[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04337095A - Method and apparatus for producing ozonized water - Google Patents

Method and apparatus for producing ozonized water

Info

Publication number
JPH04337095A
JPH04337095A JP3135685A JP13568591A JPH04337095A JP H04337095 A JPH04337095 A JP H04337095A JP 3135685 A JP3135685 A JP 3135685A JP 13568591 A JP13568591 A JP 13568591A JP H04337095 A JPH04337095 A JP H04337095A
Authority
JP
Japan
Prior art keywords
ozone
water
containing gas
pump
liquid pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3135685A
Other languages
Japanese (ja)
Inventor
Isao Sawamoto
勲 澤本
Tsutomu Suzuki
勉 鈴木
Shoichi Tachibana
立花 正一
Hiroshi Masuda
増田 博司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP3135685A priority Critical patent/JPH04337095A/en
Publication of JPH04337095A publication Critical patent/JPH04337095A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To produce the ozonized water at a cost lower than the cost of the conventional ozonized water production which disperses an ozone-contg. gas through a filter into raw material water and with high dissolution efficiency. CONSTITUTION:The raw material water is converted to vortex flow by a liquid pump 9 when the ozone-contg. gas generated by an ozone-contg. gas generator 4 is supplied to the suction side of the liquid pump 9. The ozone-contg. gas is absorbed and dissolved in this vortex flow and the high-concn. ozonized water is obtd. Since the stirring effect of the pump 9 is utilized, the dissolution of the ozone in the ozone-contg. gas into the raw material water takes place surely and sufficiently and further the dissolution efficiency attains nearly 100% if the water pressure on the take-out side of the pump 9 is maintained at about 2kg/cm<2>G. The formed ozone-contg. gas is thus utilized efficiently for the ozonized water production.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はオゾン水製造方法及び装
置に関し、より詳細には各種殺菌や半導体製造時の洗浄
用等として好適なオゾン水を安価にかつオゾン含有ガス
の高い吸収効率の下に製造するための方法及び装置に関
する。
[Industrial Application Field] The present invention relates to a method and apparatus for producing ozonated water, and more particularly, it is possible to produce ozonated water suitable for various sterilizations, cleaning during semiconductor manufacturing, etc. at low cost and with high absorption efficiency of ozone-containing gas. The present invention relates to a method and apparatus for manufacturing.

【0002】0002

【従来技術とその問題点】オゾンは強力でクリーンな酸
化剤として注目され、特にその分解生成物が酸素であり
従来から使用されている塩素系の酸化剤のものと比較し
て残留物が被処理水中に残留しないこと、分解速度が速
くオゾンがそれ自身残留せず二次公害の問題も全くない
こと等の理由から水処理用としての使用が増加している
。このように酸化剤として有用なオゾンを含むオゾン含
有ガスを発生させるために従来から主として放電法及び
電解法が採用されているが、生成物の純度や操作の容易
性から現在では電解法が主流となっている。この電解法
により発生したオゾン含有ガスを使用して水処理等を行
うには気液混合状態で得られるオゾン水をそのまま被処
理水と接触させたり、前記電解槽の陽極室に被処理水を
直接送り込んでオゾンと接触させたりしているが、前者
ではオゾンが気泡状で存在するため被処理水との接触効
率が悪くかつ電解槽で生ずるオゾン水に電極物質等が混
入し該物質が被処理水を汚染することがあり、又後者の
場合にも被処理水中の不純物により電極が汚染されると
いった問題点がある。
[Prior art and its problems] Ozone has attracted attention as a strong and clean oxidizing agent, and its decomposition product is oxygen, so compared to the conventionally used chlorine-based oxidizing agents, ozone is less exposed to residue. Its use in water treatment is increasing because it does not remain in the treated water, its decomposition rate is fast, ozone itself does not remain, and there is no problem of secondary pollution. In order to generate ozone-containing gas containing ozone, which is useful as an oxidizing agent, discharge methods and electrolytic methods have traditionally been mainly used, but electrolytic methods are currently mainstream due to the purity of the product and ease of operation. It becomes. In order to perform water treatment using the ozone-containing gas generated by this electrolysis method, the ozonated water obtained in a gas-liquid mixed state may be directly brought into contact with the water to be treated, or the water to be treated may be placed in the anode chamber of the electrolytic cell. However, in the former method, the ozone exists in the form of bubbles, so the contact efficiency with the water to be treated is poor, and the ozone water generated in the electrolytic tank is contaminated with electrode materials, etc., and the materials are exposed to the ozone. There is a problem that the treated water may be contaminated, and in the latter case, the electrodes may be contaminated by impurities in the water to be treated.

