JPH04337037A - Production of hot rolled steel plate having superior formability and excellent in fatigue strength and crack propagation resistance - Google Patents
Production of hot rolled steel plate having superior formability and excellent in fatigue strength and crack propagation resistanceInfo
- Publication number
- JPH04337037A JPH04337037A JP13558991A JP13558991A JPH04337037A JP H04337037 A JPH04337037 A JP H04337037A JP 13558991 A JP13558991 A JP 13558991A JP 13558991 A JP13558991 A JP 13558991A JP H04337037 A JPH04337037 A JP H04337037A
- Authority
- JP
- Japan
- Prior art keywords
- crack propagation
- fatigue
- steel plate
- rolled steel
- propagation resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 31
- 239000010959 steel Substances 0.000 title claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 title description 7
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 11
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 3
- 238000001816 cooling Methods 0.000 claims description 5
- 238000004804 winding Methods 0.000 claims description 5
- 238000005096 rolling process Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 abstract description 6
- 229910052802 copper Inorganic materials 0.000 abstract description 4
- 239000013078 crystal Substances 0.000 description 12
- 238000005098 hot rolling Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 6
- 238000005728 strengthening Methods 0.000 description 6
- 230000003068 static effect Effects 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910001567 cementite Inorganic materials 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 241000219307 Atriplex rosea Species 0.000 description 1
- 101000582320 Homo sapiens Neurogenic differentiation factor 6 Proteins 0.000 description 1
- 102100030589 Neurogenic differentiation factor 6 Human genes 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は耐久疲労限度と亀裂伝播
抵抗が共に優れた良成形性熱延鋼板の製造方法に関し、
特に、自動車の足回り部品及び車体構造部材などの用途
に適した熱延のままで、疲労耐久限、疲労亀裂伝播抵抗
、冷間加工性に優れた35〜55kgf/mm2級の熱
間圧延鋼板の製造方法に関する。[Industrial Application Field] The present invention relates to a method for producing a hot-rolled steel sheet with excellent formability and excellent durability fatigue limit and crack propagation resistance.
In particular, 35-55 kgf/mm2 grade hot-rolled steel sheets with excellent fatigue durability, fatigue crack propagation resistance, and cold workability are suitable for applications such as automobile suspension parts and car body structural members. Relating to a manufacturing method.
【0002】0002
【従来の技術及び発明が解決しようとする課題】近年、
自動車業界においては、燃費向上を図るため、高張力薄
鋼板の使用が増加しており、特に足回り部品や車体の各
構造部材においては、高張力化による薄肉化の要求が極
めて高い。[Prior art and problems to be solved by the invention] In recent years,
In the automobile industry, the use of high-strength thin steel sheets is increasing in order to improve fuel efficiency, and there is an extremely high demand for thinner walls due to higher tensile strength, especially in suspension parts and various structural members of car bodies.
【0003】しかし、高張力化は加工性を劣化させるた
め、冷間加工を多用する自動車部品には欠点となってい
る。また、引張強さや耐力などの静的強度を向上しても
自動車において最も問題となる疲労強度は十分に向上せ
ず、また高張力化は、切欠きや溶接部などの構造的、組
織的不連続部からの疲労亀裂伝播抵抗を低下させるなど
の問題点があった。[0003] However, since high tension deteriorates workability, it is a drawback for automobile parts that require extensive cold working. In addition, even if static strengths such as tensile strength and yield strength are improved, fatigue strength, which is the most problematic issue in automobiles, will not be sufficiently improved, and higher tensile strength will cause structural and organizational defects such as notches and welds. There were problems such as lowering the resistance to fatigue crack propagation from continuous parts.
【0004】従来、特開昭55−107732号に見ら
れるように、加工性を向上するために炭素量を低減する
ことが行われているが、低炭素化のためにそもそも引張
強さが35kgf/mm2以下となってしまい、疲労強
度も確保することはできない。Conventionally, as seen in JP-A No. 55-107732, efforts have been made to reduce the amount of carbon in order to improve workability, but in order to reduce carbon, the tensile strength was 35 kgf in the first place. /mm2 or less, and fatigue strength cannot be ensured.
