結させ、水洗および乾燥してグラフト化
前駆体を得た。このグラフト化前駆体中のスチレン−ア
クリロニトリル共重合体を酢酸エチルで抽出し、GPC
により数平均重合度を測定した結果、880であった。
Reference example 1 (Production of multiphase structure thermoplastic resin A) Internal volume 5Ω
Put 2,500 g of pure water into a stainless steel autoclave, and add 2.5 g of polyvinyl alcohol as a suspending agent.
was dissolved. In this, a copolymer consisting of a non-polar α-olefin and a non-conjugated diene (trade name: Mitsui Elastomer K-97204, manufactured by Mitsui Petrochemical Industries, Ltd., ethylene-propylene-diene copolymer rubber Mooney viscosity (M
L I+4,100℃) 40, Iodine value 22) 70
0g was added and stirred to disperse. Separately, 1.5 g of benzoyl peroxide (trade name "Niper", manufactured by NOF Corporation) was added as a radical polymerization initiator, and 6 g of t-butylperoxymethacryloyloxyethyl carbonate was added as a radical (co)polymerizable organic peroxide. The polymer was dissolved in 210 g of styrene monomer and 90 g of acrylonitrile monomer, and this solution was poured into the autoclave and stirred. Then autoclave for 60-65
The nonpolar α-olefin polymer was impregnated with a vinyl monomer containing a radical polymerization initiator and a radical (co)polymerizable organic peroxide by raising the temperature to ℃ and stirring for 2 hours. Impregnated vinyl monomer, radical (
After confirming that the total amount of co)polymerizable organic peroxide and radical polymerization initiator is at least 10% by weight, the temperature is raised to 80-85°C and maintained at that temperature for 7 hours. Polymerization was completed, washed with water and dried to obtain a grafted precursor. The styrene-acrylonitrile copolymer in this grafted precursor was extracted with ethyl acetate, and GPC
As a result of measuring the number average degree of polymerization, it was 880.

次いで、このグラフト化前駆体をラボプラストミル−軸
押し呂し機((株)東洋精機製作所製)で180℃にて
押し出し、グラフト化反応させることにより多相構造熱
可塑性樹脂Aを得た。
Next, this grafted precursor was extruded at 180° C. using a Laboplast Mill-shaft presser (manufactured by Toyo Seiki Seisakusho Co., Ltd.) to cause a grafting reaction, thereby obtaining a multiphase thermoplastic resin A.

この多相構造熱可塑性樹脂を走査型電子顕微鏡(rJE
OL  JSM  T300J 、日本電子(株)製)
で見たところ1粒径0.3〜0.4μmの真球状樹脂が
均一に分散した多相構造熱可塑性樹脂であった。
This multiphase thermoplastic resin was examined using a scanning electron microscope (rJE).
OL JSM T300J, manufactured by JEOL Ltd.)
It was found to be a thermoplastic resin with a multiphase structure in which perfectly spherical resin particles each having a diameter of 0.3 to 0.4 μm were uniformly dispersed.

なおこのとき、スチレン−アクリロニトリル共重合体の
グラフト効率は80.5重量%であった。
At this time, the grafting efficiency of the styrene-acrylonitrile copolymer was 80.5% by weight.

参考例2(多相構造熱可塑性樹脂Bの製造)参考例1に
おいて、ビニル単量体としてのスチレン単量体210g
およびアクリロニトリル単量体90gに代わりにスチレ
ン単量体300gに代えた以外は、参考例1に準じて多
相構造熱可塑性樹脂Bを得た。
Reference Example 2 (Production of Multiphase Structure Thermoplastic Resin B) In Reference Example 1, 210 g of styrene monomer as the vinyl monomer
A multiphase structure thermoplastic resin B was obtained in accordance with Reference Example 1, except that 300 g of styrene monomer was used instead of 90 g of acrylonitrile monomer.