【0003】従って多くの場合、気液混合状態で電解槽
の陽極室で生成するオゾン含有ガスを一旦例えばフィル
ターを通して原料水が収容された混合槽に供給し該フィ
ルターで不純物を除去するとともに該フィルターで前記
気液混合状態のオゾン含有ガスを前記原料水中に分散さ
せてオゾンをほぼ完全に前記原料水に溶解させてガス状
のオゾンを含まない均一濃度のオゾン水を生成している
。しかしながらこのオゾン水製造法では、完全にオゾン
含有ガス中のオゾンを高い吸収効率で原料水中に溶解さ
せることが困難になることがあり、従って製造されるオ
ゾン水のコストが高くなり、経済的にオゾン水を製造す
ることができなくなることがある。
Therefore, in many cases, the ozone-containing gas generated in the anode chamber of the electrolytic cell in a gas-liquid mixed state is once supplied to a mixing tank containing raw water through a filter, and impurities are removed by the filter, and the filter Then, the ozone-containing gas in the gas-liquid mixed state is dispersed in the raw material water, and ozone is almost completely dissolved in the raw material water, thereby producing ozone water with a uniform concentration that does not contain gaseous ozone. However, with this ozonated water production method, it may be difficult to completely dissolve the ozone in the ozone-containing gas into the raw water with high absorption efficiency, which increases the cost of produced ozonated water and makes it economically uneconomical. It may become impossible to produce ozonated water.

【0004】0004

【発明の目的】本発明は、フィルター等を使用すること
なく、高い吸収効率でオゾン含有ガスを原料水に溶解さ
せてオゾン水を製造するための方法及び装置を提供する
ことを目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a method and apparatus for producing ozone water by dissolving ozone-containing gas in raw water with high absorption efficiency without using a filter or the like.

【0005】[0005]

【問題点を解決するための手段】本発明方法は、オゾン
含有ガス発生装置により発生したオゾン含有ガスを、原
料水が供給される液体ポンプの吸引側に供給し該原料水
中に前記オゾン含有ガスを吸収溶解させてオゾン水を製
造することを特徴とするオゾン水製造方法であり、本発
明装置は、オゾン含有ガス発生装置、原料水供給手段、
液体ポンプ、及び水圧調節手段を含んで成り、該水圧調
節手段により液体ポンプの取出側の水圧を所定範囲内に
維持しながら、原料水を前記液体ポンプに供給しかつ前
記オゾン含有ガス発生装置で発生するオゾン含有ガスを
該液体ポンプの吸引側に供給し、該ポンプ中で前記オゾ
ン含有ガスを前記原料水中に溶解させてオゾン水を製造
することを特徴とするオゾン水製造装置である。
[Means for Solving the Problems] The method of the present invention is to supply ozone-containing gas generated by an ozone-containing gas generator to the suction side of a liquid pump to which raw water is supplied, and to add the ozone-containing gas to the raw water. This is an ozonated water production method characterized by producing ozonated water by absorbing and dissolving ozone, and the apparatus of the present invention comprises an ozone-containing gas generator, a raw water supply means,
It comprises a liquid pump and a water pressure adjustment means, and the water pressure adjustment means supplies raw water to the liquid pump while maintaining the water pressure on the extraction side of the liquid pump within a predetermined range, and the ozone-containing gas generator. This ozone water production apparatus is characterized in that the generated ozone-containing gas is supplied to the suction side of the liquid pump, and the ozone-containing gas is dissolved in the raw material water in the pump to produce ozone water.

