[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04323324A - Method for controlling temperature of steel sheet in continuous heating furnace - Google Patents

Method for controlling temperature of steel sheet in continuous heating furnace

Info

Publication number
JPH04323324A
JPH04323324A JP2152191A JP2152191A JPH04323324A JP H04323324 A JPH04323324 A JP H04323324A JP 2152191 A JP2152191 A JP 2152191A JP 2152191 A JP2152191 A JP 2152191A JP H04323324 A JPH04323324 A JP H04323324A
Authority
JP
Japan
Prior art keywords
temperature
sheet
plate
speed
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2152191A
Other languages
Japanese (ja)
Inventor
Takayuki Ichinomiya
一宮 隆行
Ichiro Ueda
一郎 上田
Koji Hosoda
光司 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2152191A priority Critical patent/JPH04323324A/en
Publication of JPH04323324A publication Critical patent/JPH04323324A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To establish accurate temp. controlling method in the case of executing continuous heating treatment in a continuous heating furnace after joining steel sheets having different conditions in dimension, aimed sheet temp., material quality, etc. CONSTITUTION:A sheet temp. resposive curve from the preceding material to the following material so as to satisfy the preset sheet temp. control standard and sheet passing velocity, furnace temp. and these setting changing timing for thin prupose, are precalculated, but all the same, in the case where out of the torelance in the sheet temp. develops, according to (a) the case where the out of torelance only to the preceding material side develops, (b) the case where the out of the torelance only to the following material side develops, and (c) the case where the out of torelance to both of the preceding material side and the following material side develops, the sheet temp. control model compensating this with the sheet passing velocity is added, and the sheet passing velocity is continuously, incliningly and slowly changed before and after changing the setting to restrain the out of torelance in the sheet temp.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、例えば“板厚”,“
板幅”,“材質”又は“加熱炉出口の目標温度”等が異
なる種々の鋼板を溶接して連続した鋼板となし、これを
加熱炉内へ連続的に通板して加熱処理する際の“鋼板の
温度制御方法”に関する。
[Industrial Application Field] This invention is applicable to, for example, "plate thickness", "
Various steel plates with different widths, materials, or target temperatures at the outlet of the heating furnace are welded to form a continuous steel plate, which is then passed continuously into the furnace for heat treatment. Concerning “temperature control method of steel plate”.

【0002】0002

【従来技術とその課題】一般に、冷間圧延された鋼板に
は所要の特性を付与すべく加熱,均熱,冷却等を組合わ
せた様々な熱処理が加えられているが、この熱処理は生
産性の面から連続的かつ高速で行われるのが普通である
[Prior art and its problems] In general, cold rolled steel sheets are subjected to various heat treatments that combine heating, soaking, cooling, etc. in order to impart the required properties. From this point of view, it is normally done continuously and at high speed.

【0003】しかし、近年、連続熱処理炉(連続焼鈍炉
)で処理される鋼板は、多品種, 小ロットの需要が多
くなったことを反映して板厚,板幅,材質等の異なるコ
イルを溶接して一続きとしたものが急増しており、この
ため熱処理炉の炉温設定値を頻繁に変更することが必要
となっている。
However, in recent years, steel plates processed in continuous heat treatment furnaces (continuous annealing furnaces) have been manufactured using coils with different plate thicknesses, plate widths, materials, etc., reflecting the increasing demand for a wide variety of products and small lots. The number of continuous welded parts is rapidly increasing, and it is therefore necessary to frequently change the furnace temperature setting of the heat treatment furnace.

【0004】ところで、加熱炉の加熱方式としては、鋼
板の酸化防止等の面からラジアントチュ−ブ等を用いた
間接加熱方式が広く採用されているが、この方式には、
炉温設定値を変更した際の実績炉温値の追従性が極めて
低いと言う欠点がある。例えば、特開昭57−3564
0号として提案されている加熱装置での操業に例示され
る如く、異種鋼板を溶接接合してから行う鋼板の連続加
熱処理では、加熱炉に入る鋼板の溶接点を境とした前後
で鋼板温度の制御が必要となるが、この場合、“炉温設
定値の変更量”及び“変位のタイミング”を操業上の諸
条件に応じて予め計算により求めておき、その計算結果
に基づいて炉温設定値の変更を行うことがなされる。
By the way, as a heating method for a heating furnace, an indirect heating method using a radiant tube or the like is widely adopted from the viewpoint of preventing oxidation of the steel plate.
There is a drawback that the followability of the actual furnace temperature value when changing the furnace temperature setting value is extremely low. For example, JP-A-57-3564
As exemplified by the operation using the heating device proposed as No. 0, in continuous heat treatment of steel plates that is performed after welding different steel plates together, the steel plate temperature increases before and after the welding point of the steel plate entering the heating furnace. In this case, the "amount of change in the furnace temperature set value" and the "timing of displacement" are calculated in advance according to operational conditions, and the furnace temperature is adjusted based on the calculation results. The set value is changed.

【0005】図4は、上記装置による鋼板温度の制御例
を示しており、“板幅,材質,目標温度が共に等しく板
厚のみが異なる鋼板”同士を溶接した部分での制御方法
を説明したものであるが、図4に示すように、炉温の設
定値は板厚変化に対応すべく破線で示す状態とされる。
[0005] FIG. 4 shows an example of controlling the temperature of a steel plate using the above device, and explains the control method in a welded section of “steel plates that have the same width, material, and target temperature, but differ only in thickness.” However, as shown in FIG. 4, the set value of the furnace temperature is set as indicated by a broken line in order to correspond to changes in plate thickness.

【0006】しかしながら、炉温の実績値は追従性の低
さのため実線で示されるような変化経過をたどる。従っ
て、鋼板温度は、目標温度に対し溶接点の前後でハッチ
ングにて示す領域が外れる結果となる。そして、このよ
うに鋼板温度が目標温度から外れると鋼板の“焼き不足
”又は“焼き過ぎ”を招き、製品としての歩留りを低下
させることになる。
However, the actual value of the furnace temperature follows a change course as shown by the solid line due to poor followability. Therefore, the steel plate temperature results in a region shown by hatching before and after the welding point that deviates from the target temperature. If the steel sheet temperature deviates from the target temperature in this way, the steel sheet will be "under-baked" or "over-baked" and the yield as a product will be reduced.