このとき、スチレン重合体の数平均重合度は830、ま
たこの樹脂組成物中に分散している樹脂の平均粒子径は
0.2〜0.3μmであった。
At this time, the number average degree of polymerization of the styrene polymer was 830, and the average particle diameter of the resin dispersed in this resin composition was 0.2 to 0.3 μm.

参考例3(多相構造熱可塑性樹脂Cの製造)参考例1に
おいて、ビニル単量体としてのスチレン単量体210g
およびアクリロニトリル単量体90gの代わりにメタク
リル酸メチル単量体300gに代え1分子量調整剤とし
てn−ドデシルメルカプタン0.6gを加えた以外は、
参考例1に準じて多相構造熱可塑性樹脂Cを得た。
Reference Example 3 (Manufacture of multiphase structure thermoplastic resin C) In Reference Example 1, 210 g of styrene monomer as the vinyl monomer
And instead of 90 g of acrylonitrile monomer, 300 g of methyl methacrylate monomer was used, and 0.6 g of n-dodecyl mercaptan was added as a molecular weight regulator.
A multiphase thermoplastic resin C was obtained according to Reference Example 1.

このとき、メタクリル酸メチル重合体の数平均重合度は
890、またこの樹脂組成物中に分散している樹脂の平
均粒子径は0.3〜0.4μmであった。
At this time, the number average degree of polymerization of the methyl methacrylate polymer was 890, and the average particle diameter of the resin dispersed in this resin composition was 0.3 to 0.4 μm.

参考例4(多相構造熱可塑性樹脂りの製造)参考例1に
おいて、非極性α−オレフィンと非共役ジエンとからな
る共重合体の代わりに非極性α−オレフィンと極性ビニ
ルとからなる共重合体(商品名「8石 レクスロン エ
バ V−270J日本石油化学(株)製、エチレン−酢
酸ビニル共重合体、酢酸ビニル含有量、15重量%)に
代えた以外は、参考例1に準じて多層構造熱可塑性りを
得た。
Reference Example 4 (Manufacture of thermoplastic resin with multiphase structure) In Reference Example 1, a copolymer consisting of a non-polar α-olefin and a polar vinyl was used instead of a copolymer consisting of a non-polar α-olefin and a non-conjugated diene. The multilayer structure was prepared according to Reference Example 1, except that the composite material (trade name: "8 stone Rexron EVA V-270J, manufactured by Nippon Petrochemical Co., Ltd., ethylene-vinyl acetate copolymer, vinyl acetate content, 15% by weight)" was used. A structural thermoplastic resin was obtained.

このとき、スチレン−アクリロニトリル共重合体の数平
均重合度は880.またこの樹脂組成物中に分散してい
る樹脂の平均粒子径は0.3〜0゜4μmであった。
At this time, the number average degree of polymerization of the styrene-acrylonitrile copolymer was 880. The average particle size of the resin dispersed in this resin composition was 0.3 to 0.4 μm.

参考例5(多相構造熱可塑性樹脂Eの製造)参考例1に
おいて、非極性α−オレフィンと非共役ジエンとからな
る共重合体の代わりに非極性α−オレフィンと極性ビニ
ルとからなる共重合体(商品名「「8石 レクスロン 
EEAA−4200J、日本石油化学(株)製、エチレ
ンーアクリル酸エチル共重合体、アクリル酸エチル含有
量20重量%)に代えた以外は、参考例1に準じて多層
構造熱可塑性樹脂Eを得た。
Reference Example 5 (Manufacture of multi-phase structure thermoplastic resin E) In Reference Example 1, a copolymer consisting of a non-polar α-olefin and a polar vinyl was used instead of a copolymer consisting of a non-polar α-olefin and a non-conjugated diene. Combination (Product name: ``8 Stone Rexron''
A multilayer thermoplastic resin E was obtained according to Reference Example 1, except that EEAA-4200J, manufactured by Nippon Petrochemical Co., Ltd., ethylene-ethyl acrylate copolymer, ethyl acrylate content 20% by weight) was used. Ta.