【0006】以下本発明を詳細に説明する。本発明に係
わるオゾン水製造方法及び装置は、従来のフィルターを
通してオゾン含有ガスを原料水中に分散溶解させる方法
に代えて、ポンプの有する攪拌力を利用して原料水中に
オゾン含有ガスを効率良く、条件次第では100 %の
吸収効率で溶解させてオゾン水を製造することを特徴と
する。本発明で使用するオゾン含有ガスは、電解法及び
放電法あるいはそれら以外のどのような手段により製造
されたものでもよく、それに応じてオゾン含有ガス発生
装置は電解槽、放電装置等の適宜の装置を使用する。電
解槽を使用してオゾン含有ガスを製造する際には、オゾ
ン含有ガスが発生する該電解槽の陽極室の圧力を正圧に
維持して陰極室で発生する水素ガスが陽極室を介して前
記液体ポンプに導入されることを防止することが望まし
い。
The present invention will be explained in detail below. The ozone water production method and apparatus according to the present invention utilizes the stirring power of a pump to efficiently disperse ozone-containing gas into raw water, instead of the conventional method of dispersing and dissolving ozone-containing gas in raw water through a filter. Depending on the conditions, ozone water can be produced by dissolving it with 100% absorption efficiency. The ozone-containing gas used in the present invention may be produced by an electrolytic method, a discharge method, or any other method, and accordingly, the ozone-containing gas generator may be an appropriate device such as an electrolytic cell or a discharge device. use. When producing ozone-containing gas using an electrolytic cell, the pressure in the anode chamber of the electrolytic cell where ozone-containing gas is generated is maintained at a positive pressure, and the hydrogen gas generated in the cathode chamber is passed through the anode chamber. It is desirable to prevent the liquid from being introduced into the liquid pump.

【0007】高純度水のオゾン水とするときは、オゾン
含有ガスを原料水に溶解させてオゾン水を生成した後に
精製を行うと溶解したオゾンガスが放散してロスが生ず
るため、原料水を予め蒸留、イオン交換等により精製し
て高純度水としておくことが望ましく、例えば原水とし
て水道水を使用する場合は該水道水中の不純物を除去し
て通常150 μS/cm程度である電気伝導度を1μ
S/cmまでに減少させることが好ましい。使用する液
体ポンプは、従来タイプのものをそのまま使用すること
ができる。前記原料水及びオゾン含有ガスは該ポンプの
吸引側から供給され、該ポンプにより原料水の渦巻流が
形成され、該渦巻流の攪拌力により前記オゾン含有ガス
が該原料水中に効率良く吸収されて溶解するものと考え
られる。なお電解法で製造されるオゾン含有ガスは通常
気液混合状態で生成し、通常は気液分離を行ってオゾン
含有ガスを分離するが、本発明では気液混合状態のまま
ポンプに供給してもよい。
[0007] When making high-purity water into ozonated water, if the ozone-containing gas is dissolved in raw water to produce ozonated water and then purified, the dissolved ozone gas will dissipate and loss will occur. It is desirable to purify high purity water by distillation, ion exchange, etc. For example, when tap water is used as raw water, impurities in the tap water are removed to reduce the electrical conductivity, which is usually about 150 μS/cm, to 1μ.
It is preferable to reduce it to S/cm. A conventional type liquid pump can be used as is. The raw material water and ozone-containing gas are supplied from the suction side of the pump, a swirling flow of the raw water is formed by the pump, and the ozone-containing gas is efficiently absorbed into the raw water by the stirring force of the swirling flow. It is thought that it will dissolve. Note that ozone-containing gas produced by electrolysis is usually produced in a gas-liquid mixture, and gas-liquid separation is usually performed to separate the ozone-containing gas, but in the present invention, the ozone-containing gas is supplied to the pump in a gas-liquid mixture. Good too.

【0008】前記溶解効率は前記液体ポンプの取出側の
水圧に幾分影響され、取出側に圧力を掛けないと約90
%の溶解効率であり、2kg/cm2g程度の水圧を掛
けると溶解効率はほぼ100 %まで上昇する(オゾン
濃度に換算すると5ppm以上)。しかし水圧を更に上
昇しさせて約4kg/cm2 gとすると溶解効率は6
0〜80%(オゾン濃度に換算すると約3.5 〜4.
5 ppm)に減少し、これは水圧を上昇させるために
必要なポンプの回転数の増加によりオゾン含有ガス中の
オゾン分解が生じているからと推測される。従ってポン
プの取出側の水圧は0〜3kg/cm2 gの範囲に維
持して高い溶解効率でオゾン含有ガス中のオゾンを原料
水中に溶解させるようにすることが望ましい。本発明に
よりオゾン水製造を、特にポンプの取出側の水圧を0〜
3kg/cm2 gの範囲内に維持しながら行うと、操
作開始初期から高い溶解効率でオゾン水が製造され、短
時間で安価に高濃度のオゾン水を製造することができる
The dissolution efficiency is somewhat influenced by the water pressure on the take-out side of the liquid pump, and is approximately 90% when no pressure is applied to the take-out side.
%, and when a water pressure of about 2 kg/cm2g is applied, the dissolution efficiency increases to almost 100% (more than 5 ppm when converted to ozone concentration). However, if the water pressure is further increased to about 4 kg/cm2 g, the dissolution efficiency becomes 6
0 to 80% (approximately 3.5 to 4.0% when converted to ozone concentration)
5 ppm), and this is presumed to be because ozone decomposition in the ozone-containing gas occurs due to the increase in the number of rotations of the pump required to increase the water pressure. Therefore, it is desirable to maintain the water pressure on the extraction side of the pump in the range of 0 to 3 kg/cm2 g to dissolve ozone in the ozone-containing gas into the raw water with high dissolution efficiency. The present invention enables ozone water production, especially when the water pressure on the extraction side of the pump is reduced from 0 to 0.
By maintaining the concentration within the range of 3 kg/cm2 g, ozonated water can be produced with high dissolution efficiency from the beginning of the operation, and highly concentrated ozonated water can be produced in a short time and at low cost.