【0007】そこで、このような“目標温度外れ”が解
消されるように、上記“炉温設定値の変更”に加えて“
鋼板の通板速度を変更する制御”を併用した方法が、特
開昭61−190026号として提案された。この方法
においては、加熱炉出口における鋼板温度(以降、 単
に“板温”と記す)と炉温,燃料流量,板厚,板幅及び
通板速度との関係を動的に表現する板温制御モデルを設
けると共に、将来の板厚,板幅又は目標板温値の変更(
以降、 “セット替”と記す)に際してはこのモデルを
用いて“板温の最適推移軌道”と“最適通板速度変更量
”及び“速度変更開始の最適タイミング”を計算し、そ
の結果に基づく“1回のみ不連続で行われる通板速度の
変更を含む制御”を実施することがポイントとされてい
る。
Therefore, in order to eliminate such "deviation from the target temperature", in addition to the above-mentioned "change of the furnace temperature setting value", "
A method was proposed in JP-A No. 61-190026 in which the steel sheet temperature at the outlet of the heating furnace (hereinafter simply referred to as "sheet temperature") In addition to providing a plate temperature control model that dynamically expresses the relationship between furnace temperature, fuel flow rate, plate thickness, plate width, and strip threading speed, it also allows for future changes in plate thickness, plate width, or target plate temperature values (
(hereinafter referred to as "set change"), this model is used to calculate the "optimum transition trajectory of sheet temperature,""optimum amount of change in sheet threading speed," and "optimum timing to start speed change," and based on the results, The key point is to implement "control that includes changing the threading speed only once and discontinuously."

【0008】しかしながら、特開昭61−190026
号として提案された前記方法によっても、セット替時に
おける板厚,板幅或いは目標板温値の変更量が大きい場
合には、板温の最適推移軌道を実現したとしても比較的
長い区間において板温がその目標値から外れてしまうと
言う問題を完全に解消することができなかった。また、
本出願人は、先に特願平2−79194号として「プロ
セス制御分野において熱収支理論により導き出される“
板温と炉温,板厚,板幅及び通板速度との関係”を動的
に表現するモデルを作成し、 これによって求められる
通板速度指令値,炉温指令値に基づいて通板速度,炉温
を制御する方法(以降“方法A”と称する)」を提案し
た。前記モデルは、将来のセット替え時における板温の
最適推移軌道(不連続な速度変更をした場合での最適軌
道)と通板速度変更量及び速度変更開始タイミングとを
前もって求めることを可能にすると共に、図5で示され
るような板温の目標値からの外れを予測することもでき
る。つまり、t1:炉温設定値変更時刻,t2:炉温が
定常状態に達する時刻,t3:速度変更タイミング,t
4:加熱炉出口において板厚が変化する時刻,h1:先
行材板厚,h2:後行材板厚,TF1:先行材定常状態
における炉温設定値,TF2:後行材定常状態における
炉温設定値,v1 :先行材定常状態における通板速度
,v2 :後行材定常状態における通板速度,ΔT1 
:先行材尾端における板温の目標外れ幅,ΔT2 :後
行材先端における板温の目標外れ幅として表した図5の
ΔT(ΔT1,ΔT2)の予測ができる(先行材と後行
材の板幅wが同じとして、 板温が目標値に対して上方
に外れた場合はΔT>0,下方に外れた場合はΔT<0
として算出される)。
However, Japanese Patent Application Laid-Open No. 61-190026
Even with the above-mentioned method proposed in No. 1, if the amount of change in plate thickness, plate width, or target plate temperature value at the time of set change is large, even if the optimum transition trajectory of plate temperature is achieved, the plate may not be properly adjusted over a relatively long period. The problem of temperature deviating from the target value could not be completely resolved. Also,
The present applicant previously published Japanese Patent Application No. 2-79194 entitled ``In the field of process control, heat balance theory
We created a model that dynamically expresses the relationship between strip temperature, furnace temperature, strip thickness, strip width, and strip threading speed, and determined the strip threading speed based on the strip threading speed command value and furnace temperature command value obtained by this model. proposed a method for controlling the furnace temperature (hereinafter referred to as "Method A"). The above model makes it possible to determine in advance the optimal transition trajectory of sheet temperature (optimal trajectory in the case of discontinuous speed changes), the amount of change in sheet threading speed, and the speed change start timing at the time of future set changes. At the same time, deviation of the plate temperature from the target value as shown in FIG. 5 can also be predicted. In other words, t1: Furnace temperature set value change time, t2: Time when the furnace temperature reaches a steady state, t3: Speed change timing, t
4: Time at which the plate thickness changes at the outlet of the heating furnace, h1: Thickness of the preceding material, h2: Thickness of the succeeding material, TF1: Furnace temperature set value in the steady state of the preceding material, TF2: Furnace temperature in the steady state of the succeeding material Set value, v1: Threading speed in the steady state of the preceding material, v2: Threading speed in the steady state of the succeeding material, ΔT1
ΔT (ΔT1, ΔT2) in Fig. 5, which is expressed as the target deviation width of the plate temperature at the tail end of the leading material, ΔT2: The width of the deviation from the target plate temperature at the leading edge of the trailing material (ΔT1, ΔT2) can be predicted. Assuming that the plate width w is the same, if the plate temperature deviates above the target value, ΔT > 0, and if it deviates downward, ΔT < 0.
).

【0009】更に、本出願人は、上記「方法A」によっ
てもセット替え時における板温の最適推移軌道が目標外
れ許容範囲(以降“公差”と称する)からの逸脱(以降
“板温外れ”と称する)が予想される場合の板温制御方
法として、「目標値からの外れ量を予測し、 板温がそ
の目標値となるように通板速度をプリセットで連続的に
制御する方法(以降“方法B”と称する)」をも提案し
ている(特願平2−185864号)。
[0009] Furthermore, the present applicant has discovered that even with the above-mentioned "Method A", the optimal transition trajectory of the plate temperature at the time of set change deviates from the target deviation tolerance range (hereinafter referred to as "tolerance") (hereinafter referred to as "plate temperature deviation"). As a method of controlling sheet temperature when the sheet temperature is expected to change (hereinafter referred to as (referred to as "Method B")" (Japanese Patent Application No. 185864/1999).

【00010】この方法では、まず、前記「方法A」に
よって板温の最適推移軌道と通板速度変更量及び通板速
度変更開始タイミングとを前もって求め(最適推移軌道
はこの段階では不連続な速度変更をした場合での最適軌
道を指す)、また同時に板温の目標値からの外れ量を予
測する。次に、先行材の速度と炉温の影響係数(以降、
単に“影響係数”と称する)ε1 を、先行材の定常状
態(炉温がTFe,通板速度がv1 ,板温もTs1で
一定である状態)から通板速度∂v1 だけ微小に変化
させたときの温度変化が∂Ts1であるときに ε1 =∂Ts1/∂v1 と定義し、この影響係数ε1 の値を公知モデルで算出
する。同じく、後行材の影響係数ε2 をε2 =∂T
s2/∂v2  と定義して同様の手順で算出する。但し、TFe=αT
F1+(1−α)Ts2,     0≦α≦1で、α
は加熱炉の設備条件や操業条件で決定される。
[00010] In this method, first, the optimal transition trajectory of the sheet temperature, the amount of change in the sheet-threading speed, and the start timing of the change in the sheet-threading speed are determined in advance by the above-mentioned ``Method A'' (the optimal transition trajectory is determined at this stage at a discontinuous speed). (This refers to the optimal trajectory when changes are made) and at the same time predicts the deviation of the plate temperature from the target value. Next, the influence coefficient of the speed of the preceding material and the furnace temperature (hereinafter,
ε1 (simply referred to as the "influence coefficient") was slightly changed by the threading speed ∂v1 from the steady state of the preceding material (furnace temperature TFe, threading speed v1, and sheet temperature constant at Ts1). When the temperature change is ∂Ts1, ε1 = ∂Ts1/∂v1 is defined, and the value of this influence coefficient ε1 is calculated using a known model. Similarly, the influence coefficient ε2 of the trailing material is expressed as ε2 = ∂T
Define s2/∂v2 and calculate using the same procedure. However, TFe=αT
F1+(1-α)Ts2, 0≦α≦1, α
is determined by the equipment and operating conditions of the heating furnace.