このとき、スチレン−アクリロニトリル共重合体の数平
均重合度は870、またこの樹脂組成物中に分散してい
る樹脂の平均粒子径は0.2〜0゜3μmであった。
At this time, the number average degree of polymerization of the styrene-acrylonitrile copolymer was 870, and the average particle diameter of the resin dispersed in this resin composition was 0.2 to 0.3 μm.

参考例6(多相構造熱可塑性樹脂Fの製造)参考例1に
おいて得たグラフト化前駆体67重量%に、非極性α−
オレフィンと非共役ジエンとからなる共重合体(商品名
「三井エラストマーに一9720J、三井石油化学工業
(株)製、エチレン−プロピレン−ジエン共重合ゴム 
ムーニー粘度(ML  I+4,100℃)40.ヨウ
素価 22)33重量%とをラボプラストミル−軸押出
機((株)東洋精機製作新製)で180℃で押し出して
多相構造熱可塑性樹脂Fを得た。
Reference Example 6 (Production of Multiphase Structure Thermoplastic Resin F) 67% by weight of the grafted precursor obtained in Reference Example 1 was added with non-polar α-
Copolymer consisting of olefin and non-conjugated diene (trade name: Mitsui Elastomer 19720J, manufactured by Mitsui Petrochemical Industries, Ltd., ethylene-propylene-diene copolymer rubber)
Mooney viscosity (ML I+4,100°C) 40. Iodine value: 22) 33% by weight was extruded at 180°C using a Laboplast Mill-screw extruder (manufactured by Toyo Seiki Co., Ltd.) to obtain a multiphase thermoplastic resin F.

このとき、樹脂組成物中に分散している樹脂の平均粒子
径は0.4〜0.5μmであった。
At this time, the average particle diameter of the resin dispersed in the resin composition was 0.4 to 0.5 μm.

参考例7(多相構造熱可塑性樹脂Gの製造)内容積51
2のステンレス製オートクレーブに。
Reference Example 7 (Production of multiphase structure thermoplastic resin G) Internal volume 51
2 in a stainless steel autoclave.

純水2500gを入れ、さらに懸濁剤としてポリビニル
アルコール2.5gを溶解させた。この中にラジカル重
合開始剤としてベンゾイルペルオキシド(商品名「ナイ
パーBJ、日本油脂(株)製)5gをビニル単量体とし
てのスチレン単量体700gおよびアクリロニトリル単
量体300gに溶解させ、この溶液を前記オートクレー
ブ中に投入撹拌した。次いで、オートクレーブを80〜
85℃に昇温し、その温度で7時間維持して重合を完結
させ、水洗および乾燥して、ビニル系共重合体としての
スチレン−アクリロニトリル共重合体を得た。このスチ
レン−アクリロニトリル共重合体の数平均重合度は85
0であった。
2,500 g of pure water was added, and 2.5 g of polyvinyl alcohol was further dissolved therein as a suspending agent. In this solution, 5 g of benzoyl peroxide (trade name: Niper BJ, manufactured by NOF Corporation) as a radical polymerization initiator was dissolved in 700 g of styrene monomer as a vinyl monomer and 300 g of acrylonitrile monomer. The autoclave was charged into the autoclave and stirred.Then, the autoclave was heated to 80~
The temperature was raised to 85°C, maintained at that temperature for 7 hours to complete polymerization, washed with water and dried to obtain a styrene-acrylonitrile copolymer as a vinyl copolymer. The number average degree of polymerization of this styrene-acrylonitrile copolymer is 85
It was 0.

参考例1において得たグラフト化前駆体71重量%と、
ビニル系共重合体として上記の方法にて得られたスチレ
ン−アクリロニトリル共重合体29重量%とをラボプラ
ストミル−軸押出機((株)東洋精機製作新製)で18
0℃で押し出して多相構造熱可塑性樹脂Gを得た。
71% by weight of the grafted precursor obtained in Reference Example 1;
29% by weight of the styrene-acrylonitrile copolymer obtained by the above method as a vinyl copolymer was heated to 18% by weight using a Laboplast Mill-screw extruder (newly manufactured by Toyo Seiki Co., Ltd.).
A multiphase thermoplastic resin G was obtained by extrusion at 0°C.