【0009】次に本発明によるオゾン水製造の一例を添
付図面に基づいて説明するが、本発明は図示の例に限定
されるものではない。図1は、本発明に係わるオゾン水
製造方法のシステムの一例を示すフローチャートである
Next, an example of ozone water production according to the present invention will be explained based on the attached drawings, but the present invention is not limited to the illustrated example. FIG. 1 is a flowchart showing an example of a system for the ozonated water production method according to the present invention.

【0010】原料水の貯留タンク1には水道水等の比較
的低純度の原水を蒸留あるいはイオン交換等で精製して
製造された高純度の原料水が供給ライン2を通して供給
され該原料水3は前記貯留タンク1に貯留されている。 オゾン含有ガス発生装置である電解槽4は、隔膜5によ
り陽極室6と陰極室7に区画されかつ前記陽極室6は陰
極室7より高圧に維持されている。該電解槽4内のオゾ
ン含有ガス製造用原水8を電解すると前記陽極室6に酸
素とオゾンの混合ガスであるオゾン含有ガスが発生する
。回転数制御装置15を有した液体ポンプ9を駆動させ
ると、前記貯留タンク1内に貯留された原料水3は、ラ
イン10を通して前記ポンプ9の吸引側に導かれポンプ
9内で渦巻流を発生させる。一方電解槽4の陽極室6で
発生したオゾン含有ガスはライン11を通して同様に前
記液体ポンプ9の吸引側から該ポンプ9内に導入され、
前記原料水の渦巻流中に吸収溶解してオゾン水を生成す
る。 該オゾン水はポンプ9の取出側から取り出されてライン
13を通してオゾン水貯留塔14に供給され貯留され、
必要に応じて調節バルブ12を経由して取り出され各種
用途に使用される。なお前記回転数制御装置15により
回転数を調整し、又前記調節バルブ12の開閉度を微調
節することにより前記ポンプ9の取出側の水圧を調節す
ることができる。
High-purity raw water produced by purifying relatively low-purity raw water such as tap water by distillation or ion exchange is supplied to the raw water storage tank 1 through a supply line 2, and the raw water 3 is stored in the storage tank 1. An electrolytic cell 4, which is an ozone-containing gas generator, is divided into an anode chamber 6 and a cathode chamber 7 by a diaphragm 5, and the anode chamber 6 is maintained at a higher pressure than the cathode chamber 7. When the raw water 8 for producing ozone-containing gas in the electrolytic cell 4 is electrolyzed, ozone-containing gas, which is a mixed gas of oxygen and ozone, is generated in the anode chamber 6. When the liquid pump 9 having the rotation speed control device 15 is driven, the raw water 3 stored in the storage tank 1 is guided to the suction side of the pump 9 through the line 10 and generates a swirling flow in the pump 9. let On the other hand, the ozone-containing gas generated in the anode chamber 6 of the electrolytic cell 4 is similarly introduced into the liquid pump 9 from the suction side through the line 11,
Ozone water is generated by absorbing and dissolving the raw material water into the swirling flow. The ozonated water is taken out from the extraction side of the pump 9 and supplied to the ozonated water storage tower 14 through the line 13 and stored therein.
If necessary, it is taken out via the control valve 12 and used for various purposes. Note that the water pressure on the extraction side of the pump 9 can be adjusted by adjusting the rotation speed using the rotation speed control device 15 and by finely adjusting the opening/closing degree of the control valve 12.