【00011】そして、図6で示したように、前記図5
に示される通板速度を次のように補正する訳である。 (1)  時刻t≦t4 では、通板速度v=v1 ,
(2)  t=t4 −Δtでは、v=v1 −βΔT
1/ε1 , (3)  t1 <t<t4 −Δtで
は、   (4)  t=t4 では、v=v2 −β
ΔT2/ε2 ,(5)  t4 <t<t2 では、  (2)  t=t2 では、v=v2 。 即ち、先に提案した「方法B」は、ここで求められた通
板速度指令値及び前記「方法A」によって求めた炉温指
令値に基づいて通板速度,炉温を制御する手法である。
[00011] As shown in FIG.
The sheet threading speed shown in is corrected as follows. (1) At time t≦t4, the threading speed v=v1,
(2) At t=t4 -Δt, v=v1 -βΔT
1/ε1, (3) At t1 < t < t4 - Δt, (4) At t=t4, v=v2 - β
ΔT2/ε2, (5) When t4 <t<t2, (2) When t=t2, v=v2. That is, the previously proposed "Method B" is a method of controlling the threading speed and furnace temperature based on the threading speed command value obtained here and the furnace temperature command value obtained by the "Method A". .

【00012】ところが、その後の検討により、本出願
人が先に提案した上記方法Bにも次のような問題のある
ことが認識されることとなった。つまり、一般に、先行
材と後行材とはグレ−ドの差があり、同じ板温外れ長さ
であっても、例えば先行材側の外れは製品性状上大きな
問題だが後行材側の外れは比較的問題が小さい場合やそ
の逆の場合がある。また、同じ板温外れ長さであっても
低温側の外れ(鋼板の焼き不足)は製品性状上大きな問
題であるが、高温外れ(鋼板の焼きすぎ)は比較的問題
が少ないと言うことも良く知られていることである。し
かしながら、先に提案した「方法B」においてはこのよ
うな差が認識されていないので、問題の少ない側の板温
外れを減少させる代わりに問題の大きい側の板温外れを
増大させ、結果的に前記「方法A」の場合より好ましく
ない板温軌道を発生する場合がある。
[00012] However, through subsequent studies, it has been recognized that the method B previously proposed by the present applicant also has the following problems. In other words, in general, there is a difference in grade between the preceding material and the following material, and even if they have the same sheet temperature deviation length, for example, deviation on the preceding material side is a big problem in terms of product properties, but deviation on the succeeding material side. may be a relatively small problem, or vice versa. Also, even if the plate temperature deviation length is the same, deviation on the low-temperature side (under-heating the steel plate) is a major problem in terms of product properties, but high-temperature deviation (over-heating the steel plate) is relatively less of a problem. This is well known. However, in "Method B" proposed earlier, such a difference is not recognized, so instead of reducing the disc temperature deviation on the side with fewer problems, it increases the disc temperature deviation on the side with more problems, and as a result, In this case, a plate temperature trajectory that is less preferable than in the case of "Method A" may occur.

【00013】このような問題は、次のような条件で発
生しがちである。即ち、例えば後行材が先行材よりも高
グレ−ドであり、後行材側に板温外れが許されない条件
の時が問題となる。このような場合に、前記「方法A」
で対処すると図7で示される如く後行材側に板温外れが
発生しないのに対して、前記「方法B」を適用すると、
図8に示されるように確かに全体の板温外れ長さはL1
 からL2 に減少するものの、後行材側にハッチング
で示す板温外れが発生する傾向がある。
[00013] Such problems tend to occur under the following conditions. That is, a problem arises when, for example, the succeeding material is of a higher grade than the preceding material and the following material is not allowed to deviate in plate temperature. In such a case, the above "Method A"
If the above-mentioned "Method B" is applied, no plate temperature deviation will occur on the trailing material side as shown in Fig. 7.
As shown in Fig. 8, the overall plate temperature deviation length is L1.
Although the temperature decreases from L2 to L2, there is a tendency for plate temperature deviations shown by hatching to occur on the trailing material side.

【00014】このようなことから、本発明が目的とし
たのは、セット替時における板温の最適推移軌道が板温
外れを生じることが予想される場合であっても、これに
的確に対処して先行材側,後行材側の板温外れが共に短
くなるような ”連続加熱炉での板温制御方法” を確
立することであった。
[00014] In view of the above, an object of the present invention is to accurately cope with the case where it is expected that the optimal transition trajectory of the plate temperature at the time of set change will cause the plate temperature to deviate. The objective was to establish a ``plate temperature control method in a continuous heating furnace'' that would shorten the plate temperature deviation on both the leading and trailing material sides.