このとき、この樹脂組成物中に分散している樹脂の平均
粒子径は0.4〜0.5μmであった。
At this time, the average particle diameter of the resin dispersed in this resin composition was 0.4 to 0.5 μm.

参考例8(多相構造熱可塑性樹脂H,Iの製造)参考例
1において、ラジカル(共)重合性有機過酸化物として
のt−プチルペルオキシメタクリロイロキシエチルカー
ボネートを用いない以外は参考例1に準じて多相構造熱
可塑性樹脂Hを得た。
Reference Example 8 (Manufacture of multiphase structure thermoplastic resins H and I) Reference Example 1 except that t-butylperoxymethacryloyloxyethyl carbonate as the radical (co)polymerizable organic peroxide is not used. A multiphase structure thermoplastic resin H was obtained according to .

このとき、スチレン−アクリロニトリル共重合体の数平
均重合度は860、またこの樹脂組成物中に分散してい
る樹脂の平均粒子径は0.4〜0゜5μmであった。
At this time, the number average degree of polymerization of the styrene-acrylonitrile copolymer was 860, and the average particle diameter of the resin dispersed in this resin composition was 0.4 to 0.5 μm.

この多相構造熱可塑性樹脂Hをラボプラストミル−軸押
出機((株)東洋精機製作新製)で180℃で押し出し
て多相構造熱可塑性樹脂Iを得た。
This thermoplastic resin H with a multiphase structure was extruded at 180° C. using a Laboplast Mill-screw extruder (manufactured by Toyo Seiki Co., Ltd.) to obtain a thermoplastic resin I with a multiphase structure.

参考例9(多相構造熱可塑性樹脂Jの製造)参考例8に
おいて得た多相構造熱可塑性樹脂H67重量%と、非極
性α−オレフィンと非共役ジエンとからなる共重合体(
商品名「三井エラストマー K−9720J、三井石油
化学工業(株)製、エチレン−プロピレン−ジエン共重
合ゴムムーニー粘度(ML  I+4,100℃)40
、ヨウ素価 22)33重量%をラボプラストミル−軸
押出機((株)東洋精機製作新製)で180℃で押し出
して多相構造熱可塑性樹脂Jを得た。
Reference Example 9 (Manufacture of multiphase thermoplastic resin J) A copolymer consisting of 67% by weight of the multiphase thermoplastic resin H obtained in Reference Example 8, a nonpolar α-olefin, and a nonconjugated diene (
Product name: Mitsui Elastomer K-9720J, manufactured by Mitsui Petrochemical Industries, Ltd., ethylene-propylene-diene copolymer rubber Mooney viscosity (ML I+4, 100°C) 40
, iodine value 22) 33% by weight was extruded at 180° C. using a Laboplast Mill-axial extruder (manufactured by Toyo Seiki Co., Ltd.) to obtain a multiphase structure thermoplastic resin J.

このとき、樹脂組成物中に分散している樹脂の平均粒子
径は0.5〜0.6μmであった。
At this time, the average particle diameter of the resin dispersed in the resin composition was 0.5 to 0.6 μm.

参考例10(多相構造熱可塑性樹脂にの製造)参考例8
において得た多相構造熱可塑性樹脂871重量%と、ビ
ニル系共重合体として参考例7にて得られたスチレン−
アクリロニトリル共重合体29重量%とをラボプラスト
ミル−軸押出機((株)東洋精機製作新製)で180℃
で押し出して多相構造熱可塑性樹脂Kを得た。
Reference Example 10 (Manufacture of multiphase structure thermoplastic resin) Reference Example 8
871% by weight of the multiphase thermoplastic resin obtained in Reference Example 7 and the styrene obtained in Reference Example 7 as a vinyl copolymer.
29% by weight of acrylonitrile copolymer was heated to 180°C using a Laboplast Mill-screw extruder (newly manufactured by Toyo Seiki Co., Ltd.).
A thermoplastic resin K having a multiphase structure was obtained by extrusion.