【0011】[0011]

【実施例】次に本発明によるオゾン水製造の実施例を記
載するが、該実施例は本発明を限定するものではない。 図1に示すシステムを使用してオゾン水の製造を行った
。オゾン含有ガス発生装置である電解槽は次のものを使
用した。固体電解質として、一方面に陽極物質であるβ
−二酸化鉛、他面に陰極物質である白金を被覆した縦1
0cm、横10cm、厚さ0.18mmでイオン交換容
量が0.9 ミリ当量/gのナフィオン(商品名)11
7 を使用して電極面積を1dm2 とした。該固体電
解質により電解槽を容積がそれぞれ100 cm3 及
び200 cm3 である陽極室及び陰極室に区画した
。前記陽極物質及び陰極物質のそれぞれにメッシュ状チ
タン微細繊維焼結体である陽極給電エレメント及びステ
ンレス微細繊維焼結体である陰極給電エレメントを接続
した。この電解槽に100 A、3.2 Vの条件で通
電したところ、オゾンガス14重量%及び酸素ガス86
重量%の混合ガスであるオゾン含有ガスが30g/時の
割合で生成した。
[Example] Next, an example of ozonated water production according to the present invention will be described, but the present invention is not limited to this example. Ozone water was produced using the system shown in FIG. The following electrolytic cell, which is an ozone-containing gas generator, was used. As a solid electrolyte, β is an anode material on one side.
- Vertical 1 with lead dioxide coated with platinum, which is a cathode material, on the other side
Nafion (trade name) 11 with 0 cm, width 10 cm, thickness 0.18 mm and ion exchange capacity of 0.9 meq/g
7 was used to set the electrode area to 1 dm2. The solid electrolyte divided the electrolytic cell into an anode chamber and a cathode chamber each having a volume of 100 cm3 and 200 cm3. An anode power supply element made of a mesh-like titanium fine fiber sintered body and a cathode power supply element made of a stainless steel fine fiber sintered body were connected to the anode material and the cathode material, respectively. When this electrolytic cell was energized at 100 A and 3.2 V, ozone gas was 14% by weight and oxygen gas was 86% by weight.
An ozone-containing gas mixture of % by weight was produced at a rate of 30 g/h.

【0012】貯留タンクには、水道水からイオン交換に
より不純物を除去して電気伝導度を1μS/cmに減少
させた原料水を収容した。調節バルブを完全に開放して
渦流ポンプ(液体ポンプ)の取出側の水圧が0kg/c
m2 gとなるようにしたまま、前記電解槽の陽極室及
び前記貯留タンクに接続されたステンレス製の渦流ポン
プを駆動させて前記オゾン含有ガス及び原料水を該ポン
プ内に導入し、そのままオゾン水として該ポンプから取
り出して貯留塔に貯留した。前記ポンプから取り出され
たオゾン水のオゾン濃度(Qppm)及び溶解効率(η
%)の経時変化を測定しその結果を図2のグラフに〇印
で示した。この結果から水圧が0kg/cm2 gであ
ると当初のオゾン水のオゾン濃度は約4.6 ppmで
あり、時間の経過により約5ppmまで上昇し、又溶解
効率は当初の約85%から約90%まで上昇することが
判る。前記回転数制御装置を調節してポンプの取出側の
水圧が2kg/cm2 gとなるようにしたこと以外は
同一条件でオゾン水製造を行い、前記ポンプから取り出
されたオゾン水のオゾン濃度及び溶解効率の経時変化を
測定しその結果を図2のグラフに△印で示した。この結
果から水圧が2kg/cm2 gであるとオゾン濃度つ
まり溶解効率が上昇し当初のオゾン水のオゾン濃度は約
5.3 ppmであり、時間が経過しても±0.1 p
pmの範囲内に維持され、又当初の溶解効率は約98%
であり、時間が経過しても±2%の範囲内に維持された
The storage tank contained raw water whose electrical conductivity was reduced to 1 μS/cm by removing impurities from tap water by ion exchange. When the control valve is completely opened, the water pressure on the outlet side of the vortex pump (liquid pump) is 0 kg/c.
m2 g, a stainless steel vortex pump connected to the anode chamber of the electrolytic cell and the storage tank is driven to introduce the ozone-containing gas and raw water into the pump, and the ozone water is directly converted into ozone water. It was taken out from the pump and stored in a storage tower. Ozone concentration (Qppm) and dissolution efficiency (η
%) over time was measured, and the results are shown in the graph of FIG. 2 with a circle. From this result, when the water pressure is 0 kg/cm2 g, the initial ozone concentration in ozonated water is about 4.6 ppm, which increases to about 5 ppm over time, and the dissolution efficiency increases from about 85% to about 90%. It can be seen that it increases to %. Ozone water was produced under the same conditions except that the rotation speed control device was adjusted so that the water pressure on the extraction side of the pump was 2 kg/cm2 g, and the ozone concentration and dissolution of the ozonated water extracted from the pump were determined. Changes in efficiency over time were measured, and the results are shown in the graph of FIG. 2 by △ marks. From this result, when the water pressure is 2 kg/cm2 g, the ozone concentration, that is, the dissolution efficiency increases, and the initial ozone concentration in ozonated water is about 5.3 ppm, and even with the passage of time, it remains ±0.1 ppm.
maintained within the pm range, and the initial dissolution efficiency was approximately 98%.
was maintained within a range of ±2% over time.