【0005】一方、疲労強度を向上する技術として、特
開昭58−123823号公報や特開昭63−2822
40号などに見られるように、鋼板全体或いは表面層の
フェライト粒を細粒化することが行なわれているが、C
量が高いため加工性に問題がある他、圧延温度、加工率
、冷却速度等の圧延条件に制約を受けるなどの問題があ
る。また、折角細粒化しても溶接によって結晶粒の粗大
化が起き、細粒化による疲労強度の向上効果が消失して
しまう。更に細粒化によって疲労耐久限を向上させると
、逆に亀裂等の巨視的初期欠陥が存在する時の亀裂伝播
抵抗を劣化させてしまう欠点がある。[0005] On the other hand, as a technique for improving fatigue strength, Japanese Patent Application Laid-Open Nos. 58-123823 and 63-2822
As seen in No. 40, the ferrite grains in the entire steel sheet or in the surface layer are refined, but C
Since the amount is high, there are problems in workability, and there are also other problems such as restrictions on rolling conditions such as rolling temperature, processing rate, and cooling rate. Further, even if the grains are made finer, the grains become coarser due to welding, and the effect of improving fatigue strength due to grain refinement is lost. Furthermore, if the fatigue durability limit is improved by grain refinement, there is a drawback that the crack propagation resistance deteriorates when macroscopic initial defects such as cracks are present.
【0006】その他の先行技術においても、良好な加工
性を維持しつつ、疲労耐久限と疲労亀裂伝播特性を共に
改善することを可能にする技術は見当らない。[0006] Even in other prior art techniques, there has been no technique that makes it possible to improve both the fatigue durability limit and fatigue crack propagation characteristics while maintaining good workability.
【0007】上述のように、従来技術では、加工性を改
善すると疲労強度の低下を招き、疲労強度を向上すると
疲労亀裂伝播抵抗を劣化させる等、種々の問題点があっ
た。As described above, the conventional techniques have had various problems, such as improving workability leading to a decrease in fatigue strength, and improving fatigue strength decreasing fatigue crack propagation resistance.
【0008】本発明は、上記従来技術の欠点を解消して
、相反する特性である加工性、疲労耐久限、疲労亀裂伝
播抵抗が共に優れた高強度熱延鋼板が得られる方法を提
供することを目的とするものである。[0008] The present invention solves the above-mentioned drawbacks of the prior art and provides a method for obtaining a high-strength hot-rolled steel sheet that is excellent in workability, fatigue durability limit, and fatigue crack propagation resistance, which are contradictory properties. The purpose is to
【0009】[0009]
【課題を解決するための手段】前記課題を解決するため
、本発明者は、これらの相反する特性である加工性と疲
労耐久限と疲労亀裂伝播抵抗が共に優れた高張力熱延鋼
板を得るべく成分組成、組織並びに製造条件について総
合的に鋭意研究を重ねた結果、ここに本発明を完成した
ものである。[Means for Solving the Problems] In order to solve the above problems, the present inventors obtained a high-tensile hot-rolled steel sheet that is excellent in workability, fatigue durability limit, and fatigue crack propagation resistance, which are contradictory characteristics. The present invention has now been completed as a result of comprehensive and intensive research into the component composition, structure, and manufacturing conditions.
【0010】すなわち、本発明は、C:0.0010〜
0.03%、Si:0.10〜1.5%、Mn:0.1
0〜2.0%、P:0.04〜0.15%、Cu:0.
03〜1.5%、Ni:0.03〜0.5%及びAl:
0.01〜0.10%を含有し、残部がFe及び不可避
的不純物からなる鋼を、Ar3点以上の温度で仕上圧延
し、その後、20℃/秒以上で冷却し、更に300〜5
50℃の温度で巻取ることにより、最終組織が、
15μm≦フェライト結晶粒径≦35μm、に制御さ
れた組織を得ることを特徴とする疲労耐久限度と亀裂伝
播抵抗の優れた35〜55kgf/mm2級の良成形性
熱延鋼板の製造方法を要旨とするものである。[0010] That is, the present invention provides C: 0.0010 to
0.03%, Si: 0.10-1.5%, Mn: 0.1
0-2.0%, P: 0.04-0.15%, Cu: 0.