【00015】00015

【課題を解決するための手段】本発明は、上記目的を達
成すべく行われた本発明者等による数多くの実験・研究
を通して完成されたものであり、「異種の鋼板を溶接し
て成る ”連続した鋼板” の連続加熱に際し、 連続
加熱炉出口までの鋼板温度の推移軌道を前もって予測す
ると共に、 予測した加熱炉出口での鋼板温度が目標値
から外れる場合に炉温と通板速度を操作量としたプリセ
ット制御でこれを補償する板温制御方法において、 ま
ず、 先行材と後行材の板温公差外れ長さが予め定めら
れた板温管理基準を満たすような先行材から後行材への
板温応答曲線と、 これを実現するための通板速度,炉
温及びそれらの設定変更タイミングを予測計算し、 そ
れでもなお板温外れが発生する結果となった場合、 “
減速時に先行材側で高め板温外れが発生するとき”及び
“増速時に先行材側で低め板温外れが発生するとき”は
通板速度を予め許容される最大の変更レ−トよりも小さ
い変更レ−トでもって連続的かつ傾斜状に変更し、 一
方、 “増速時に後行材側で高め板温外れが発生すると
き”及び“減速時に後行材側で低め板温外れが発生する
とき”には、通板速度を前記予測計算で求められた速度
変更タイミングにて一旦必要な速度変更幅よりも大きく
変更してから連続的かつ傾斜状に前記必要変更値に戻す
操作を実施することにより、 連続加熱炉における鋼板
の板温外れを抑制して的確な温度制御を行えるようにし
た点」に大きな特徴を有している。
[Means for Solving the Problems] The present invention was completed through numerous experiments and studies conducted by the present inventors in order to achieve the above object. When continuously heating "continuous steel plates," the trajectory of the steel plate temperature up to the exit of the continuous heating furnace is predicted in advance, and the furnace temperature and strip threading speed are manipulated if the predicted steel plate temperature at the exit of the heating furnace deviates from the target value. In the sheet temperature control method that compensates for this by preset control based on the amount of material, first, the length of the sheet temperature deviation between the preceding material and the succeeding material satisfies the predetermined sheet temperature control standard. We have calculated the plate temperature response curve for the plate temperature response curve, the plate threading speed, furnace temperature, and the timing of changing these settings to achieve this, and if the plate temperature still occurs, “
When decelerating, the plate temperature is higher on the preceding material side and the plate temperature is off. When speeding up, the preceding material side is lower and the plate temperature is lower than the plate temperature. Continuous and sloping changes are made at a small change rate, and on the other hand, when increasing the plate temperature on the trailing material side when increasing speed, and when decreasing the plate temperature on the trailing material side during deceleration, If this occurs, the sheet threading speed should be changed to a value greater than the required speed change width at the speed change timing determined by the predictive calculation, and then returned to the necessary change value continuously and in an inclined manner. The major feature is that by implementing this method, it is possible to suppress the temperature deviation of the steel plate in a continuous heating furnace and to perform accurate temperature control.

【00016】即ち、本発明は、連続加熱炉のセット替
時における板温の最適推移軌道が板温外れを生じること
が予想される場合、目標値からの外れ量を予測し、先行
材側,後行材側の板温外れが共に短くなるよう通板速度
をプリセットで連続的に制御する板温制御方法に関する
ものであるが、これを実施するためには、例えば“鋼板
の溶接点を検出する溶接点検出器”,“鋼板の通板速度
を検出する速度検出器”,“加熱炉の温度を検出する炉
温検出器”及び“加熱炉出口における鋼板の温度を検出
する板温検出器”を具備した「検出器群」と、上記溶接
点検出器及び速度検出器からの出力信号に応じて鋼板の
溶接点を追跡する「トラッキング手段」と、将来のセッ
ト替に際して板温の最適推移軌道と通板速度変更量と速
度変更タイミングとを算出する公知の「板温制御モデル
」と、上記板温軌道から板温の目標外れを予測し通板速
度を連続的に変更してこれを補償する「板温制御モデル
」と、通板速度を上記モデルによって算出された値に制
御する「速度制御手段」を具備する制御装置を適用する
ことができる。そして、その際の制御手順は以下の通り
である。
That is, the present invention predicts the amount of deviation from the target value when the optimum transition trajectory of the plate temperature at the time of changing the set of the continuous heating furnace is expected to cause the plate temperature to deviate from the target value, and This relates to a sheet temperature control method that continuously controls the sheet threading speed with a preset setting so that the sheet temperature deviation on the trailing material side is shortened. "Welding point detector", "Speed detector to detect the threading speed of the steel plate", "Furnace temperature detector to detect the temperature of the heating furnace", and "Plate temperature detector to detect the temperature of the steel plate at the outlet of the heating furnace" A "detector group" equipped with a "detector group" and a "tracking means" that tracks the welding point of the steel plate according to the output signals from the welding point detector and speed detector mentioned above, and a "tracking means" that tracks the welding point of the steel plate in accordance with the output signals from the welding point detector and speed detector, and the optimum transition of the plate temperature when replacing the set in the future. A well-known "sheet temperature control model" that calculates the trajectory, the amount of change in the sheet threading speed, and the speed change timing is used, and the sheet temperature is predicted to deviate from the target from the above sheet temperature trajectory, and the sheet threading speed is continuously changed to correct this. A control device including a "sheet temperature control model" for compensation and a "speed control means" for controlling the sheet passing speed to a value calculated by the model can be applied. The control procedure at that time is as follows.

【00017】まず、前記「方法A」により板温の最適
推移軌道と通板速度変更量及び速度変更開始タイミング
とが前もって求められる。また、同時に板温の目標値か
らの外れを予測することもなされる。なお、「方法A」
によって決定された板温の推移軌道は、通板速度をセッ
ト替え時に1回だけ不連続的に変更する場合を想定して
最適化されたものである。
[0017] First, the optimal transition trajectory of the sheet temperature, the amount of change in the sheet threading speed, and the speed change start timing are obtained in advance using the above-mentioned ``Method A''. At the same time, deviations of the plate temperature from the target value are also predicted. In addition, "Method A"
The sheet temperature transition trajectory determined by is optimized assuming that the sheet passing speed is discontinuously changed only once at the time of changing the set.

【00018】この方法によってもなお板温外れが発生
する場合は、次の3つのケ−スに分類される。 ケ−ス1…先行材側のみに板温外れが発生する,ケ−ス
2…後行材側のみに板温外れが発生する,ケ−ス2…先
行材側,後行材側共に板温外れが発生する。
If plate temperature deviation still occurs even with this method, it is classified into the following three cases. Case 1: Temperature deviation occurs only on the leading material side; Case 2: Temperature deviation occurs only on the trailing material side; Case 2: Board temperature drops on both the leading material side and the trailing material side. Temperature loss occurs.

【00019】そこで、更に、上記3つのケ−スに対し
てそれぞれ板温外れを通板速度によって補償する板温制
御モデルを付加し、セット替前後において通板速度を連
続的かつ傾斜状に変更して、「方法A」により得られた
板温の推移軌道に対する先行材側の板温外れ並びに後行
材側の板温外れを共に減少させる。
Therefore, we added a plate temperature control model to each of the above three cases to compensate for the plate temperature deviation by the plate passing speed, and changed the plate passing rate continuously and in an inclined manner before and after the set change. As a result, both the sheet temperature deviation on the preceding material side and the sheet temperature deviation on the succeeding material side with respect to the sheet temperature transition trajectory obtained by "Method A" are reduced.

【00020】ここで、板温外れが発生する前記3つの
ケ−スについて更に詳述する。 ケ−ス1(先行材側のみに板温外れが発生する場合)前
記図7で示される状態がこのケ−スの1例であるが、こ
のような場合には、通板速度の変更は不連続的に行うの
ではなく連続的かつ傾斜状にゆっくりと変更し、先行材
と後行材の間の溶接点が加熱炉出口を通過するΔt1 
分前に変更を終えるようにする。このような手法を採用
することにより、後行材に新たな板温外れを発生させる
ことなく先行材側の板温外れ長さを減少させることがで
きる。なお、溶接点前速度保持時間Δt1 は、実験に
より後行材に新たな板温外れが発生しないような最も小
さい時間を把握してその値とすれば良い。
[00020] Here, the above three cases in which plate temperature deviation occurs will be explained in more detail. Case 1 (When sheet temperature deviation occurs only on the preceding material side) The situation shown in FIG. 7 is an example of this case. In such a case, changing the sheet threading speed is The welding point between the leading material and the trailing material passes through the heating furnace outlet.
Make sure to finish making changes a minute in advance. By adopting such a method, it is possible to reduce the length of sheet temperature deviation on the preceding material side without causing new sheet temperature deviation in the succeeding material. Note that the pre-welding point speed holding time Δt1 may be set to a value determined by experiment to determine the shortest time at which new sheet temperature deviation does not occur in the trailing material.