【0013】更に、前記回転数制御装置を調節してポン
プの取出側の水圧が4kg/cm2 gとなるようにし
たこと以外は同一条件でオゾン水製造を行い、前記ポン
プから取り出されたオゾン水のオゾン濃度及び溶解効率
の経時変化を測定しその結果を図2のグラフに●印で示
した。この結果から水圧が4kg/cm2 gであると
オゾン濃度つまり溶解効率は低下し当初のオゾン水のオ
ゾン濃度は約3.3 ppmであり、時間の経過により
約4.4 ppmまで上昇し、又当初の溶解効率は約6
0%であり、時間の経過により81%まで上昇した。こ
の結果からポンプの取出側の水圧を約2kg/cm2 
gに維持しながらオゾン水製造を行うと溶解効率がほぼ
100 %に達し、電解法等により生成したオゾン含有
ガスを効率良くオゾン水製造に使用できることが判る。
Furthermore, ozonated water was produced under the same conditions except that the rotational speed control device was adjusted so that the water pressure at the outlet side of the pump was 4 kg/cm2 g, and the ozonated water extracted from the pump was The changes over time in the ozone concentration and dissolution efficiency were measured, and the results are shown in the graph of FIG. 2 with ● marks. This result shows that when the water pressure is 4 kg/cm2 g, the ozone concentration, that is, the dissolution efficiency, decreases, and the initial ozone concentration in ozonated water is about 3.3 ppm, which increases to about 4.4 ppm with the passage of time. The initial dissolution efficiency was approximately 6
It was 0% and increased to 81% with the passage of time. Based on this result, the water pressure on the extraction side of the pump should be approximately 2 kg/cm2.
It can be seen that when ozone water is produced while maintaining the ozone water at 100 g, the dissolution efficiency reaches almost 100%, indicating that ozone-containing gas produced by electrolysis etc. can be used efficiently for ozonated water production.

【0014】[0014]

【発明の効果】本発明によるオゾン水製造方法では、オ
ゾン含有ガス発生装置により発生したオゾン含有ガスを
、原料水を吸引している液体ポンプの吸引側に供給し、
原料水を渦巻流に変換しているポンプの攪拌作用により
該原料水中にオゾン含有ガスを吸収溶解させて効率良く
オゾン水を製造することができる。オゾン含有ガスをフ
ィルターを使用して原料水中に分散させてオゾン水を製
造する従来法と異なり、本発明方法によるオゾン水製造
ではポンプの有する強い攪拌作用を利用してオゾン含有
ガスの溶解を行うため、確実にオゾン含有ガス中のオゾ
ンが原料水中に溶解して高濃度のオゾン水を製造するこ
とができる。しかもポンプの使用のみであるため、経費
が安く、低コストでオゾン水を製造することが可能にな
る。
[Effects of the Invention] In the method for producing ozone water according to the present invention, ozone-containing gas generated by an ozone-containing gas generator is supplied to the suction side of a liquid pump sucking raw water,
Ozone-containing gas is absorbed and dissolved in the raw water by the stirring action of the pump that converts the raw water into a swirling flow, and ozone water can be efficiently produced. Unlike the conventional method of producing ozone water by dispersing ozone-containing gas into raw water using a filter, ozone-containing gas is dissolved using the strong stirring action of a pump in the method of the present invention. Therefore, ozone in the ozone-containing gas is reliably dissolved in the raw water, and highly concentrated ozonated water can be produced. Moreover, since only a pump is used, the cost is low, and ozonated water can be produced at low cost.