03-1.5%, Ni: 0.03-0.5% and Al:
A steel containing 0.01 to 0.10% and the balance consisting of Fe and unavoidable impurities is finish rolled at a temperature of Ar3 or higher, then cooled at a rate of 20°C/second or higher, and then further rolled at a temperature of 300 to 5
By winding at a temperature of 50°C, the final structure is
The summary is a method for producing a 35-55 kgf/mm2 class good formability hot-rolled steel sheet with excellent fatigue durability limit and crack propagation resistance, which is characterized by obtaining a structure controlled to 15 μm≦ferrite grain size≦35 μm. It is something to do.
【0011】以下に本発明を更に詳述する。The present invention will be explained in more detail below.
【0012】0012
【0013】本発明は、要するに、炭素量を0.03%
以下の低或いは極低含有量にして炭化物を現象させ、フ
ェライト単相に極力近い組織とすることにより加工性を
向上させ、更に固溶強化及び析出強化をもたらすそれぞ
れ適量のP及びCuを含有させつつ、熱延仕上温度、冷
却速度、巻取り温度の適正化を図ることにより、フェラ
イト結晶粒を15〜35μmに制御し、静的強度、耐久
疲労限及び亀裂伝播抵抗の向上を図ったものである。[0013] In short, the present invention reduces the amount of carbon to 0.03%.
The following low or extremely low content causes carbides to develop and creates a structure as close as possible to a single ferrite phase, improving workability, and further containing appropriate amounts of P and Cu, which bring about solid solution strengthening and precipitation strengthening. At the same time, by optimizing the hot rolling finishing temperature, cooling rate, and winding temperature, the ferrite crystal grains were controlled to 15 to 35 μm, and the static strength, durability fatigue limit, and crack propagation resistance were improved. be.
【0014】まず、本発明における鋼の化学成分の限定
理由について説明する。First, the reason for limiting the chemical composition of steel in the present invention will be explained.
【0015】C:Cは粒界強度を確保するために重要な
微量添加元素である。しかし、0.0010%未満では
粒界破壊を生じ易くなり、疲労強度が低下する。また0
.03%を超えて添加すると、セメンタイトやパーライ
トなどの炭化物からなる第二相の析出量が必要以上に増
加するため、加工性を劣化させる。よって、C含有量は
0.0010〜0.03%の範囲とする。C: C is an important element added in trace amounts to ensure grain boundary strength. However, if it is less than 0.0010%, intergranular fracture tends to occur and fatigue strength decreases. 0 again
.. If it is added in an amount exceeding 0.3%, the amount of precipitated second phase consisting of carbides such as cementite and pearlite increases more than necessary, resulting in deterioration of workability. Therefore, the C content is set in the range of 0.0010 to 0.03%.
【0016】Si:Siは、加工性を劣化させることな
く、静的強度を高めるのに必要な元素であり、その効力
を発揮させるためには0.10%以上の添加が必要であ
る。しかし、1.5%を超えて添加すると、赤スケール
を発生して表面性状を損なうと共に、その結果、圧延ま
まの疲労強度が低下する。よって、Si含有量は0.1
0〜1.5%の範囲とする。Si: Si is an element necessary to increase static strength without deteriorating workability, and in order to exhibit its effectiveness, it must be added in an amount of 0.10% or more. However, when it is added in an amount exceeding 1.5%, red scale is generated and the surface quality is impaired, and as a result, the as-rolled fatigue strength is reduced. Therefore, the Si content is 0.1
The range is 0 to 1.5%.
【0017】Mn:Mnは静的強度を確保すると同時に
熱間脆性を防止するために0.10%以上を添加する。
しかし、2.0%を超えると加工性が劣化するため、M
n含有量は0.10〜2.0%の範囲とする。Mn: Mn is added in an amount of 0.10% or more in order to ensure static strength and at the same time prevent hot embrittlement. However, if it exceeds 2.0%, the workability deteriorates, so M
The n content is in the range of 0.10 to 2.0%.
【0018】P:Pは、加工性を害することなく、静的
強度及び疲労強度を付与するための最も重要な固溶強化
元素である。前記のSi及びMn量では、Cを0.03
%以下に低く規制したことによる強度の低下を十分補い
きれず、目標とする35〜55kgf/mm2の引張強
度を達成することができず、更に本発明の特徴とする良
好な耐久限度比(疲労耐久限と引張強さの比)を付与す
ることができない。Pはそのために必要不可欠な元素で
あり、有効な固溶強化を発揮するためには0.04%以
上の添加が必要である。しかし、0.15%を超えて添
加すると熱間加工性や溶接性を劣化させる。よって、P
含有量は0.04〜0.15%の範囲とする。P: P is the most important solid solution strengthening element for imparting static strength and fatigue strength without impairing workability. With the above Si and Mn amounts, C is 0.03
% or less could not be sufficiently compensated for, and the target tensile strength of 35 to 55 kgf/mm2 could not be achieved. (durability limit and tensile strength ratio) cannot be given. P is an essential element for this purpose, and in order to exhibit effective solid solution strengthening, it is necessary to add 0.04% or more. However, adding more than 0.15% deteriorates hot workability and weldability. Therefore, P
The content is in the range of 0.04 to 0.15%.
