JPH04322731A - Method and device for dissolution of gas - Google Patents
Method and device for dissolution of gasInfo
- Publication number
- JPH04322731A JPH04322731A JP4667791A JP4667791A JPH04322731A JP H04322731 A JPH04322731 A JP H04322731A JP 4667791 A JP4667791 A JP 4667791A JP 4667791 A JP4667791 A JP 4667791A JP H04322731 A JPH04322731 A JP H04322731A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- liquid
- circulation pipe
- injection port
- port
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 6
- 238000004090 dissolution Methods 0.000 title description 4
- 239000007788 liquid Substances 0.000 claims abstract description 110
- 238000002347 injection Methods 0.000 claims abstract description 72
- 239000007924 injection Substances 0.000 claims abstract description 72
- 239000000203 mixture Substances 0.000 claims description 12
- 239000007789 gas Substances 0.000 description 99
- 239000002351 wastewater Substances 0.000 description 21
- 239000010865 sewage Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 239000012530 fluid Substances 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 6
- 238000004065 wastewater treatment Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000003570 air Substances 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は空気や酸素や二酸化炭素
その他の気体を液体中に溶解させるための気体溶解装置
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas dissolving device for dissolving air, oxygen, carbon dioxide, and other gases into a liquid.
【0002】0002
【従来の技術】この種の従来技術の1つの例としては、
図7示されるように、水中モータ1に直結された羽根車
2の回転により水に遠心力を与え、この遠心力によって
羽根車2の外周部に生じた負圧を利用して吸引パイプ3
から大気中の空気を吸引し、気液混合流を吐出口4から
旋回状態にして吐出させ、処理槽T内の汚水中に空気を
溶解させる装置が知られている。なお符号5は水中モー
タ1の駆動用の電源コードである。[Prior Art] One example of this type of prior art is:
As shown in FIG. 7, centrifugal force is applied to the water by the rotation of the impeller 2 directly connected to the submersible motor 1, and the negative pressure generated on the outer circumference of the impeller 2 due to this centrifugal force is used to create a suction pipe 3.
An apparatus is known in which air is sucked from the atmosphere, a gas-liquid mixed flow is discharged from the discharge port 4 in a swirling state, and the air is dissolved in the wastewater in the treatment tank T. Note that reference numeral 5 indicates a power cord for driving the underwater motor 1.
【0003】また第2の例としては、特公昭57−41
290号に示す気体溶解装置が知られている。これは図
8に示されるように、処理槽T内の汚泥水をポンプP及
び送液パイプ6によって強制循環させ、空気吸引パイプ
7から吸引した空気を循環汚泥水とともに噴出口6aか
ら噴出させて、処理槽T内の汚泥水中に空気を溶解する
構造となっている。また噴出口6aの前方には噴射管8
a〜8cが重設され、ブロワBから圧送された空気が送
気パイプ9を介し噴射管と噴射管との間に供給される構
造となっている。[0003] As a second example,
A gas dissolving device shown in No. 290 is known. As shown in FIG. 8, the sludge water in the treatment tank T is forcibly circulated by the pump P and the liquid sending pipe 6, and the air sucked from the air suction pipe 7 is ejected from the spout 6a together with the circulating sludge water. , the structure is such that air is dissolved in the sludge water in the treatment tank T. In addition, an injection pipe 8 is located in front of the injection port 6a.
a to 8c are installed one above the other, and the air fed under pressure from the blower B is supplied between the injection pipes through the air supply pipe 9.
【0004】0004
【発明の解決しようとする課題】しかし前記した第1の
従来技術(図7参照)では、空気の溶解度はおおむね良
好であるが、水中モータ1を水密構造とする必要があり
、しかも羽根車2等の機械的撹拌手段を設けるため装置
がどうしても大型化し、かつコスト高となる。さらに大
型の装置を処理槽内に配置するため、処理槽も装置配置
スペースを考慮してそれだけ大型化する必要があるとい
う問題点があった。[Problems to be Solved by the Invention] However, in the first prior art described above (see FIG. 7), although the solubility of air is generally good, the underwater motor 1 needs to have a watertight structure, and the impeller 2 The provision of mechanical stirring means such as the above inevitably increases the size and cost of the apparatus. Furthermore, since a large-sized device is disposed within the processing tank, there is a problem in that the processing tank also needs to be increased in size in consideration of the space for arranging the device.
【0005】一方、第2の従来技術(図8参照)では、
前記第1の従来技術の問題点は解消されてはいるものの
、空気と液体との混合作用を高めるための噴射管が不可
欠で、さらに空気の溶解度も従来技術に比べてそれ程高
いというものではなかった。本発明は前記従来技術の問
題点に鑑みなされたもので、その第1の目的は気体を超
微粒子状の気泡状態として液体中に噴射して、液体中に
十分な量の気体を溶解させることのできる方法を提供す
ることであり、第2の目的は構成が簡潔で、コストも安
く、液体槽を大型とすることなく、かつ高い気体溶解度
の達成できる気体溶解装置を提供することである。On the other hand, in the second prior art (see FIG. 8),
Although the problem of the first prior art has been solved, an injection tube is essential to enhance the mixing effect of air and liquid, and the solubility of air is not that high compared to the prior art. Ta. The present invention was developed in view of the problems of the prior art, and its first purpose is to inject gas into a liquid in the form of ultrafine bubbles to dissolve a sufficient amount of gas in the liquid. The second objective is to provide a gas dissolving device that has a simple structure, is inexpensive, does not require a large liquid tank, and can achieve high gas solubility.
【0006】[0006]
【課題を解決するための手段】前記第1の目的を達成す
るために、請求項1に係る気体溶解方法においては、液
面下において環状の液体噴射口から液体を旋回状態で前
方に噴射して先細り円錐形高速渦流を形成するとともに
、前記液体噴射口内側の気体噴出口から噴出させた気体
を前記高速渦流と接触させて、破砕し微細な気泡とする
ようにしたものである。[Means for Solving the Problems] In order to achieve the first object, in the gas dissolving method according to claim 1, the liquid is injected forward in a swirling state from an annular liquid injection port below the liquid surface. A tapered conical high-speed vortex is formed, and the gas ejected from the gas outlet inside the liquid injection port is brought into contact with the high-speed vortex and crushed into fine bubbles.