【0015】前記オゾン含有ガスとして電解法で製造さ
れたガスを使用すると、溶解前のオゾン含有ガス中の不
純物が少ないため、高純度のオゾン水を製造することが
できる。前記電解法でオゾン含有ガスを製造する場合に
は、電解槽の陽極室側の圧力を陰極室側の圧力より高く
して、つまり正圧に維持すると陰極室で発生する水素ガ
スがオゾン含有ガス中に混入することがなく、より純度
の高いオゾン水を製造することができる。又本発明のオ
ゾン水製造装置では、オゾン含有ガス発生装置により生
成したオゾン含有ガスを液体ポンプにより原料水に溶解
させる際に、ポンプの取出側の水圧を調節できるように
してある。このポンプの取出側の水圧はオゾン水のオゾ
ン濃度(溶解効率)に影響を及ぼし、0〜3kg/cm
2 gの範囲に維持すると、そして特に2kg/cm2
 gに維持するとほぼ100 %の溶解効率でオゾン水
を製造することが可能になる。
[0015] When a gas produced by an electrolytic method is used as the ozone-containing gas, since there are few impurities in the ozone-containing gas before dissolution, highly pure ozonated water can be produced. When producing ozone-containing gas using the electrolytic method described above, if the pressure on the anode chamber side of the electrolytic cell is kept higher than the pressure on the cathode chamber side, that is, maintained at a positive pressure, the hydrogen gas generated in the cathode chamber will be converted into ozone-containing gas. It is possible to produce ozone water with higher purity without contamination. Further, in the ozone water production apparatus of the present invention, when the ozone-containing gas generated by the ozone-containing gas generator is dissolved in the raw water by the liquid pump, the water pressure on the extraction side of the pump can be adjusted. The water pressure on the extraction side of this pump affects the ozone concentration (dissolution efficiency) of ozone water, and is 0 to 3 kg/cm.
When maintained in the range of 2 g, and especially 2 kg/cm2
g, it becomes possible to produce ozone water with almost 100% dissolution efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に係わるオゾン水製造方法のシステムの
一例を示すフローチャート。
FIG. 1 is a flowchart showing an example of a system for an ozone water production method according to the present invention.

【図2】実施例においてポンプの取出側の水圧を変化さ
せた場合の、生成するオゾン水のオゾン濃度及び溶解効
率の経時変化を示すグラフ。
FIG. 2 is a graph showing changes over time in the ozone concentration and dissolution efficiency of generated ozone water when the water pressure on the extraction side of the pump is changed in Examples.

【符号の説明】[Explanation of symbols]

1・・・貯留タンク    2・・・供給ライン  3
・・・原料水  4・・・電解槽5・・・隔膜  6・
・・陽極室  7・・・陰極室  8・・・オゾン含有
ガス製造用原水  9・・・液体ポンプ  10、11
・・・ライン  12・・・調節バルブ 13・・・ライン  14・・・オゾン水貯留塔  1
5・・・回転数制御装置
1... Storage tank 2... Supply line 3
...Raw material water 4...Electrolytic cell 5...Diaphragm 6.
...Anode chamber 7...Cathode chamber 8...Raw water for producing ozone-containing gas 9...Liquid pump 10, 11
... Line 12 ... Control valve 13 ... Line 14 ... Ozone water storage tower 1
5... Rotation speed control device