【0019】Cu:Cuも、前記Pと同様、35〜55
kgf/mm2の引張強度と良好な耐久限度比を達成す
るために添加する重要な元素である。但し、Pが固溶強
化を利用して疲労強度を向上させるのに対し、Cuは熱
間圧延プロセス後の巻取り中に微細な析出物(ε−Cu
)を析出させることによって疲労強度を向上させるもの
である。
この析出物は、従来の低炭素鋼におけるセメンタイト等
の炭化物に比べて著しく小さいため、分散強化効果が大
きく、しかも強度上昇の割には加工性を低下させること
が少ない。ε−Cuを析出させるためには0.03%以
上が必要であるが、1.5%を超えて添加すると熱間脆
性を生じ易くなる。よって、Cu含有量は0.03〜1
.5%の範囲とする。Cu: Cu is also 35 to 55 like the above P.
It is an important element added to achieve a tensile strength of kgf/mm2 and a good durability limit ratio. However, while P uses solid solution strengthening to improve fatigue strength, Cu produces fine precipitates (ε-Cu) during winding after the hot rolling process.
) to improve fatigue strength. Since these precipitates are significantly smaller than carbides such as cementite in conventional low carbon steel, the dispersion strengthening effect is large, and the workability is not reduced much compared to the increase in strength. Although 0.03% or more is required to precipitate ε-Cu, adding more than 1.5% tends to cause hot embrittlement. Therefore, the Cu content is 0.03 to 1
.. The range shall be 5%.
【0020】Ni:Niは、Cu含有による熱間脆性を
防止するために含有させる元素であり、含有量は概ねC
u量の1/3程度は必要である。よって、Ni含有量は
0.03〜0.5%の範囲とする。Ni: Ni is an element added to prevent hot embrittlement due to Cu content, and the content is approximately equal to that of C.
About 1/3 of the u amount is necessary. Therefore, the Ni content is in the range of 0.03 to 0.5%.
【0021】Al:Alは脱酸剤として添加するが、0
.01%未満では脱酸効果が小さく、また0.10%を
超えると介在物が増加し、加工性が劣化する。よって、
Al含有量は0.01〜0.10%の範囲とする。Al: Al is added as a deoxidizing agent, but 0
.. If it is less than 0.1%, the deoxidizing effect will be small, and if it exceeds 0.10%, inclusions will increase and workability will deteriorate. Therefore,
The Al content is in the range of 0.01 to 0.10%.
【0022】次に、本発明で得られる熱延鋼板における
結晶粒の限定理由について述べる。Next, the reason for limiting the crystal grains in the hot rolled steel sheet obtained by the present invention will be described.
【0023】疲労亀裂伝播の下限界(ΔKth)はフェ
ライト系の鋼において添加元素の影響を殆ど受けず、主
としてフェライト結晶粒径に依存し、粒径の増大と共に
増加する(図1)。従来の熱間圧延ままの低炭素熱延鋼
板においては、熱延条件を大幅に変化させても結晶粒の
粗粒化には限界があり、高々15μm程度である。この
結晶粒に対応するΔKthは[0023] The lower limit of fatigue crack propagation (ΔKth) in ferritic steel is almost unaffected by additive elements, depends mainly on the ferrite crystal grain size, and increases as the grain size increases (Fig. 1). In conventional low-carbon hot-rolled steel sheets as hot-rolled, there is a limit to coarsening of crystal grains, which is about 15 μm at most, even if the hot-rolling conditions are changed significantly. ΔKth corresponding to this crystal grain is
【数1】
である。一方、本発明鋼は極低炭素鋼であることから、
通常の熱延プロセスにより結晶粒の粗大化が可能であり
、[Equation 1] On the other hand, since the steel of the present invention is an ultra-low carbon steel,
It is possible to coarsen the grains through the normal hot rolling process,
【数2】 となる15μm以上の結晶粒径にすることができる。[Math 2] The crystal grain size can be set to 15 μm or more.