【0007】また前記第2の目的を達成するために、請
求項2に係る気体溶解装置においては、液体の満たされ
た液体槽と、前記液体槽内に開口する吸込口と吐出口と
を有し、槽内の液体を循環させるための循環パイプと、
前記循環パイプの途中に設けられて、パイプ内の液体を
圧送するポンプと、前記循環パイプの吐出口に設けられ
たエジェクター式気液混合体噴射ノズルと、溶解しよう
とする気体を前記噴射ノズルに供給する気体供給パイプ
と、を備えた気体溶解装置において、前記噴射ノズルを
、前記気体供給パイプに連通する気体噴出口と、前記気
体噴出口を取り囲む位置に形成された円環状の渦流室と
、前記渦流室に渦巻状に延び、前記循環パイプから供給
された循環液を渦流室に高速で導入し、渦流室に高速旋
回流を形成する旋回導孔と、前記渦流室の気体噴出口を
取り囲む位置に形成され、気体噴出口前方に先細り円錐
形の高速渦流を噴射形成する円環状の液体噴射口と、か
ら構成するようにしたものである。In order to achieve the second object, the gas dissolving apparatus according to claim 2 has a liquid tank filled with liquid, and a suction port and a discharge port opening into the liquid tank. and a circulation pipe for circulating the liquid in the tank,
A pump is provided in the middle of the circulation pipe to pump the liquid in the pipe, an ejector-type gas-liquid mixture injection nozzle is provided at the outlet of the circulation pipe, and a gas to be dissolved is sent to the injection nozzle. A gas dissolving device comprising: a gas supply pipe that communicates the injection nozzle with the gas supply pipe; and an annular swirl chamber formed at a position surrounding the gas supply pipe; A swirl guide hole extends in a spiral shape into the swirl chamber, introduces the circulating liquid supplied from the circulation pipe into the swirl chamber at high speed, and forms a high-speed swirl flow in the swirl chamber, and surrounds a gas jet port of the swirl chamber. The liquid injection port is formed at a position and is configured to include an annular liquid injection port that injects and forms a tapered conical high-speed vortex stream in front of the gas injection port.
【0008】また請求項3では、請求項2記載の気体溶
解装置において、ポンプを循環パイプの液体外部配管位
置に設置するようにしたものである。また請求項4では
、請求項2記載の気体溶解装置において、気体を強制供
給するためのブロワを前記空気供給パイプに設けるよう
にしたものである。請求項5に係る気体溶解装置におい
ては、液体の満たされた液体槽と、前記液体槽内に開口
する吸込口と吐出口とを有し、槽内の液体を循環させる
ための循環パイプと、前記循環パイプの途中に設けられ
て、パイプ内の液体を圧送するポンプと、前記循環パイ
プの吐出口に設けられたエジェクター式気液混合体噴射
ノズルと、溶解しようとする気体を前記噴射ノズルに供
給する気体供給パイプと、を備えた気体溶解装置におい
て、前記噴射ノズルを、前記気体供給パイプに連通する
とともに、循環パイプから供給された循環液の圧送によ
り負圧吸引された気体が循環液とともに噴射される気体
噴出口と、前記気体噴出口を取り囲む位置に形成された
円環状の渦流室と、前記循環パイプから供給された循環
液を渦流室に高速で導入し、渦流室に高速旋回流を形成
する旋回導孔と、前記渦流室の気体噴出口を取り囲む位
置に形成され、気体噴出口前方に先細り円錐形の高速渦
流を噴射形成する円環状の液体噴射口と、から構成する
ようにしたものである。According to a third aspect of the present invention, in the gas dissolving apparatus according to the second aspect, the pump is installed at the liquid external piping position of the circulation pipe. According to a fourth aspect of the present invention, in the gas dissolving apparatus according to the second aspect, a blower for forcibly supplying gas is provided in the air supply pipe. The gas dissolving device according to claim 5 includes a liquid tank filled with liquid, a circulation pipe having a suction port and a discharge port opening into the liquid tank, and for circulating the liquid in the tank; A pump is provided in the middle of the circulation pipe to pump the liquid in the pipe, an ejector-type gas-liquid mixture injection nozzle is provided at the outlet of the circulation pipe, and a gas to be dissolved is sent to the injection nozzle. A gas dissolving device comprising a gas supply pipe, wherein the injection nozzle is communicated with the gas supply pipe, and the gas suctioned under negative pressure by pressure feeding of the circulating fluid supplied from the circulation pipe is sucked together with the circulating fluid. A gas jet to be injected, an annular swirl chamber formed in a position surrounding the gas jet, and circulating liquid supplied from the circulation pipe are introduced into the swirl chamber at high speed to create a high-speed swirling flow in the swirl chamber. and an annular liquid injection port that is formed at a position surrounding the gas injection port of the swirl chamber and that forms a tapered conical high-speed vortex in front of the gas injection port. This is what I did.
【0009】また請求項6では、請求項5記載の気体溶
解装置において、ポンプを循環パイプの液体外部配管位
置に設置するようにしたものである。According to a sixth aspect of the present invention, in the gas dissolving apparatus according to the fifth aspect, the pump is installed at the liquid external piping position of the circulation pipe.
【0010】0010
【作用】請求項1では、環状の液体噴射口から噴射され
た液体は先細り円錐形の高速渦流を形成し、気体噴出口
から噴出した気体はこの高速渦流と接触して破砕され、
強制混合拡散されて超微粒子状の気泡となり、液体と気
体との接触表面積が増大する。According to claim 1, the liquid injected from the annular liquid injection port forms a tapered conical high-speed vortex, and the gas ejected from the gas injection port is crushed by contact with this high-speed vortex,
The liquid is forced to mix and diffuse into ultrafine bubbles, increasing the surface area of contact between the liquid and gas.