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  オゾン含有ガス発生装置により発生し
たオゾン含有ガスを、原料水が供給される液体ポンプの
吸引側に供給し該原料水中に前記オゾン含有ガスを吸収
溶解させてオゾン水を製造することを特徴とするオゾン
水製造方法。
Claim 1: Ozone-containing gas generated by an ozone-containing gas generator is supplied to the suction side of a liquid pump to which raw water is supplied, and the ozone-containing gas is absorbed and dissolved in the raw water to produce ozone water. A method for producing ozone water characterized by the following.
【請求項2】  オゾン含有ガス発生装置が電解槽であ
り、水電解によりオゾン含有ガスが生成するようにした
請求項1に記載の方法。
2. The method according to claim 1, wherein the ozone-containing gas generator is an electrolytic cell, and the ozone-containing gas is generated by water electrolysis.
【請求項3】  電解槽の陽極室を正圧に維持するよう
にした請求項2に記載の方法。
3. The method according to claim 2, wherein the anode chamber of the electrolytic cell is maintained at a positive pressure.
【請求項4】  オゾン含有ガス発生装置、原料水供給
手段、液体ポンプ、及び水圧調節手段を含んで成り、該
水圧調節手段により液体ポンプの取出側の水圧を所定範
囲内に維持しながら、原料水を前記液体ポンプに供給し
かつ前記オゾン含有ガス発生装置で発生するオゾン含有
ガスを該液体ポンプの吸引側に供給し、該ポンプ中で前
記オゾン含有ガスを前記原料水中に溶解させてオゾン水
を製造することを特徴とするオゾン水製造装置。
4. An ozone-containing gas generator, a raw material water supply means, a liquid pump, and a water pressure adjustment means, the water pressure adjustment means maintaining the water pressure on the extraction side of the liquid pump within a predetermined range while supplying the raw material. Water is supplied to the liquid pump, and ozone-containing gas generated by the ozone-containing gas generator is supplied to the suction side of the liquid pump, and the ozone-containing gas is dissolved in the raw water in the pump to produce ozonated water. An ozone water manufacturing device characterized by manufacturing.
【請求項5】  液体ポンプの取出側の水圧を0〜3k
g/cm2 gに維持するようにした請求項4に記載の
装置。
[Claim 5] Set the water pressure on the extraction side of the liquid pump to 0 to 3k.
5. The device according to claim 4, wherein the g/cm2 g is maintained.
JP3135685A 1991-05-10 1991-05-10 Method and apparatus for producing ozonized water Pending JPH04337095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3135685A JPH04337095A (en) 1991-05-10 1991-05-10 Method and apparatus for producing ozonized water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3135685A JPH04337095A (en) 1991-05-10 1991-05-10 Method and apparatus for producing ozonized water

Publications (1)

Publication Number Publication Date
JPH04337095A true JPH04337095A (en) 1992-11-25

Family

ID=15157525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3135685A Pending JPH04337095A (en) 1991-05-10 1991-05-10 Method and apparatus for producing ozonized water

Country Status (1)

Country Link
JP (1) JPH04337095A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061379A (en) * 2007-09-05 2009-03-26 Nikuni:Kk Functional liquid manufacturing apparatus
JP2015196871A (en) * 2014-03-31 2015-11-09 石川金属機工株式会社 Apparatus and method for production of radical oxygen water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061379A (en) * 2007-09-05 2009-03-26 Nikuni:Kk Functional liquid manufacturing apparatus
JP2015196871A (en) * 2014-03-31 2015-11-09 石川金属機工株式会社 Apparatus and method for production of radical oxygen water

Similar Documents

Publication Publication Date Title
JP2830733B2 (en) Electrolytic water generation method and electrolysis water generation mechanism
US5447640A (en) Method and apparatus for sterilization of and treatment with ozonized water
US5114549A (en) Method and apparatus for treating water using electrolytic ozone
JP3007137B2 (en) Electrolytic ozone generation method and apparatus
EP1090880A1 (en) Electrolytic ozone generating method, system and ozone water producing system
JP3201781B2 (en) Ozone production method
JPH04119903A (en) Apparatus for generating ozone by electrolysis
JPH0747377A (en) Method for treating ozone water and device therefor
JP2011157580A (en) Electrolytic synthesis method of ozone fine bubble
JPH10118655A (en) Electric treatment of aqueous salt solution
US5246556A (en) Process and apparatus for producing high concentrating ozone water
US20030188764A1 (en) Functional water, method and apparatus of producing the same, and method and apparatus of rinsing electronic parts therewith
JP2001327934A (en) Cleaning device and cleaning method
CA1315236C (en) Ozone-generating electrolytic cell provided with a solid electrolyte for treating water
JPH04337095A (en) Method and apparatus for producing ozonized water
JP2684575B2 (en) Method and apparatus for producing high-concentration ozone water
JP2004346390A (en) Method and device for generating gas by electrolysis
JPH08187419A (en) Waste gas treatment and device therefor
JP3720292B2 (en) Production method and production apparatus for ozone water
JPH11267652A (en) Method of generating ozone water and hydrogen water, and device therefor
JPH09176886A (en) Production of hydrogen peroxide
JPH0639256A (en) Method and device for dissolving ozone
JP2001096273A (en) Method and device for producing ionized water useful for cleaning
JP2002166279A (en) Method and device for generating gas by electrolysis
JPH0716582A (en) Process for ozone water treatment and device therefor