このとき、この樹脂組成物中に分散している樹脂の平均
粒子径は0.5〜0.6μmであった。
At this time, the average particle diameter of the resin dispersed in this resin composition was 0.5 to 0.6 μm.

実施例1〜14 表1〜2に示す割合で、ポリカーボネート樹脂(商品名
「パンライトL−1250J帝人化成(株)社製)に対
して、参考例1〜10で得た多相構造熱可塑性樹脂A−
に、および参考例1にて得たグラフト化前駆体とを所定
量トライブレンドし、270℃に設定した同方向二軸押
し出し機(栗本鉄工所(株)製、KRCニーダS−1型
)により混合した。次いで275℃に設定したインライ
ンスクリュー式射出成形機(出端機械工業(株)製。
Examples 1 to 14 The polycarbonate resin (trade name "Panlite L-1250J manufactured by Teijin Kasei Ltd.") was mixed with the polyphase structure thermoplastic resin obtained in Reference Examples 1 to 10 in the proportions shown in Tables 1 to 2. Resin A-
and the grafting precursor obtained in Reference Example 1 were triblended in a predetermined amount, and the mixture was triblended using a co-directional twin-screw extruder (manufactured by Kurimoto Iron Works Co., Ltd., model KRC Kneader S-1) set at 270°C. Mixed. Next, an in-line screw injection molding machine (manufactured by Debuta Kikai Kogyo Co., Ltd.) was set at 275°C.

TS−35−FV25型)でそれぞれの試験片を作成し
、アイゾツト衝撃強度1曲げ弾性率、成形品の外観をそ
れぞれ評価した。その結果を表1〜2に示す。
TS-35-FV25 type) was prepared for each test piece, and the Izod impact strength 1 flexural modulus and appearance of the molded product were evaluated. The results are shown in Tables 1 and 2.

比較例1〜8 実施例1.4〜7.12において、多相構造熱可塑性樹
脂の添加量を表3に示すように代えた以外は実施例1.
4〜7.12に準じて試験片を作成し、アイゾツト衝撃
強度、曲げ弾性率、成形品の外観をそれぞれ検討した。
Comparative Examples 1 to 8 Examples 1.4 to 7.12, except that the amount of the multiphase thermoplastic resin added was changed as shown in Table 3.
Test pieces were prepared according to 4 to 7.12, and the Izot impact strength, flexural modulus, and appearance of the molded product were examined.

その結果を表3に示す。The results are shown in Table 3.

比較例9〜13 実施例1において、多相構造熱可塑性樹脂の代わりに、
エチレン−プロピレン−ジエン共重合ゴム、エチレン−
酢酸ビニル共重合体、エチレン−アクリル酸エチル共重
合体を表4に示す添加量で用いる以外は実施例1に準じ
てそれぞれ試験片を作成し、検討した。
Comparative Examples 9 to 13 In Example 1, instead of the multiphase thermoplastic resin,
Ethylene-propylene-diene copolymer rubber, ethylene-
Test pieces were prepared and examined in accordance with Example 1, except that vinyl acetate copolymer and ethylene-ethyl acrylate copolymer were used in the amounts shown in Table 4.

その結果を表4に示す。The results are shown in Table 4.

多相構造熱可塑性樹脂がポリカーボネート樹脂100重
量部に対して100重量部を超えると、その成形物はポ
リカーボネート樹脂の機械的、物理的性質を全く失って
いた。さらに多相構造熱可塑性樹脂の添加量がポリカー
ボネート樹脂100重量部に対して1重量部未満である
と、その添加効果がないことが明白となった。
When the amount of the multiphase thermoplastic resin exceeds 100 parts by weight based on 100 parts by weight of the polycarbonate resin, the molded product completely loses the mechanical and physical properties of the polycarbonate resin. Furthermore, it has become clear that if the amount of the multiphase thermoplastic resin added is less than 1 part by weight per 100 parts by weight of the polycarbonate resin, there is no effect of the addition.