【0011】請求項2では、渦流室に形成された循環液
の高速旋回流が環状の液体噴射口から気体噴出口の前方
に噴射され、先細り円錐形の高速渦流を形成する。また
この循環液の噴射に伴って気体噴出口に負圧が生じ、こ
の負圧によって気体噴出口から気体が吸引噴出される。
そして気体は気体噴出口から吸引噴出されるや否や、液
体噴射口から噴射されて気体周りに形成された高速渦流
によって破砕され、強制混合拡散されて超微粒子状の気
泡となり、液体と気体の接触表面積が増大する。In the second aspect of the present invention, the high-speed swirling flow of the circulating fluid formed in the vortex chamber is injected from the annular liquid jet port in front of the gas jet port to form a tapered conical high-speed vortex flow. Further, along with this injection of the circulating fluid, negative pressure is generated at the gas outlet, and gas is sucked and ejected from the gas outlet due to this negative pressure. As soon as the gas is sucked and ejected from the gas nozzle, it is injected from the liquid nozzle and crushed by the high-speed vortex formed around the gas, forced to mix and diffuse into ultrafine bubbles, and the liquid and gas come into contact with each other. Surface area increases.
【0012】請求項3では、ポンプは液体外に設置する
ため、水密構造を考慮する必要がなく、ポンプ構造が簡
単となる。また請求項4では、ブロワによって気体供給
パイプから気体噴出口に気体を強制供給するので、気体
噴出口から大量の気体を噴出できる。請求項5では、渦
流室に形成された循環液の高速旋回流が環状の液体噴射
口から気体噴射口の前方に噴射され、先細り円錐形の高
速渦流を形成する。環状の液体噴射口内側の気体噴出口
からは、循環液の圧送により吸引された気体が循環液と
一緒に噴出される。そして気体は気体噴射口から噴出さ
れるや否や、液体噴射口から噴射されて気体周りに形成
された高速渦流によって破砕され、強制混合拡散されて
超微粒子状の気泡となり、液体と気体の接触表面積が増
大する。[0012] In the third aspect, since the pump is installed outside the liquid, there is no need to consider a watertight structure, and the pump structure becomes simple. Further, in the fourth aspect of the present invention, since the blower forcibly supplies gas from the gas supply pipe to the gas outlet, a large amount of gas can be ejected from the gas outlet. In claim 5, the high-speed swirling flow of the circulating fluid formed in the swirl chamber is injected from the annular liquid jet port to the front of the gas jet port, forming a tapered conical high-speed swirl flow. From the gas jet port inside the annular liquid jet port, the gas sucked in by the pressure feeding of the circulating fluid is jetted out together with the circulating fluid. As soon as the gas is ejected from the gas nozzle, it is injected from the liquid nozzle and is crushed by the high-speed vortex formed around the gas, forced to mix and diffuse into ultrafine bubbles, and the surface area of contact between the liquid and gas is increases.
【0013】請求項6では、請求項3と同様、ポンプに
ついての水密対策が不要で、ポンプ構造が簡単となる。[0013] In claim 6, as in claim 3, there is no need to take watertight measures for the pump, and the pump structure is simplified.
【0014】[0014]
【実施例】次に本発明の実施例を図面に基づいて説明す
る。図1〜図4は本発明を廃水処理に適用した一実施例
を示すもので、図1は気体溶解装置の全体概要図、図2
は気体溶解装置の要部であるエジェクター式渦流型気液
混合体噴射ノズルの正面図、図3は同ノズルの縦断面図
(図2に示す線III−IIIに沿う断面図)、図4は
旋回導孔の形成されている旋回導孔形成部材の斜視図で
ある。Embodiments Next, embodiments of the present invention will be explained based on the drawings. Figures 1 to 4 show an embodiment in which the present invention is applied to wastewater treatment. Figure 1 is an overall schematic diagram of a gas dissolving device, and Figure 2
is a front view of an ejector-type vortex-type gas-liquid mixture injection nozzle which is a main part of the gas dissolving device, FIG. 3 is a longitudinal cross-sectional view of the same nozzle (a cross-sectional view along line III-III shown in FIG. 2), and FIG. FIG. 3 is a perspective view of a turning guide hole forming member in which a turning guide hole is formed.
【0015】廃水処理における気体溶解装置は、図1に
示されるように、BOD成分を含む汚水で満たされたバ
ッキ槽10と、バッキ槽10内の汚水を強制循環させる
強制循環ライン20と、循環ライン20の循環汚水吐出
口22bに設置されたエジェクター式渦流型気液混合体
噴射ノズル(以下、単に噴射ノズルという)30と、前
記噴射ノズル30に空気を供給する空気吸引パイプ40
とからなる非常に簡潔な構造である。As shown in FIG. 1, the gas dissolving device for wastewater treatment includes a backing tank 10 filled with wastewater containing BOD components, a forced circulation line 20 for forcibly circulating the wastewater in the backing tank 10, and a circulation line 20 for forcedly circulating the wastewater in the backing tank 10. An ejector-type whirlpool gas-liquid mixture injection nozzle (hereinafter simply referred to as an injection nozzle) 30 installed at the circulating sewage outlet 22b of the line 20, and an air suction pipe 40 that supplies air to the injection nozzle 30.