【00021】具体的には、次の式に示すように速度を
変更する。 (1)  時刻t≦t3 では、通板速度v=v1 ,
(2)  t≧t4 −Δt1 では、v=v2 ,(
3)  t3 ≦t≦t4 −Δt1 では、
Specifically, the speed is changed as shown in the following equation. (1) At time t≦t3, the threading speed v=v1,
(2) If t≧t4 −Δt1, v=v2, (
3) If t3 ≦t≦t4 −Δt1,

【00022】このような速度補償を適用した時の板温
の制御状態は、図2のようになる。但し、次のような場
合には、この速度補償を適用しない。 1)  t4 −Δt1 ≦t3 の場合。即ち、速度
変更タイミングが“溶接点が加熱室出口を通過する時刻
”に近いか、又はそれよりも後の場合。 2)  (v2 −v1 )とΔT1 が同じ符号(+
又は−)の場合。例えば、通常は板温を下げる条件では
通板速度を下げるが、炉温の設定値によっては逆の場合
もある。このような場合に上記のような速度補償を行う
と、板温外れが更に増える結果となる。 しかし、これらのような場合は板温外れが元々短い場合
であることが分かっているので、この速度補償を適用し
なくても問題は少ない。
The plate temperature control state when such speed compensation is applied is as shown in FIG. However, this speed compensation is not applied in the following cases. 1) When t4 −Δt1 ≦t3. That is, when the speed change timing is close to "the time when the welding point passes the heating chamber outlet" or later. 2) (v2 −v1) and ΔT1 have the same sign (+
or -). For example, normally the strip threading speed is lowered under conditions that lower the strip temperature, but the opposite may be true depending on the furnace temperature setting. If the speed compensation described above is performed in such a case, the plate temperature deviation will further increase. However, in these cases, it is known that the plate temperature deviation is originally short, so there is little problem even if this speed compensation is not applied.

【00023】ケ−ス2(後行材側のみに板温外れが発
生する場合) 前記図9で示される状態がこのケ−スの1例であるが(
図中の記号t5 は板温外れが終わる時刻を示す)、こ
のような場合には、通板速度を不連続的に変更するので
はなく、速度を一旦必要な速度変更幅よりも大きく変更
し、その後速度を連続的かつ傾斜状に必要速度まで戻す
ようにする。このような手法により、後行材側の板温外
れ長さを効果的に減少させることができる。
Case 2 (case where plate temperature deviation occurs only on the trailing material side) The state shown in FIG. 9 is an example of this case (
The symbol t5 in the diagram indicates the time when the strip temperature ends.) In such a case, instead of changing the threading speed discontinuously, the speed should be changed once to a value larger than the required speed change range. , and then the speed is returned to the required speed in a continuous and ramped manner. By such a method, the length of the plate temperature deviation on the trailing material side can be effectively reduced.

【00024】具体的には、次の式に示すように通板速
度を変更する。 (1)  時刻t≦t3 では、通板速度v=v1 ,
(2)  t=t3 +Δt2 では、v=v2 +Δ
v,(但し、Δv=−k(ΔT2)/ε2 で、ε2は
後行材の影響係数である。v2 +Δvが操業安定性の
観点から定められた鋼板サイズ,板温目標,鋼種毎に速
度上下限値の範囲を超える場合にはΔvの絶対値を小さ
くしてv2 +Δvが速度上下限値の範囲に入るように
調整する)(3)  t3 ≦t≦t3 +Δt2 で
は、   (4)  t3 +Δt2 <t<t5 で
は、 (5)  t≧t5 では、v=v2 。
Specifically, the sheet threading speed is changed as shown in the following equation. (1) At time t≦t3, the threading speed v=v1,
(2) At t=t3 +Δt2, v=v2 +Δ
v, (where Δv=-k(ΔT2)/ε2, ε2 is the influence coefficient of the following material.v2 +Δv is the steel plate size, plate temperature target, and speed for each steel type determined from the viewpoint of operational stability. If the range exceeds the upper and lower speed limits, reduce the absolute value of Δv and adjust so that v2 +Δv falls within the range of the upper and lower speed limits.) (3) t3 ≦t≦t3 +Δt2, (4) t3 +Δt2 <t<t5, (5) t≧t5, v=v2.

【00025】このような速度補償を適用した時の板温
の制御状態は、図3のようになる。但し、このケ−スは
先行材側の板温外れを発生させないために後行材側のみ
に板温外れを発生させるものであるので、速度変更タイ
ミングは溶接点付近又はそれ以降で行われ、従ってこの
補償を行っても先行材側に新たに板温外れを発生させる
ことはない。
The plate temperature control state when such speed compensation is applied is as shown in FIG. However, in this case, in order to prevent plate temperature deviation from occurring on the preceding material side, plate temperature deviation occurs only on the succeeding material side, so the speed change timing is performed near or after the welding point. Therefore, even if this compensation is performed, no new plate temperature deviation will occur on the preceding material side.

【00026】ケ−ス3(先行材側,後行材側共に板温
外れが発生する場合) この場合には、「ケ−ス2」の場合と同様にして先行材
側の板温外れを増加させることなく次行材側の板温外れ
長さを減少させることができる。次いで、実施例の説明
図に基づき本発明をより具体的に説明する。
[00026] Case 3 (when the plate temperature drops on both the preceding material side and the succeeding material side) In this case, in the same way as in "Case 2", the plate temperature on the preceding material side is removed. It is possible to reduce the plate temperature deviation length on the next material side without increasing it. Next, the present invention will be described in more detail based on explanatory drawings of examples.

【00027】[00027]

【実施例】図1は、本発明に係る ”連続加熱炉におけ
る鋼板の温度制御装置” の構成を示す模式図である。 図1において、符号(1) で示されるものは、内部に
鋼板(s) を移送するためのハ−スロ−ル(2) を
備えた連続焼鈍炉加熱帯である。この連続焼鈍炉加熱帯
(1)への供給燃料流量の制御は、炉温制御装置(5)
 により連続焼鈍炉加熱帯(1)内部に設けられた炉温
検出器(3) からの信号に基づいて燃料流量制御装置
(4) を介して行われる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic diagram showing the configuration of a "temperature control device for steel plates in a continuous heating furnace" according to the present invention. In FIG. 1, the reference numeral (1) indicates a continuous annealing furnace heating zone equipped with a hearth roll (2) for transferring a steel plate (s) thereinto. The flow rate of fuel supplied to the continuous annealing furnace heating zone (1) is controlled by the furnace temperature control device (5).
This is performed via a fuel flow rate control device (4) based on a signal from a furnace temperature detector (3) provided inside the continuous annealing furnace heating zone (1).