また本発明の多相構造熱可塑性樹脂はポリカーボネート
樹脂への分散性が極めて良好で成形品の外観も層状剥H
現象は見られないことが明らかとなった。
In addition, the multiphase structured thermoplastic resin of the present invention has extremely good dispersibility in polycarbonate resin, and the appearance of the molded product is similar to that of delamination.
It became clear that the phenomenon was not observed.

組成物は、例えば自動車部品、家電部品、精密機械部品
等の幅広い用途に使用され得る。
The composition can be used in a wide variety of applications, such as automobile parts, home appliance parts, precision mechanical parts, and the like.

〔発明の効果〕〔Effect of the invention〕

本発明のポリカーボネート樹脂組成物は、機械的性質、
熱的性質に優れ、特に肉厚品においても耐衝撃性の高い
樹脂組成物であり、また溶融下に混合するだけで容易に
製造し得る。
The polycarbonate resin composition of the present invention has mechanical properties,
It is a resin composition with excellent thermal properties and high impact resistance even in thick-walled products, and can be easily manufactured by simply mixing while melting.

さらに、耐衝撃性の度合いは、混合される多相構造熱可
塑性樹脂の配合割合によって決定されるため、容易に多
品種少量生産が可能である。
Furthermore, since the degree of impact resistance is determined by the blending ratio of the multiphase thermoplastic resin to be mixed, it is possible to easily produce a wide variety of products in small quantities.

Claims (3)