It has a very simple structure consisting of
【0016】強制循環ライン20は、バッキ槽10内に
吸込口22a及び吐出口22bを位置させ、バッキ槽外
に延びた循環パイプ22と、この循環パイプ22の途中
に設けられ、循環汚水を圧送するポンプ24とから構成
されている。噴射ノズル30は、図2及び図3に示され
るように、空気吸引パイプ40と連通する横断面円形の
気体噴出口32と、この気体噴出口32を取り囲む円環
状の渦流室34と、気体噴出口32の外周囲から渦流室
34に渦巻状に延びる旋回導孔36と、渦流室34の気
体噴出口32に臨む側に形成された円環状の液体噴射口
38とが、ノズルケーシング31内に形成された構造と
なっている。The forced circulation line 20 has a suction port 22a and a discharge port 22b located inside the buck tank 10, and a circulation pipe 22 extending outside the buck tank, and is provided in the middle of this circulation pipe 22 to forcefully pump circulating wastewater. It is composed of a pump 24. As shown in FIGS. 2 and 3, the injection nozzle 30 includes a gas injection port 32 with a circular cross section that communicates with the air suction pipe 40, an annular swirl chamber 34 surrounding the gas injection port 32, and a gas injection port 32 that communicates with the air suction pipe 40. A swirl guide hole 36 extending spirally from the outer periphery of the outlet 32 to the swirl chamber 34 and an annular liquid injection port 38 formed on the side of the swirl chamber 34 facing the gas injection port 32 are provided in the nozzle casing 31 . It has a formed structure.
【0017】ノズルケーシング31の後端部には、循環
パイプ22の循環汚水吐出口22bに取着一体化するた
めの連結部31aが形成され、ノズルケーシング後部に
形成された循環汚水供給室37には循環パイプ22から
汚水が供給される。循環汚水供給室37は、前方に延び
る通路37a,円環状の室37b及び旋回導孔36を介
してノズルケーシング前部に形成された渦流室34に連
通している。旋回導孔36は、図2及び図4に示される
ように、円環状の室37bから渦巻状に前方の渦流室3
4に延びており、循環汚水がこの旋回導孔36を通過す
る際に高速流とされる。渦流室34では旋回導孔36か
ら導かれた高速流によって旋回流が形成され、絞られた
円環状の液体噴射口38から気体噴出口32の前方に向
かって高速旋回流が噴射され、符号Oを頂点とする先細
り円錐形の高速渦流が形成される(図3参照)。気体噴
出口32と円環状の液体噴射口38とを画成する円パイ
プ形状の円筒部33先端38aは先細りテーパ形状とさ
れて、循環汚水の噴射方向を軸心に向けている。即ち円
錐形状高速渦流の焦点Oは液体噴射口38の近傍に位置
しており、これによって高速渦流による強制混合効果が
高められている。A connecting portion 31a is formed at the rear end of the nozzle casing 31 for attachment and integration with the circulating sewage discharge port 22b of the circulation pipe 22, and is connected to the circulating sewage supply chamber 37 formed at the rear of the nozzle casing. Sewage is supplied from the circulation pipe 22. The circulating wastewater supply chamber 37 communicates with a swirl chamber 34 formed in the front part of the nozzle casing via a passage 37a extending forward, an annular chamber 37b, and a swirl guide hole 36. As shown in FIGS. 2 and 4, the swirl guide hole 36 spirally extends from the annular chamber 37b to the swirl chamber 3 in front.
4, and when the circulating wastewater passes through this swirl guide hole 36, it becomes a high-speed flow. In the vortex chamber 34, a swirling flow is formed by the high-speed flow guided from the swirling guide hole 36, and the high-speed swirling flow is injected from the narrowed annular liquid injection port 38 toward the front of the gas injection port 32, and the high-speed swirling flow is injected with the symbol O. A tapered conical high-speed vortex is formed with the apex at (see Fig. 3). The tip 38a of the circular pipe-shaped cylindrical portion 33 defining the gas jet port 32 and the annular liquid jet port 38 has a tapered shape, and the direction of jetting the circulating wastewater is directed toward the axis. That is, the focal point O of the conical high-speed vortex is located near the liquid injection port 38, thereby enhancing the forced mixing effect of the high-speed vortex.
【0018】一方、気体噴出口32は空気吸引パイプ4
0を介して大気と連通し、液体噴射口38から循環汚水
が噴射される際にこの気体噴出口32内には負圧が生じ
るので、この負圧によって空気が気体噴出口32から吸
引噴出される(図3白抜矢印参照)。そして気体噴出口
32から吸引噴出された空気は液体噴射口38から噴射
形成された円錐形の高速渦流と接触し破砕され、強制混
合拡散されて超微粒子状の気泡となって汚水に溶解され
る。なお符号42は空気吸引パイプ40に設けられたバ
ルブで、気体噴出口32に負圧吸引される空気量、即ち
、気体噴出口32から噴出される空気量を調整するよう
になっている。On the other hand, the gas outlet 32 is connected to the air suction pipe 4.
0, and when circulating wastewater is injected from the liquid injection port 38, a negative pressure is generated within the gas injection port 32, so air is sucked and ejected from the gas injection port 32 due to this negative pressure. (See the white arrow in Figure 3). The air suctioned and ejected from the gas ejection port 32 comes into contact with the conical high-speed vortex formed by the liquid ejection port 38, is crushed, and is forcedly mixed and diffused to become ultrafine particle-like bubbles and dissolved in the wastewater. . Note that reference numeral 42 is a valve provided on the air suction pipe 40, which is adapted to adjust the amount of air sucked into the gas outlet 32 under negative pressure, that is, the amount of air ejected from the gas outlet 32.