【00028】なお、該連続焼鈍炉加熱帯(1) の出
側には板温検出器(6) が設けられている。また、連
続焼鈍炉加熱帯(1) の入側には駆動モ−タ(7) 
で駆動される上下一対のブライドルロ−ル(8) が設
けられているが、この駆動モ−タ(7) は速度制御装
置(9) によって速度が制御されるようになっている
A plate temperature detector (6) is provided on the exit side of the continuous annealing furnace heating zone (1). In addition, a drive motor (7) is installed on the entrance side of the continuous annealing furnace heating zone (1).
A pair of upper and lower bridle rolls (8) driven by a motor are provided, and the speed of this drive motor (7) is controlled by a speed control device (9).

【00029】ブライドルロ−ル(8) の入側には溶
接点検出器(10)が設けられており、トラッキング装
置(12)に溶接点位置信号が入力される。そして、こ
の溶接点位置のトラッキング装置(12)と速度制御装
置(9) ,炉温制御装置(5) ,板温制御装置1(
13)とがそれぞれ接続されており、速度制御装置(9
) ,炉温制御装置(5) ,板温制御装置1(13)
はトラッキング装置(12)より溶接点位置の情報をそ
れぞれ受信している。
A welding point detector (10) is provided on the entry side of the bridle roll (8), and a welding point position signal is input to a tracking device (12). The welding point position tracking device (12), speed control device (9), furnace temperature control device (5), plate temperature control device 1 (
13) are connected to each other, and the speed control device (9
), Furnace temperature control device (5), Plate temperature control device 1 (13)
each receives information on the welding point position from the tracking device (12).

【00030】また、この板温制御装置1(13)には
、トラッキング装置(12)のほかに鋼板仕様設定器(
14)から後行材の板厚,板幅,材質,目標板温,連続
焼鈍炉加熱帯(1) における公差の情報を受信し、炉
温検出器(3) からは連続焼鈍炉加熱帯(1) 内部
の炉温を、板温検出器(6) からは連続焼鈍炉加熱帯
(1) の出側における鋼板(s) の温度を受信して
いる。
[00030] In addition to the tracking device (12), the plate temperature control device 1 (13) also includes a steel plate specification setting device (
Information on the plate thickness, plate width, material, target plate temperature, and tolerance in the continuous annealing furnace heating zone (1) of the succeeding material is received from the furnace temperature detector (3). 1) The internal furnace temperature is received from the plate temperature detector (6), which receives the temperature of the steel plate (s) at the exit side of the continuous annealing furnace heating zone (1).

【00031】板温制御装置1(13)は、「方法A」
による板温の最適推移軌道予測を行い、炉温の設定値と
その変更タイミング,通板速度の設定値とその変更タイ
ミング,及び板温の予測最適推移軌道を決定する。ここ
で決定された炉温の設定値とその変更タイミングは炉温
制御装置(5) に送られ、炉温制御装置はトラッキン
グ装置(12)から受信する溶接点位置が炉温設定変更
タイミングに対応する位置を通過した時点で炉温設定値
を後行材の炉温設定値とし、その炉温設定値と炉温検出
器(3) で測定した炉温が一致するように燃料流量装
置(4) を介して炉内に供給する燃料流量を操作する
。また、板温制御装置1(13)は、通板速度設定値と
その変更タイミング、及び以下温の予測最適推移軌道を
制御装置選択装置(15)に送信する。
[00031] The plate temperature control device 1 (13) uses "Method A"
The optimum transition trajectory of the plate temperature is predicted by the method, and the set value of the furnace temperature and its change timing, the set value of the sheet threading speed and its change timing, and the predicted optimum change trajectory of the plate temperature are determined. The furnace temperature setting value determined here and its change timing are sent to the furnace temperature control device (5), and the furnace temperature control device receives the welding point position from the tracking device (12) in accordance with the furnace temperature setting change timing. At the point when the furnace temperature has passed the point where the furnace temperature is set, the furnace temperature setting value is used as the furnace temperature setting value of the succeeding material, and the fuel flow device (4) is set so that the furnace temperature setting value and the furnace temperature measured by the furnace temperature detector (3) match. ) to control the fuel flow rate supplied to the furnace. Further, the sheet temperature control device 1 (13) transmits the sheet passing speed set value, its change timing, and the predicted optimum transition trajectory of the temperature to the control device selection device (15).

【00032】制御装置選択装置(15)は、受信した
板温の予測最適軌道において先行材側にのみ板温外れが
発生している場合には板温制御装置2a(16a)を選
択する。逆に、受信した予測最適軌道において後行材側
にのみ板温外れが発生している場合には板温制御装置2
b(16b)を選択する。受信した板温の予測最適軌道
において先行材側,後行材側共に板温外れが発生してい
る場合には、板温制御装置2c(16c)を選択する。
The control device selection device (15) selects the sheet temperature control device 2a (16a) if the sheet temperature deviation occurs only on the preceding material side in the received predicted optimal trajectory of sheet temperature. Conversely, if the plate temperature deviation occurs only on the trailing material side in the received predicted optimal trajectory, the plate temperature control device 2
b (16b). If the plate temperature deviation occurs on both the preceding material side and the succeeding material side in the predicted optimum trajectory of the received plate temperature, the plate temperature control device 2c (16c) is selected.

【00033】次いで、制御装置選択装置(15)は上
記選択した制御装置に通板速度設定値とその変更タイミ
ング及び板温の予測最適推移軌道を送信する。そして、
それぞれの選択された制御装置は、先に説明した本発明
に係わる手法に従って通板速度の変更軌道を演算した結
果を受信し、その受信した通板速度の変更軌道を速度制
御装置(9) に送信する。速度制御装置(9) は、
その通板速度の変更軌道とトラッキング装置(12)か
ら受信した溶接点位置情報を基に駆動モ−タ(7) の
速度を制御することにより、通板速度を制御する。
Next, the control device selection device (15) transmits the sheet threading speed set value, its change timing, and the predicted optimum transition trajectory of the sheet temperature to the selected control device. and,
Each selected control device receives the result of calculating the changing trajectory of the sheet threading speed according to the method related to the present invention described above, and transmits the received changing trajectory of the sheet threading speed to the speed control device (9). Send. The speed control device (9) is
The sheet threading speed is controlled by controlling the speed of the drive motor (7) based on the changing trajectory of the sheet threading speed and the welding point position information received from the tracking device (12).