【特許請求の範囲】[Claims] (1)下記の( I )(II)を含むポリカーボネート樹
脂組成物。 ( I )ポリカーボネート樹脂100重量部、(II)非
極性α−オレフィンと非共役ジエン系単量体または極性
ビニル系単量体とからなる共重合体5〜95重量%と、
少なくとも1種のビニル単量体からなるビニル系(共)
重合体95〜5重量%とからなり、分散樹脂の粒子径が
0.001〜10μmである多相構造熱可塑性樹脂1〜
100重量部。
(1) A polycarbonate resin composition containing the following (I) and (II). (I) 100 parts by weight of polycarbonate resin, (II) 5 to 95% by weight of a copolymer consisting of a non-polar α-olefin and a non-conjugated diene monomer or a polar vinyl monomer;
Vinyl type (co) consisting of at least one vinyl monomer
Multiphase thermoplastic resin 1 to 1 consisting of 95 to 5% by weight of a polymer and having a dispersed resin particle size of 0.001 to 10 μm
100 parts by weight.
(2)非極性α−オレフィンと非共役ジエン系単量体ま
たは極性ビニル系単量体とからなる共重合体の水性懸濁
液に、少なくとも1種のビニル単量体、ラジカル(共)
重合性有機過酸化物の少なくとも1種およびラジカル重
合開始剤を加え、ラジカル重合開始剤の分解が実質的に
起こらない条件下で加熱し、該ビニル単量体、ラジカル
(共)重合性有機過酸化物およびラジカル重合開始剤を
非極性α−オレフィンと非共役ジエン系単量体または極
性ビニル系単量体とからなる共重合体に含浸せしめ、そ
の含浸率が初めの10重量%以上に達したとき、この水
性懸濁液の温度を上昇させ、ビニル単量体とラジカル(
共)重合性有機過酸化物とを、非極性α−オレフィンと
非共役ジエン系単量体または極性ビニル系単量体とから
なる共重合体中で共重合せしめたグラフト化前駆体(A
)、または(A)に、非極性α−オレフィンと非共役ジ
エン系単量体または極性ビニル系単量体とからなる共重
合体(B)0〜99重量%、及び/または少なくとも1
種のビニル単量体を重合して得られるビニル系(共)重
合体(C)0〜99重量%を予め100〜300℃の範
囲で溶融混合して得た多相構造層熱可塑性樹脂を主成分
としてなることを特徴とするポリカーボネート樹脂用耐
衝撃性改良剤。
(2) At least one vinyl monomer, a radical (co-)
At least one polymerizable organic peroxide and a radical polymerization initiator are added and heated under conditions that substantially do not cause decomposition of the radical polymerization initiator. A copolymer consisting of a non-polar α-olefin and a non-conjugated diene monomer or a polar vinyl monomer is impregnated with an oxide and a radical polymerization initiator, and the impregnation rate reaches 10% by weight or more. When the temperature of this aqueous suspension is increased, vinyl monomers and radicals (
A grafting precursor (A
), or (A), 0 to 99% by weight of a copolymer (B) consisting of a non-polar α-olefin and a non-conjugated diene monomer or a polar vinyl monomer, and/or at least 1
A multiphase structure layer thermoplastic resin obtained by melt-mixing 0 to 99% by weight of a vinyl (co)polymer (C) obtained by polymerizing seed vinyl monomers in advance at a temperature of 100 to 300°C. An impact resistance modifier for polycarbonate resin, characterized by being a main component.
(3)非極性α−オレフィンと非共役ジエン系単量体ま
たは極性ビニル系単量体とからなる共重合体の水性懸濁
液に、少なくとも1種のビニル単量体およびラジカル重
合開始剤を加え、ラジカル重合開始剤の分解が実質的に
起こらない条件下で加熱し、該ビニル単量体およびラジ
カル重合開始剤を非極性α−オレフィンと非共役ジエン
系単量体または極性ビニル系単量体とからなる共重合体
に含浸せしめ、その含浸率が初めの10重量%以上に達
したとき、この水性懸濁液の温度を上昇させ、ビニル単
量体を、非極性α−オレフィンと非共役ジエン系単量体
または極性ビニル系単量体とからなる共重合体中で共重
合せしめて得た多相構造熱可塑性樹脂(D)、または(
D)に、非極性α−オレフィンと非共役ジエン系単量体
または極性ビニル系単量体とからなる共重合体(B)0
〜99重量%、及び/または少なくとも1種のビニル単
量体を重合して得られるビニル系(共)重合体(C)0
〜99重量%を予め100〜300℃の範囲で溶融混合
して得た多相構造層熱可塑性樹脂を主成分としてなるこ
とを特徴とするポリカーボネート樹脂用耐衝撃性改良剤
(3) At least one vinyl monomer and a radical polymerization initiator are added to an aqueous suspension of a copolymer consisting of a nonpolar α-olefin and a nonconjugated diene monomer or a polar vinyl monomer. In addition, the vinyl monomer and radical polymerization initiator are heated under conditions that do not substantially cause decomposition of the radical polymerization initiator, and the vinyl monomer and the radical polymerization initiator are combined with the non-polar α-olefin and the non-conjugated diene monomer or polar vinyl monomer. When the impregnation rate reaches the initial 10% by weight or more, the temperature of this aqueous suspension is raised to mix the vinyl monomer with the non-polar α-olefin. A thermoplastic resin with a multiphase structure (D) obtained by copolymerization in a copolymer consisting of a conjugated diene monomer or a polar vinyl monomer, or (
D) is a copolymer (B) consisting of a non-polar α-olefin and a non-conjugated diene monomer or a polar vinyl monomer.
~99% by weight, and/or vinyl-based (co)polymer (C) obtained by polymerizing at least one vinyl monomer (C) 0
An impact modifier for polycarbonate resin, characterized in that the main component is a thermoplastic resin with a multiphase structure layer obtained by melt-mixing 99% by weight in advance at a temperature of 100 to 300°C.
JP14047190A 1990-05-30 1990-05-30 Polycarbonate resin composition and impact-resistance improver for polycarbonate resin Pending JPH0433948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14047190A JPH0433948A (en) 1990-05-30 1990-05-30 Polycarbonate resin composition and impact-resistance improver for polycarbonate resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14047190A JPH0433948A (en) 1990-05-30 1990-05-30 Polycarbonate resin composition and impact-resistance improver for polycarbonate resin