【0019】なおノズルケーシング31は、内部に循環
汚水供給室37、通路37a、円環状の室37b及び空
気吸引パイプ接続口31cが形成された円柱型のケーシ
ング基部31aと、ケーシング基部31aの前面に組付
一体化されたケーシング前部31bとからなる。ケーシ
ング前部31bは、液体噴射口38の外周縁を形成する
中央孔の形成されたキャップ型で、旋回導孔36の形成
されている旋回導孔形成部材35(図4参照)と協働し
て渦流室34を形成し、かつ気体噴出口32を形成する
内側円筒部33と協働して液体噴射口38を形成する。
なお図4符号34aは渦流室34の背面壁を形成する凹
面部を示す。そしてケーシング基部31aとケーシング
前部31bとはナット39によって締結一体化されてい
る。旋回導孔形成部材35は中央貫通孔35aの形成さ
れた略円錐台形状体で、内側円筒部33に旋回導孔形成
部材35が外嵌し、圧縮コイルスプリング35bによっ
て旋回導孔形成部材35がケーシング前部31bの内側
に付勢圧接されている。The nozzle casing 31 includes a cylindrical casing base 31a in which a circulating sewage supply chamber 37, a passage 37a, an annular chamber 37b, and an air suction pipe connection port 31c are formed, and a cylindrical casing base 31a on the front surface of the casing base 31a. It consists of a casing front part 31b that is assembled and integrated. The casing front part 31b is a cap type in which a central hole is formed that forms the outer peripheral edge of the liquid injection port 38, and cooperates with a swirl guide hole forming member 35 (see FIG. 4) in which a swirl guide hole 36 is formed. This forms a vortex chamber 34 and forms a liquid injection port 38 in cooperation with the inner cylindrical portion 33 forming the gas injection port 32 . Note that reference numeral 34a in FIG. 4 indicates a concave surface portion forming the back wall of the swirl chamber 34. As shown in FIG. The casing base portion 31a and the casing front portion 31b are fastened together with a nut 39. The turning guide hole forming member 35 has a substantially truncated conical shape with a central through hole 35a, and the turning guide hole forming member 35 is fitted onto the inner cylindrical portion 33, and the turning guide hole forming member 35 is rotated by a compression coil spring 35b. It is pressed against the inside of the casing front portion 31b.
【0020】またこのノズル30を組立てるには次の様
にして行う。まずケーシング基部31aの前端側挿通孔
31a1に内側円筒部33を嵌挿し、この円筒部33に
スプリング35b及び旋回導孔形成部材35を順次組付
ける。そして旋回導孔形成部材35を覆うようにケーシ
ング前部31bを被せ、最後にナット39を締め付け、
ノズルとして一体化する。The nozzle 30 is assembled in the following manner. First, the inner cylindrical part 33 is fitted into the front end side insertion hole 31a1 of the casing base 31a, and the spring 35b and the turning guide hole forming member 35 are sequentially assembled to this cylindrical part 33. Then, cover the casing front part 31b so as to cover the turning guide hole forming member 35, and finally tighten the nut 39,
Integrated as a nozzle.
【0021】このように本実施例に係る気体溶解装置で
は、気体噴出口32から吸引噴出された空気は、環状の
液体噴射口から噴射形成された循環汚水の円錐形高速渦
流と接触し、破砕され強制混合拡散されて、従来装置で
は得られなかった超微粒子状の気泡となる。このため汚
水中における気体と液体との接触表面積が増大し、汚水
中に多量の空気を溶解させることができ、従来の方法及
び装置に比べて汚水中の空気の溶解度が著しく向上する
。また汚水中の空気溶解度を著しく高めることができる
ので、微生物によるBOD成分の分解除去作用が活発化
し、汚水処理効率を著しく向上させることができる。As described above, in the gas dissolving device according to the present embodiment, the air sucked and ejected from the gas ejection port 32 comes into contact with the conical high-speed vortex of circulating wastewater sprayed from the annular liquid injection port, and is crushed. The mixture is forced to mix and diffuse, resulting in ultrafine bubbles that cannot be obtained using conventional equipment. Therefore, the contact surface area between gas and liquid in the wastewater is increased, and a large amount of air can be dissolved in the wastewater, and the solubility of air in the wastewater is significantly improved compared to conventional methods and devices. Furthermore, since the solubility of air in wastewater can be significantly increased, the action of decomposing and removing BOD components by microorganisms is activated, and the efficiency of wastewater treatment can be significantly improved.
【0022】また本実施例装置では、空気をエジェクタ
ー方式で吸引するので、空気を供給するためのブロワ等
のエネルギー源が不要で、消費エネルギーの節約にもつ
ながる。また本実施例装置の施工には、従来の気体溶解
装置における循環パイプの循環液吐出口に、本実施例で
示すコンパクトなエジェクター式渦流型気液混合体噴射
ノズル30を設置するだけでよく、施工も非常に簡単で
ある。Furthermore, since the device of this embodiment sucks air using an ejector method, there is no need for an energy source such as a blower for supplying air, leading to savings in energy consumption. Furthermore, in order to construct the apparatus of this embodiment, it is sufficient to simply install the compact ejector-type vortex-type gas-liquid mixture injection nozzle 30 shown in this embodiment at the circulating liquid discharge port of the circulation pipe in a conventional gas dissolving apparatus. Construction is also very easy.
【0023】なお前記実施例は、液体の噴射による負圧
を利用したエジェクター方式で空気を自給する構造とな
っているが、空気吸引パイプ40にブロワを設けて、空
気を強制的に気体噴出口32に供給するようにしてもよ
く、このようにした場合はブロワによる空気供給量を調
整することにより空気の溶解速度を調整することができ
る。Although the above embodiment has a structure in which air is self-supplied by an ejector system that utilizes negative pressure caused by jetting liquid, a blower is provided in the air suction pipe 40 to force the air through the gas jet port. 32, and in this case, the dissolution rate of air can be adjusted by adjusting the amount of air supplied by the blower.