【00034】続いて、上記構成の温度制御装置に基づ
く制御過程を説明する。まず、「方法A」に従って板温
制御装置1(13)に最適推移軌道を求めさせる。しか
し、板温制御装置1(13)で予測した板温の推移軌道
は通板速度を不連続にしか変更していないため、図7或
いは図9のように長い範囲にわたって板温外れを生じて
いる。また、図7のような場合には、板温外れ長さを減
少させるため、仮に前記「方法B」で制御すると図8の
ように高グレ−ド側の後行材に板温外れが新たに発生す
ると言う問題がある。
Next, a control process based on the temperature control device having the above configuration will be explained. First, the plate temperature control device 1 (13) is caused to find an optimal transition trajectory according to "Method A". However, since the sheet temperature transition trajectory predicted by the sheet temperature control device 1 (13) only changes the sheet passing speed discontinuously, the sheet temperature deviates over a long range as shown in Figures 7 and 9. There is. In addition, in the case shown in Fig. 7, if control is performed using the above-mentioned "Method B" in order to reduce the length of sheet temperature deviation, sheet temperature deviation will occur in the trailing material on the high grade side as shown in Fig. 8. There is a problem that occurs in

【00035】そこで、本発明に従って新たに付加した
板温制御装置2a(16a),板温制御装置2b(16
b),板温制御装置2c(16c)及び制御装置選択装
置(15)が上記板温の予測推移軌道から目標板温外れ
幅を計算し、先に示した本発明に従った手法により通板
速度の設定値を決定する。このようにして決定された速
度設定値は速度制御装置(9) に送られるが、速度制
御装置(9) は通板速度が上記設定値になるように駆
動ロ−ルを制御する。
Therefore, according to the present invention, the plate temperature control device 2a (16a) and plate temperature control device 2b (16a) are newly added.
b) The plate temperature control device 2c (16c) and the control device selection device (15) calculate the target plate temperature deviation width from the predicted plate temperature transition trajectory, and thread the plate using the method according to the present invention described above. Determine the speed setting. The speed setting value determined in this way is sent to the speed control device (9), which controls the drive roll so that the sheet passing speed becomes the above-mentioned setting value.

【00036】もし、温度制御装置として板温制御装置
1(13)の出力が直接速度制御装置(9)に送信され
る構成(「方法A」の構成)が採られていて、図7或い
は図9に示す如き不都合な結果となるような場合には、
板温制御装置2a(16a),板温制御装置2b(16
b),板温制御装置2c(16c)及び制御装置選択装
置(15)を付設して本発明に従った制御を実施するこ
とでそれぞれ図2或いは図3のような結果を得られるよ
うになり、先行材側,後行材側共に板温外れ長さを極力
減少させることが可能となる。
If the temperature control device adopts a configuration in which the output of the plate temperature control device 1 (13) is directly transmitted to the speed control device (9) (configuration of ``Method A''), In cases where there is an inconvenient result as shown in 9.
Plate temperature control device 2a (16a), plate temperature control device 2b (16
b) By adding a plate temperature control device 2c (16c) and a control device selection device (15) and implementing control according to the present invention, results as shown in FIG. 2 or 3 can be obtained, respectively. , it becomes possible to reduce the board temperature deviation length as much as possible on both the leading material side and the trailing material side.

【00037】ただ、加熱炉内の鋼板のパスは有限長で
あり、また炉内ハ−スロ−ルの熱慣性のために板温の目
標外れをゼロにすることは不可能であるが、本発明に係
わる板温制御方法を適用すれば、先行材側,後行材側共
に板温外れは大幅に低減されることとなる。
However, the path of the steel plate in the heating furnace has a finite length, and it is impossible to eliminate the deviation of the plate temperature from the target due to the thermal inertia of the hearth roll in the furnace. If the sheet temperature control method according to the invention is applied, sheet temperature deviations on both the leading material side and the trailing material side will be significantly reduced.

【00038】[00038]

【効果の総括】以上に説明した如く、本発明によれば、
異種鋼板を溶接したストリップの連続加熱処理に際し、
溶接点前後の長い範囲にわたって生じていた目標温度か
らの外れ幅を大幅に減少することができ、品質の優れた
鋼板を高歩留りで製造することが可能となるなど、産業
上極めて有用な効果がもたらされる。
[Summary of Effects] As explained above, according to the present invention,
During continuous heat treatment of strips made by welding dissimilar steel plates,
It has extremely useful effects industrially, such as being able to significantly reduce deviations from the target temperature that occur over a long range before and after the welding point, and making it possible to manufacture high-quality steel plates at a high yield. brought about.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】連続加熱炉での本発明に係る鋼板の温度制御装
置の構成例を示した模式図である。
FIG. 1 is a schematic diagram showing a configuration example of a temperature control device for a steel plate according to the present invention in a continuous heating furnace.

【図2】本発明に係わる連続加熱炉温度制御法の概念と
鋼板温度の制御状態を示したグラフである。
FIG. 2 is a graph showing the concept of the continuous heating furnace temperature control method and the control state of the steel plate temperature according to the present invention.

【図3】本発明に係わる連続加熱炉温度制御法の概念と
鋼板温度の制御状態を示したグラフである。
FIG. 3 is a graph showing the concept of the continuous heating furnace temperature control method and the control state of the steel plate temperature according to the present invention.

【図4】従来の方法による鋼板温度の制御状態例を示し
たグラフである。
FIG. 4 is a graph showing an example of a control state of steel plate temperature according to a conventional method.

【図5】従来の方法による鋼板温度の制御状態例を示し
たグラフである。
FIG. 5 is a graph showing an example of a steel plate temperature control state according to a conventional method.

【図6】従来の方法による鋼板温度の制御状態例を示し
たグラフである。
FIG. 6 is a graph showing an example of a steel plate temperature control state according to a conventional method.

【図7】従来の方法による鋼板温度の制御状態例を示し
たグラフである。
FIG. 7 is a graph showing an example of a steel plate temperature control state according to a conventional method.

【図8】従来の方法による鋼板温度の制御状態例を示し
たグラフである。
FIG. 8 is a graph showing an example of a steel plate temperature control state according to a conventional method.

【図9】従来の方法による鋼板温度の制御状態例を示し
たグラフである。
FIG. 9 is a graph showing an example of a steel plate temperature control state according to a conventional method.