【0024】しかし、本発明で規定するP、Cuの下限
量を有する鋼において結晶粒径が35μmを超えると引
張強さが35kg/mm2以下となり、所要の強度を確
保できなくなる(図1)。また、いずれの成分範囲にお
いても結晶粒径が35μm以上(粒度番号で7以下)に
なると、プレス成形品に肌あれを生じて製品価値を損な
うことになる。よって、フェライト結晶粒径は15〜3
5μmとする。However, in steel having the lower limit amounts of P and Cu specified in the present invention, if the grain size exceeds 35 μm, the tensile strength becomes less than 35 kg/mm 2 , making it impossible to secure the required strength (FIG. 1). In addition, in any component range, if the crystal grain size is 35 μm or more (particle size number 7 or less), roughness will occur in the press-molded product and the product value will be impaired. Therefore, the ferrite crystal grain size is 15-3
It is set to 5 μm.
【0025】本発明における製造条件について説明する
。[0025] The manufacturing conditions in the present invention will be explained.
【0026】上記化学成分を有する鋼は常法により溶製
、鋳造し、熱間圧延に供されるが、熱間圧延の仕上温度
は、結晶粒度や集合組織が代わることにより、加工性、
疲労特性に影響を及ぼし、Ar3点未満ではフェライト
結晶粒の加工組織が残存するため、疲労特性と加工性が
劣化する。したがって、仕上温度はAr3点以上とし、
860〜980℃が好ましい。[0026] Steel having the above chemical composition is melted, cast, and subjected to hot rolling by a conventional method, but the finishing temperature of the hot rolling varies depending on the grain size and texture, thereby affecting workability,
This affects fatigue properties, and if the Ar point is less than 3, the processed structure of ferrite crystal grains remains, resulting in deterioration of fatigue properties and workability. Therefore, the finishing temperature should be set to Ar3 points or higher,
860-980°C is preferred.
【0027】仕上圧延後、冷却するが、冷却速度は熱間
圧延後の結晶粒度を適正に保つために20℃/秒以上と
する。この条件により、結晶粒の粗大化による強度低下
やPの偏析が防止できる。After finish rolling, the material is cooled, and the cooling rate is set to 20° C./second or more in order to maintain an appropriate grain size after hot rolling. Under these conditions, a decrease in strength due to coarsening of crystal grains and segregation of P can be prevented.
【0028】上記冷却後、巻取るが、巻取り温度はPの
偏析による脆化防止及び結晶粒粗大化防止と共にε−C
uの析出を最大限にもたらすために550℃以下とする
。また300℃以上にしないと、十分なε−Cuの析出
は起きない。よって、巻取り温度は300〜550℃の
範囲とする。After cooling, the coiling temperature is set to ε-C to prevent embrittlement due to P segregation and coarsening of crystal grains.
The temperature is set at 550° C. or lower to maximize the precipitation of u. Further, sufficient precipitation of ε-Cu does not occur unless the temperature is 300°C or higher. Therefore, the winding temperature is in the range of 300 to 550°C.
【0029】なお、本発明では、圧延まま(as ro
ll)の熱延プロセスで製造する場合について規定した
が、得られる熱延鋼板に溶融亜鉛メッキ、電気メッキな
どの表面処理を施しても、何ら本発明の特徴を損なうこ
とがないので、表面処理鋼板としても利用できる。[0029] In the present invention, as-rolled (as ro)
Although the case of manufacturing by the hot rolling process of ll) has been specified, surface treatment such as hot-dip galvanizing or electroplating on the obtained hot-rolled steel sheet will not impair the characteristics of the present invention in any way, so the surface treatment It can also be used as a steel plate.
【0030】次に本発明の実施例を示す。Next, examples of the present invention will be shown.
【0031】[0031]
【表1】
に示す化学成分の鋼について、同表に示す熱延条件で熱
延鋼板を製造した。なお、No.1〜No.6は本発明
例であり、No.7〜No.10は成分が従来の低炭素
鋼の例、No.11〜No.12は熱延条件が本発明範
囲外の例である。[Table 1] Hot-rolled steel sheets were manufactured using the steel having the chemical composition shown in the table under the hot rolling conditions shown in the same table. In addition, No. 1~No. No. 6 is an example of the present invention. 7~No. No. 10 is an example of low carbon steel with conventional composition. 11~No. No. 12 is an example in which the hot rolling conditions are outside the scope of the present invention.