【0024】図5は本発明の他の実施例の要部であるエ
ジェクター式渦流型気液混合体噴射ノズルの縦断面図を
示すもので、図3に対応する図である。前記した第1の
実施例における噴射ノズル30は、円環状の液体噴射口
38から循環汚水を噴射させた際の負圧を利用して、気
体噴出口32から気体を吸引噴出させる構造となってい
るが、本実施例における噴射ノズルは循環汚水が気体噴
出口32にも供給され、気体噴出口32から循環汚水と
ともに空気が噴射される構造となっている。即ち、気体
噴出口32の空気吸引パイプ40との連通部上流側が小
径通路32aを介して循環汚水供給室37に連通してい
る。このため循環汚水が小径通路32aから前方に高速
で圧送される際に空気吸引パイプ40から空気が負圧吸
引され、気体噴出口32からは、空気と循環汚水とが一
緒に噴射される。そして汚水とともに噴射された気体は
高速渦流と接触し、破砕され、強制混合拡散されて、超
微粒子状の気泡となって汚水に溶解される。FIG. 5 shows a longitudinal sectional view of an ejector-type vortex gas-liquid mixture injection nozzle which is a main part of another embodiment of the present invention, and corresponds to FIG. 3. The injection nozzle 30 in the first embodiment described above has a structure in which the gas is sucked and ejected from the gas injection port 32 by utilizing the negative pressure when circulating wastewater is injected from the annular liquid injection port 38. However, the injection nozzle in this embodiment has a structure in which the circulating wastewater is also supplied to the gas outlet 32, and air is injected from the gas outlet 32 together with the circulating wastewater. That is, the upstream side of the communication portion of the gas outlet 32 with the air suction pipe 40 communicates with the circulating wastewater supply chamber 37 via the small diameter passage 32a. Therefore, when the circulating sewage is forced forward from the small diameter passage 32a at high speed, air is sucked under negative pressure from the air suction pipe 40, and the air and circulating sewage are injected together from the gas outlet 32. The gas injected together with the wastewater comes into contact with the high-speed vortex, is crushed, forced to mix and diffuse, and is dissolved into the wastewater in the form of ultrafine bubbles.
【0025】この第2の実施例では、前記した第1の実
施例よりも気体噴出口32内における空気の吸引力(エ
ジェクター作用)が強いので、ブロワによって強制供給
すると同程度の空気が供給され、空気の溶解速度を高め
ることができるという利点がある。図6は本発明を汚水
処理に適用した他の実施例を示すもので、気体溶解装置
の全体概要図である。In this second embodiment, the air suction force (ejector action) within the gas jet port 32 is stronger than in the first embodiment, so if the air is forcibly supplied by a blower, the same amount of air can be supplied. , which has the advantage of increasing the dissolution rate of air. FIG. 6 shows another embodiment in which the present invention is applied to sewage treatment, and is an overall schematic diagram of a gas dissolving device.
【0026】この実施例では、バッキ槽10内に、液体
吸込口122aと吐出口122bを有する小型の液体循
環水中ポンプ124を設置し、水中ポンプの液体吐出口
122bに噴射ノズル30を設置した構造となっている
。その他は前記した第1の実施例と同様であり、同一の
符号を付すことによりその説明は省略する。この第3の
実施例では、コスト的に安価な小型の水中ポンプの液体
吐出口122bに噴射ノズル30を設置するだけでよく
、第1の実施例の循環パイプ22に相当する配管が不要
であるため、施工が容易で、しかも装置コストが非常に
安価となるという効果がある。In this embodiment, a small liquid circulation submersible pump 124 having a liquid suction port 122a and a discharge port 122b is installed in the buck tank 10, and an injection nozzle 30 is installed at the liquid discharge port 122b of the submersible pump. It becomes. The rest is the same as the first embodiment described above, and the explanation thereof will be omitted by giving the same reference numerals. In this third embodiment, it is only necessary to install the injection nozzle 30 at the liquid discharge port 122b of a small, inexpensive submersible pump, and piping corresponding to the circulation pipe 22 of the first embodiment is not required. Therefore, the construction is easy and the equipment cost is very low.
【0027】なお前記した実施例では、いずれも本発明
を汚水処理に適用した場合について説明したが、本発明
は汚水処理技術に限定されるものではなく、種々の気体
を液体に溶解させる技術に広く適用できることはいうま
でもない。In the above embodiments, the present invention was applied to sewage treatment, but the present invention is not limited to sewage treatment technology, but is applicable to technology for dissolving various gases in liquids. Needless to say, it is widely applicable.
【0028】[0028]
【発明の効果】以上の説明から明らかなように、本発明
に係る気体溶解方法及び装置によれば、気体噴出口から
噴出した気体が液体噴射口から噴射した高速液体渦流に
よって破砕され、強制混合拡散されて超微粒子状の気泡
となるので、液体と気体との接触表面積が増大し、液体
槽内の液体中に気体を高効率で溶解させることができる
。Effects of the Invention As is clear from the above description, according to the gas dissolving method and device according to the present invention, the gas ejected from the gas jet port is crushed by the high-speed liquid vortex jetted from the liquid jet port, resulting in forced mixing. Since the bubbles are diffused into ultrafine particle-like bubbles, the contact surface area between the liquid and the gas increases, and the gas can be dissolved into the liquid in the liquid tank with high efficiency.
【0029】また本発明に係る気体溶解装置は簡潔な構
成で高溶解効率が得られることから、装置コストも安く
、液体槽も小さくてすむという効果がある。また請求項
3,6では、ポンプを液体外に設けるので、ポンプに液
封構造等の手段を構ずる必要がなく、ポンプの構成が簡
潔でコスト的にも有利となる。請求項4では、ブロワに
よって気体が気体噴出口に強制供給されるので、気体の
溶解速度が高められる。Furthermore, since the gas dissolving device according to the present invention has a simple configuration and high dissolving efficiency can be obtained, the cost of the device is low and the liquid tank can be small. Further, in claims 3 and 6, since the pump is provided outside the liquid, there is no need to provide the pump with means such as a liquid seal structure, and the pump has a simple structure and is advantageous in terms of cost. According to the fourth aspect of the present invention, the gas is forcibly supplied to the gas jet port by the blower, so that the dissolution rate of the gas is increased.
【図1】本発明の一実施例を示す図で、汚水処理におけ
る気体溶解装置の全体概要図FIG. 1 is a diagram showing an embodiment of the present invention, and is an overall schematic diagram of a gas dissolving device for wastewater treatment.
【図2】気体溶解装置の要部であるエジェクター式渦流
型気液混合体噴射ノズルの正面図[Fig. 2] Front view of the ejector-type vortex-type gas-liquid mixture injection nozzle, which is the main part of the gas dissolving device.