Publications (1)

Publication Number Publication Date
JPH0433948A true JPH0433948A (en) 1992-02-05

Family

ID=15269374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14047190A Pending JPH0433948A (en) 1990-05-30 1990-05-30 Polycarbonate resin composition and impact-resistance improver for polycarbonate resin

Country Status (1)

Country Link
JP (1) JPH0433948A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080298A1 (en) * 2014-11-18 2016-05-26 日油株式会社 Ethylene-vinyl acetate copolymer resin composition, graft copolymer, thermoplastic resin composition, and molded resin article
JP2016102207A (en) * 2014-11-18 2016-06-02 日油株式会社 Ethylene-vinyl acetate copolymer resin composition, graft copolymer, polyacetal resin composition and resin molded article
JP2016210882A (en) * 2015-05-08 2016-12-15 日油株式会社 Polyamide resin composition, and resin molded article
JP2017014446A (en) * 2015-07-06 2017-01-19 日油株式会社 Polycarbonate resin composition and resin molded article
JP2017014447A (en) * 2015-07-06 2017-01-19 日油株式会社 Pc/abs resin composition and resin molded article

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080298A1 (en) * 2014-11-18 2016-05-26 日油株式会社 Ethylene-vinyl acetate copolymer resin composition, graft copolymer, thermoplastic resin composition, and molded resin article
JP2016102207A (en) * 2014-11-18 2016-06-02 日油株式会社 Ethylene-vinyl acetate copolymer resin composition, graft copolymer, polyacetal resin composition and resin molded article
US10131778B2 (en) 2014-11-18 2018-11-20 Nof Corporation Ethylene vinyl acetate copolymer resin composition, graft copolymer, thermoplastic resin composition, and molded resin article
JP2016210882A (en) * 2015-05-08 2016-12-15 日油株式会社 Polyamide resin composition, and resin molded article
JP2017014446A (en) * 2015-07-06 2017-01-19 日油株式会社 Polycarbonate resin composition and resin molded article
JP2017014447A (en) * 2015-07-06 2017-01-19 日油株式会社 Pc/abs resin composition and resin molded article

Similar Documents

Publication Publication Date Title
JPH0374461A (en) Thermoplastic resin composition and production thereof
CA2032704A1 (en) Thermoplastic resin compositions
JPH04198275A (en) Thermoplastic resin composition having good moldability
JPH03237146A (en) Thermoplastic resin composition and use thereof
JPH0433948A (en) Polycarbonate resin composition and impact-resistance improver for polycarbonate resin
JPH02129245A (en) Thermoplastic resin composition and its production
JPH0291157A (en) Thermoplastic resin composition and production thereof
JPH06136070A (en) Fluidity improver and resin composition improved in fluidity
JP3306899B2 (en) Thermoplastic resin composition and resin molded product
JPH03126756A (en) Thermoplastic resin composition
JPH0480262A (en) Pps-containing resin composition
JPH06192490A (en) Thermoplastic resin composition and resin molding
JP2847317B2 (en) Polycarbonate resin composition and impact modifier for polycarbonate resin
JPH01185348A (en) Thermoplastic resin composition and its production
JP3185232B2 (en) Thermoplastic resin composition
JPH0834901A (en) Thermoplastic resin composition
JPH04211453A (en) Thermoplastic resin composition and its production
JPH0480263A (en) Pps-containing resin composition
JPH01113456A (en) Thermoplastic resin composition and its production
JPH08302154A (en) Thermoplastic resin composition
JPH08231793A (en) Thermoplastic resin composition
JPH03134056A (en) Thermoplastic resin composition and preparation thereof
JPH0551502A (en) Thermoplastic resin composition
JPH01118561A (en) Thermoplastic resin composition and its production
JPH0586275A (en) Thermoplastic resin composition