【符号の説明】[Explanation of symbols]

1  連続焼鈍炉加熱帯 2  ハ−スロ−ル 3  炉温検出器 4  燃料流量制御装置 5  炉温制御装置 6  板温検出器 7  駆動モ−タ 8  ブライドルロ−ル 9  速度制御装置 10  溶接点検出器 11  通板速度検出器 12  トラッキング装置 13  板温制御装置1 14  鋼板仕様設定器 15  板温制御装置選択装置 16a   板温制御装置2a 16b   板温制御装置2b 16c   板温制御装置2c s  鋼板 t1   炉温設定値変更時刻 t2   炉温が定常値に達する時刻 t3   速度変更タイミング(但し、 速度変更しな
い時はt3 =t4 ) t4   加熱炉出口を溶接点が通過する時刻h1  
 先行材板厚 h2   後行材板厚
1 Continuous annealing furnace heating zone 2 Hearth roll 3 Furnace temperature detector 4 Fuel flow control device 5 Furnace temperature control device 6 Plate temperature detector 7 Drive motor 8 Bridle roll 9 Speed control device 10 Welding point detection device 11 Threading speed detector 12 Tracking device 13 Sheet temperature control device 1 14 Steel plate specification setting device 15 Sheet temperature control device selection device 16a Sheet temperature control device 2a 16b Sheet temperature control device 2b 16c Sheet temperature control device 2c s Steel plate t1 Furnace Temperature setting value change time t2 Time when the furnace temperature reaches a steady value t3 Speed change timing (however, when the speed is not changed, t3 = t4) t4 Time h1 when the welding point passes the heating furnace outlet
Preceding material plate thickness h2 Following material plate thickness

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  異種の鋼板を溶接して成る ”連続し
た鋼板” の連続加熱に際し、連続加熱炉出口までの鋼
板温度の推移軌道を前もって予測すると共に、予測した
加熱炉出口での鋼板温度が目標値から外れる場合に炉温
と通板速度を操作量としたプリセット制御でこれを補償
する板温制御方法において、まず、先行材と後行材の板
温公差外れ長さが予め定められた板温管理基準を満たす
ような先行材から後行材への板温応答曲線と、これを実
現するための通板速度,炉温及びそれらの設定変更タイ
ミングを予測計算し、それでもなお板温公差外れが発生
する結果となった場合、“減速時に先行材側で高め板温
公差外れが発生するとき”及び“増速時に先行材側で低
め板温公差外れが発生するとき”は通板速度を予め許容
される最大の変更レ−トよりも小さい変更レ−トでもっ
て連続的かつ傾斜状に変更し、一方、“増速時に後行材
側で高め板温公差外れが発生するとき”及び“減速時に
後行材側で低め板温公差外れが発生するとき”には、通
板速度を前記予測計算で求められた速度変更タイミング
にて一旦必要な速度変更幅よりも大きく変更してから連
続的かつ傾斜状に前記必要変更値に戻す操作を実施する
ことを特徴とする、連続加熱炉における鋼板の温度制御
方法。
[Claim 1] When continuously heating a "continuous steel plate" made by welding different types of steel plates, the transition trajectory of the steel plate temperature up to the exit of the continuous heating furnace is predicted in advance, and the predicted steel plate temperature at the exit of the heating furnace is In the plate temperature control method, which compensates for deviations from the target values by preset control using the furnace temperature and sheet threading speed as manipulated variables, first, the length of the plate temperature deviation of the preceding material and the following material is determined in advance. We predict and calculate the plate temperature response curve from the preceding material to the succeeding material that satisfies the plate temperature control standards, and the plate threading speed, furnace temperature, and timing of changing these settings to achieve this, and still maintain the plate temperature tolerance. If this results in stripping, the threading speed should be changed in the following cases: ``When decelerating, the preceding material side is higher and the sheet temperature tolerance deviation occurs'' and ``When speeding up, the preceding material side is lower, and sheet temperature tolerance deviation occurs''. is changed continuously and in an inclined manner at a change rate smaller than the maximum change rate allowed in advance, and on the other hand, "when increasing speed on the trailing material side and causing sheet temperature tolerance deviation" In addition, if "a deviation from the lower sheet temperature tolerance occurs on the trailing material side during deceleration," the sheet threading speed should be changed once to a value greater than the required speed change width at the speed change timing determined by the above prediction calculation. 1. A method for controlling the temperature of a steel plate in a continuous heating furnace, characterized by carrying out an operation of continuously and slopingly returning the temperature to the required change value.
JP2152191A 1991-01-21 1991-01-21 Method for controlling temperature of steel sheet in continuous heating furnace Pending JPH04323324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2152191A JPH04323324A (en) 1991-01-21 1991-01-21 Method for controlling temperature of steel sheet in continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2152191A JPH04323324A (en) 1991-01-21 1991-01-21 Method for controlling temperature of steel sheet in continuous heating furnace

Publications (1)

Publication Number Publication Date
JPH04323324A true JPH04323324A (en) 1992-11-12

Family

ID=12057265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2152191A Pending JPH04323324A (en) 1991-01-21 1991-01-21 Method for controlling temperature of steel sheet in continuous heating furnace

Country Status (1)

Country Link
JP (1) JPH04323324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180073434A (en) * 2016-12-22 2018-07-02 주식회사 성화이앤씨 System for control temperature pattern of strip in continuous annealing line and the method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180073434A (en) * 2016-12-22 2018-07-02 주식회사 성화이앤씨 System for control temperature pattern of strip in continuous annealing line and the method of the same

Similar Documents

Publication Publication Date Title
JP2961464B2 (en) Water cooling control method for steel bars and wires
JPH02166235A (en) Method for controlling sheet temperature in metallic sheet heating furnace
JPH04323324A (en) Method for controlling temperature of steel sheet in continuous heating furnace
JPH0192322A (en) Method for controlling sheet temperature in continuous annealing furnace
JPH032331A (en) Apparatus for controlling strip temperature in continuous annealing furnace
JPH0192323A (en) Method for controlling sheet temperature in continuous annealing furnace
JPH0474825A (en) Method for controlling temperature of steel sheet in continuous heating furnace
JPS61190026A (en) Method and device for controlling strip temperature in continuous annealing furnace
JPH052728B2 (en)
JPH0910812A (en) Method for controlling coiling temperature of hot rolled steel sheet
CA1085023A (en) Process for manufacturing forge-welding steel pipe
JPS63307223A (en) Method for changing speed in sheet temperature control in continuous annealing furnace
JPH09216011A (en) Method for controlling cooling of hot rolled steel sheet
JPH04323325A (en) Method for controlling temperature of steel sheet in continuous annealing furnace
JPH0754055A (en) Method for controlling temperature of steel strip in continuous annealing furnace
JPS61159213A (en) Method for controlling hardness of steel strip
JPH03134121A (en) Device for controlling temperature of material to be heated in continuous heating furnace
JPH04337039A (en) Strip temperature control method for continuous annealing furnace
JP2921420B2 (en) Combustion control method in continuous annealing furnace
JP2006272395A (en) Method and apparatus for controlling cooling and computer program
JPS6070127A (en) Method for controlling temperature of strip with continuous annealing furnace
JPS6254365B2 (en)
KR100896574B1 (en) Controlling method for tension setting in continuous annealing furnace
JPH04346623A (en) Method for controlling finish continuous annealing for nonoriented magnetic steel sheet
JPS6337170B2 (en)