【図3】同ノズルの縦断面図(図2に示す線III−I
IIに沿う断面図)[Fig. 3] Longitudinal cross-sectional view of the nozzle (line III-I shown in Fig. 2)
sectional view along II)
【図4】旋回導孔形成部材の斜視図[Fig. 4] Perspective view of the turning guide hole forming member
【図5】本発明の他の実施例の要部であるエジェクター
式渦流型気液混合体噴射ノズルの縦断面図FIG. 5 is a vertical cross-sectional view of an ejector-type whirlpool gas-liquid mixture injection nozzle which is a main part of another embodiment of the present invention.
【図6】本発
明のさらに他の実施例を示す図で、汚水処理における気
体溶解装置の全体概要図FIG. 6 is a diagram showing still another embodiment of the present invention, and is an overall schematic diagram of a gas dissolving device for wastewater treatment.
【図7】第1の従来技術を示す図[Fig. 7] Diagram showing the first conventional technology
【図8】第2の従来技術を示す図[Fig. 8] Diagram showing the second conventional technology
10 液体槽(バッキ槽)
22 循環パイプ
22a 吸込口
22b 吐出口
24 ポンプ
24A 液体循環水中ポンプ
30 エジェクター式渦流型気液混合体噴射ノズル3
2 気体噴出口
34 渦流室
36 旋回導孔
38 液体噴射口10 Liquid tank (bucking tank) 22 Circulation pipe 22a Suction port 22b Discharge port 24 Pump 24A Liquid circulation submersible pump 30 Ejector type whirlpool type gas-liquid mixture injection nozzle 3
2 Gas jet port 34 Whirlpool chamber 36 Turning guide hole 38 Liquid jet port
Claims (6)
液体を旋回状態で前方に噴射して先細り円錐形高速渦流
を形成するとともに、前記液体噴射口内側の気体噴出口
から噴出させた気体を前記高速渦流と接触させて、破砕
し微細な気泡とすることを特徴とする気体溶解方法。[Claim 1] Liquid is injected forward in a swirling state from an annular liquid injection port below the liquid surface to form a tapered conical high-speed vortex, and gas ejected from a gas injection port inside the liquid injection port is A gas dissolving method characterized by bringing the gas into contact with the high-speed vortex to crush it into fine bubbles.
槽内に開口する吸込口と吐出口とを有し、槽内の液体を
循環させるための循環パイプと、前記循環パイプの途中
に設けられて、パイプ内の液体を圧送するポンプと、前
記循環パイプの吐出口に設けられたエジェクター式気液
混合体噴射ノズルと、溶解しようとする気体を前記噴射
ノズルに供給する気体供給パイプと、を備えた気体溶解
装置において、前記噴射ノズルは、前記気体供給パイプ
に連通する気体噴出口と、前記気体噴出口を取り囲む位
置に形成された円環状の渦流室と、前記渦流室に渦巻状
に延び、前記循環パイプから供給された循環液を渦流室
に高速で導入し、渦流室に高速旋回流を形成する旋回導
孔と、前記渦流室の気体噴出口を取り囲む位置に形成さ
れ、気体噴出口前方に先細り円錐形の高速渦流を噴射形
成する円環状の液体噴射口と、から構成されたことを特
徴とする気体溶解装置。2. A circulation pipe having a liquid tank filled with liquid, a suction port and a discharge port opening into the liquid tank, and for circulating the liquid in the tank, and a circulation pipe disposed in the middle of the circulation pipe. a pump that is provided to pump the liquid in the pipe; an ejector-type gas-liquid mixture injection nozzle provided at the outlet of the circulation pipe; and a gas supply pipe that supplies the gas to be dissolved to the injection nozzle. In the gas dissolving device, the injection nozzle includes a gas injection port communicating with the gas supply pipe, an annular swirl chamber formed at a position surrounding the gas injection port, and a spiral-shaped swirl chamber in the swirl chamber. A swirling hole is formed at a position surrounding a gas jet port of the swirling chamber, and a swirling hole is formed at a position surrounding a gas jet port of the swirling chamber to introduce the circulating liquid supplied from the circulation pipe into the swirling chamber at high speed to form a high-speed swirling flow in the swirling chamber. 1. A gas dissolving device comprising: an annular liquid injection port that injects and forms a tapered conical high-speed vortex in front of the injection port.
置に設置されたことを特徴とする請求項2記載の液体溶
解装置。3. The liquid dissolving apparatus according to claim 2, wherein the pump is installed at a position of the liquid external piping of the circulation pipe.
給するためのブロワが設けられたことを特徴とする請求
項2記載の気体溶解装置。4. The gas dissolving device according to claim 2, wherein the air supply pipe is provided with a blower for forcibly supplying gas.
槽内に開口する吸込口と吐出口とを有し、槽内の液体を
循環させるための循環パイプと、前記循環パイプの途中
に設けられて、パイプ内の液体を圧送するポンプと、前
記循環パイプの吐出口に設けられたエジェクター式気液
混合体噴射ノズルと、溶解しようとする気体を前記噴射
ノズルに供給する気体供給パイプと、を備えた気体溶解
装置において、前記噴射ノズルは、前記気体供給パイプ
に連通するとともに、循環パイプから供給された循環液
の圧送により負圧吸引された気体が循環液とともに噴射
される気体噴出口と、前記気体噴出口を取り囲む位置に
形成された円環状の渦流室と、前記循環パイプから供給
された循環液を渦流室に高速で導入し、渦流室に高速旋
回流を形成する旋回導孔と、前記渦流室の気体噴出口を
取り囲む位置に形成され、気体噴出口前方に先細り円錐
形の高速渦流を噴射形成する円環状の液体噴射口と、か
ら構成されたことを特徴とする気体溶解装置。5. A circulation pipe having a liquid tank filled with liquid, a suction port and a discharge port opening into the liquid tank, and for circulating the liquid in the tank, and a circulation pipe disposed in the middle of the circulation pipe. a pump that is provided to pump the liquid in the pipe; an ejector-type gas-liquid mixture injection nozzle provided at the outlet of the circulation pipe; and a gas supply pipe that supplies the gas to be dissolved to the injection nozzle. In the gas dissolving device, the injection nozzle communicates with the gas supply pipe and is a gas injection port through which gas sucked under negative pressure by pressure feeding of the circulating liquid supplied from the circulation pipe is injected together with the circulating liquid. , an annular swirl chamber formed at a position surrounding the gas jet port, and a swirl guide hole that introduces the circulating liquid supplied from the circulation pipe into the swirl chamber at high speed to form a high-speed swirl flow in the swirl chamber. and an annular liquid injection port that is formed at a position surrounding the gas injection port of the swirl chamber and that injects and forms a tapered conical high-speed vortex in front of the gas injection port. Device.