【0032】得られた熱延鋼板について穴広げ試験[(
成形後の穴径−初期穴径)/(初期兄径)×100]、
引張試験、平面曲げ疲労試験、応力比0.1の疲労亀裂
伝播試験を行なうと共に、フェライト結晶粒度の測定を
行った。それらの結果をHole expansion test [(
Hole diameter after molding - initial hole diameter) / (initial older diameter) x 100],
A tensile test, a plane bending fatigue test, a fatigue crack propagation test at a stress ratio of 0.1 were conducted, and the ferrite grain size was measured. those results
【表2】 並びに図2、図3に示す。[Table 2] Also shown in FIGS. 2 and 3.
【0033】表2及び図より、本発明例の熱延鋼板は、
引張強さ35〜55kg/mm2以上を満足し、穴広げ
率150%以上、耐久限度比(疲労限度/引張強さ)も
従来の同強度水準に比べて高い値を示している。また、
結晶粒を15〜35μmに制御されているので、疲労亀
裂伝播下限界(ΔKth)も従来鋼以上の値となってい
ることがわかる。[0033] From Table 2 and the figures, the hot rolled steel sheet of the example of the present invention has the following properties:
It satisfies the tensile strength of 35 to 55 kg/mm2 or more, the hole expansion rate is 150% or more, and the durability limit ratio (fatigue limit/tensile strength) is also higher than the same conventional strength level. Also,
It can be seen that since the crystal grains are controlled to 15 to 35 μm, the lower limit of fatigue crack propagation (ΔKth) is also higher than that of conventional steel.
【0034】[0034]
【発明の効果】以上詳述したように、本発明によれば、
高強度でありながら優れた加工性を維持しつつ、疲労耐
久限、疲労亀裂伝播抵抗を著しく向上した熱延鋼板が得
られ、しかも表面処理鋼板としても利用できるので、そ
の効果は多大である。[Effects of the Invention] As detailed above, according to the present invention,
It is possible to obtain a hot-rolled steel sheet that has high strength, excellent workability, and significantly improved fatigue durability and fatigue crack propagation resistance, and can also be used as a surface-treated steel sheet, so the effects are great.
【図1】フェライト結晶粒径と引張強さ(σв)及び疲
労亀裂伝播下限界(ΔKth)の関係を示す図である。FIG. 1 is a diagram showing the relationship between ferrite grain size, tensile strength (σв), and lower limit of fatigue crack propagation (ΔKth).
【図2】引張強さ(σв)と穴広げ率の関係を示す図で
ある。FIG. 2 is a diagram showing the relationship between tensile strength (σв) and hole expansion rate.
【図3】引張強さ(σв)と疲労耐久限度比(σw/σ
в)の関係を示す図である。[Figure 3] Tensile strength (σв) and fatigue durability limit ratio (σw/σ
в) is a diagram showing the relationship between
Claims (1)
010〜0.03%、Si:0.10〜1.5%、Mn
:0.10〜2.0%、P:0.04〜0.15%、C
u:0.03〜1.5%、Ni:0.03〜0.5%及
びAl:0.01〜0.10%を含有し、残部がFe及
び不可避的不純物からなる鋼を、Ar3点以上の温度で
仕上圧延し、その後、20℃/秒以上で冷却し、更に3
00〜550℃の温度で巻取ることにより、最終組織が
、 15μm≦フェライト結晶粒径≦35μm、に制御され
た組織を得ることを特徴とする疲労耐久限度と亀裂伝播
抵抗の優れた35〜55kgf/mm2級の良成形性熱
延鋼板の製造方法。[Claim 1] In weight% (hereinafter the same), C: 0.0
010-0.03%, Si: 0.10-1.5%, Mn
:0.10~2.0%, P:0.04~0.15%, C
A steel containing u: 0.03 to 1.5%, Ni: 0.03 to 0.5%, and Al: 0.01 to 0.10%, with the balance consisting of Fe and unavoidable impurities, was heated at three Ar points. Finish rolling at the above temperature, then cooling at 20℃/second or more, and further 3
By winding at a temperature of 00 to 550℃, the final structure is controlled to 15μm≦ferrite grain size≦35μm.35 to 55kgf with excellent fatigue durability limit and crack propagation resistance. /mm2 grade hot rolled steel sheet with good formability.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13558991A JPH04337037A (en) | 1991-05-10 | 1991-05-10 | Production of hot rolled steel plate having superior formability and excellent in fatigue strength and crack propagation resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13558991A JPH04337037A (en) | 1991-05-10 | 1991-05-10 | Production of hot rolled steel plate having superior formability and excellent in fatigue strength and crack propagation resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04337037A true JPH04337037A (en) | 1992-11-25 |
Family