置に設置されたことを特徴とする請求項5記載の液体溶
解装置。6. The liquid dissolving apparatus according to claim 5, wherein the pump is installed at a position of the liquid external piping of the circulation pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4667791A JPH04322731A (en) | 1991-03-12 | 1991-03-12 | Method and device for dissolution of gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4667791A JPH04322731A (en) | 1991-03-12 | 1991-03-12 | Method and device for dissolution of gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04322731A true JPH04322731A (en) | 1992-11-12 |
Family
ID=12754009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4667791A Pending JPH04322731A (en) | 1991-03-12 | 1991-03-12 | Method and device for dissolution of gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04322731A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003181330A (en) * | 2001-12-13 | 2003-07-02 | Fujimori Gijutsu Kenkyusho:Kk | Nozzle for generating fine liquid particles |
JP2004033908A (en) * | 2002-07-03 | 2004-02-05 | Fuji Electric Holdings Co Ltd | Ozone diffuser |
WO2009103158A1 (en) * | 2008-02-21 | 2009-08-27 | Blue Planet Environmental Inc. | Device for improved delivery of gas to fluid |
US7600522B2 (en) | 2003-05-22 | 2009-10-13 | Dainippon Screen Mfg. Co., Ltd. | Substrate treatment method and substrate treatment apparatus |
JP2013146688A (en) * | 2012-01-19 | 2013-08-01 | Nitta Corp | Micro-bubble generating device and swirl flow generation |
JP2013146683A (en) * | 2012-01-19 | 2013-08-01 | Nitta Corp | Microbubble generator device |
JP2014155922A (en) * | 2007-09-07 | 2014-08-28 | Turbulent Energy Inc | Fluid activation device |
US8967597B2 (en) | 2008-05-08 | 2015-03-03 | Blue Planet Environmental Inc. | Device for mixing gas into a flowing liquid |
JP2018008223A (en) * | 2016-07-14 | 2018-01-18 | 株式会社Onr | Fine bubble generator |
-
1991
- 1991-03-12 JP JP4667791A patent/JPH04322731A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003181330A (en) * | 2001-12-13 | 2003-07-02 | Fujimori Gijutsu Kenkyusho:Kk | Nozzle for generating fine liquid particles |
JP2004033908A (en) * | 2002-07-03 | 2004-02-05 | Fuji Electric Holdings Co Ltd | Ozone diffuser |
US7600522B2 (en) | 2003-05-22 | 2009-10-13 | Dainippon Screen Mfg. Co., Ltd. | Substrate treatment method and substrate treatment apparatus |
JP2014155922A (en) * | 2007-09-07 | 2014-08-28 | Turbulent Energy Inc | Fluid activation device |
WO2009103158A1 (en) * | 2008-02-21 | 2009-08-27 | Blue Planet Environmental Inc. | Device for improved delivery of gas to fluid |
CN101952018A (en) * | 2008-02-21 | 2011-01-19 | 蓝星环境股份有限公司 | Device for improved delivery of gas to fluid |
AU2009217186B2 (en) * | 2008-02-21 | 2014-08-28 | Blue Planet Environmental Inc. | Device for improved delivery of gas to liquid |
US8905385B2 (en) | 2008-02-21 | 2014-12-09 | Blue Planet Environmental Inc. | Device for improved delivery of gas to fluid |
US8967597B2 (en) | 2008-05-08 | 2015-03-03 | Blue Planet Environmental Inc. | Device for mixing gas into a flowing liquid |
JP2013146688A (en) * | 2012-01-19 | 2013-08-01 | Nitta Corp | Micro-bubble generating device and swirl flow generation |
JP2013146683A (en) * | 2012-01-19 | 2013-08-01 | Nitta Corp | Microbubble generator device |
JP2018008223A (en) * | 2016-07-14 | 2018-01-18 | 株式会社Onr | Fine bubble generator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5169293A (en) | Ejector with high vacuum force in a vacuum chamber | |
WO2001097958A9 (en) | Fine air bubble generator and fine air bubble generating device with the generator | |
JPH084731B2 (en) | Gas-liquid mixing device | |
JPH07265676A (en) | Gas dissolution | |
JP2008126226A (en) | Agitation aerator | |
JP2007278003A (en) | Method and device for purifying sewage force-feed pipeline system | |
JPH04322731A (en) | Method and device for dissolution of gas | |
US20040217491A1 (en) | Water aerator and method of using same | |
JP2002059186A (en) | Water-jet type fine bubble generator | |
US4707308A (en) | Apparatus for circulating water | |
JP2881570B2 (en) | Aeration device | |
JP2001276589A (en) | Aerator | |
JP5218948B1 (en) | Gas dissolver | |
JP2008100225A (en) | Air/liquid mixer | |
CN209039146U (en) | A kind of modified Gas feeding low pressure stream aerator | |
KR100854687B1 (en) | Micro bubble system | |
JPH10230150A (en) | Aerator | |
JP2001259395A (en) | Aerator | |
CN203319759U (en) | Annular water beam group nozzle multi-injection jet aerator | |
JP3414124B2 (en) | Ozone water production equipment | |
JP2000061489A (en) | Aeration device | |
JP2005161174A (en) | Gas dissolving method and gas dissolving device | |
CS208105B2 (en) | Appliance for distribution of gases in the liguids mainly for aerating the refuse waters | |
CN210065284U (en) | Ball blade type transportation nanometer aerator | |
KR200208109Y1 (en) | 0zonied-water generating apparatus |