ID=15155360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13558991A Pending JPH04337037A (en) | 1991-05-10 | 1991-05-10 | Production of hot rolled steel plate having superior formability and excellent in fatigue strength and crack propagation resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04337037A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0382708A (en) * | 1989-08-24 | 1991-04-08 | Kobe Steel Ltd | Production of high strength hot rolled steel plate for high degree working excellent in fatigue characteristic |
-
1991
- 1991-05-10 JP JP13558991A patent/JPH04337037A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0382708A (en) * | 1989-08-24 | 1991-04-08 | Kobe Steel Ltd | Production of high strength hot rolled steel plate for high degree working excellent in fatigue characteristic |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4206351A1 (en) | 980 mpa-grade bainite high hole expansion steel and manufacturing method therefor | |
EP3828301B1 (en) | High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof | |
JP2840479B2 (en) | Manufacturing method of high strength hot rolled steel sheet with excellent fatigue strength and fatigue crack propagation resistance | |
US20020036035A1 (en) | High-strength hot-rolled steel sheet superior in stretch flange formability and method for production thereof | |
JP2008163409A (en) | High tensile strength welded steel pipe for automobile structural member, and method for producing the same | |
EP4086362A1 (en) | Low-silicon and low-carbon equivalent gpa grade multi-phase steel plate/steel strip and manufacturing method therefor | |
JP2783809B2 (en) | High tensile hot-rolled steel strip with excellent cold workability and weldability and a tensile strength of 55 kg / f / mm 2 or more | |
JP7482231B2 (en) | Low carbon, low cost, ultra-high strength multi-phase steel sheet/strip and manufacturing method thereof | |
JPH09118952A (en) | Member made of high-strength hot rolled steel sheet having lower yield ratio | |
JPH09143612A (en) | High strength hot rolled steel plate member low in yield ratio | |
JP3823627B2 (en) | Method for producing 60 kg grade non-tempered high strength steel excellent in weldability and toughness after strain aging | |
JP2001064728A (en) | Production of 60 kilo class high tensile strength steel excellent in weldability and toughness after strain aging | |
JPH02149646A (en) | High strength hot rolled steel sheet having excellent workability and weldability | |
JP3932892B2 (en) | High-strength steel plate and high-strength electroplated steel plate excellent in ductility, stretch flangeability and shock absorption characteristics and methods for producing them | |
JP3169293B2 (en) | Automotive thin steel sheet excellent in impact resistance and method for producing the same | |
JP2001020035A (en) | Steel for structural purpose excellent in corrosion resistance and corrosion fatigue resistance and its production | |
JPH04337037A (en) | Production of hot rolled steel plate having superior formability and excellent in fatigue strength and crack propagation resistance | |
JP4094498B2 (en) | Deep drawing high strength cold-rolled steel sheet and method for producing the same | |
JP2003089847A (en) | Hot rolled steel sheet having excellent stretch flanging workability, galvanized steel sheet, and their production method | |
JP2718550B2 (en) | Method for producing high-strength hot-rolled steel sheet for strong working with excellent fatigue properties | |
EP4455346A1 (en) | High strength and high formability steel sheet having excellent spot weldability, and method for manufacturing same | |
KR102468035B1 (en) | High strength steel sheet having excellent thermal stability and high yield ratio and method for manufacturing thereof | |
JP3338499B2 (en) | Method for producing high-strength hot-rolled steel sheet with excellent workability | |
JP3240843B2 (en) | Steel plate excellent in spot weldability and surface properties and method for producing the same | |
JP3338502B2 (en) | Method for producing high-strength hot-rolled steel sheet with excellent workability and surface properties |