[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04329680A - Light emitting device - Google Patents

Light emitting device

Info

Publication number
JPH04329680A
JPH04329680A JP3100016A JP10001691A JPH04329680A JP H04329680 A JPH04329680 A JP H04329680A JP 3100016 A JP3100016 A JP 3100016A JP 10001691 A JP10001691 A JP 10001691A JP H04329680 A JPH04329680 A JP H04329680A
Authority
JP
Japan
Prior art keywords
resin
light emitting
mold
molding
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3100016A
Other languages
Japanese (ja)
Inventor
Masahiko Kimoto
匡彦 木本
Masumi Nakamichi
眞澄 中道
Shoshichi Kato
加藤 昭七
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3100016A priority Critical patent/JPH04329680A/en
Publication of JPH04329680A publication Critical patent/JPH04329680A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Landscapes

  • Led Device Packages (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To omit a flash removing step and to reduce a cost of a mold by injection molding thermoplastic resin having low thermal expansion coefficient at the time of molding sealing resin. CONSTITUTION:A light emitting diode 1 is die bonded to a lead frame 3 via conductive paste, and then internally wired with bonding wires 2. Then, permeable thermoplastic polyimide resin is injected from an inlet 9 in a state that the frame is inserted to a mold 8, and resin-sealed. In this case, since the injection molding is executed by using the thermoplastic resin, a molding cycle until the resin is cured is shortened to 10-30sec. Accordingly, even in the case of the mold for injecting a small number can obtain a sufficient mass productivity. Sealing resin 4, i.e., a lens 4 is injection molded in a high viscosity state by using permeable thermoplastic polyimide resin having a low linear expansion coefficient, high melting viscosity.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、発光ダイオードチツプ
及びこれをマウントする金属製のリードフレームとこれ
らを封止する樹脂から構成される発光ダイオードランプ
等の発光装置に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light-emitting device such as a light-emitting diode lamp, which is composed of a light-emitting diode chip, a metal lead frame for mounting the chip, and a resin for sealing them.

【0002】0002

【従来の技術】従来の発光ダイオードランプ(以下LE
Dという)等の発光装置の構造を図12,13に示す。 図12はキヤステイング方式によるLEDランプの断面
図であり、図13はトランスフアー成形方式による表面
実装型LEDランプの斜視図である。
[Prior Art] Conventional light emitting diode lamp (hereinafter referred to as LE)
The structure of a light emitting device such as D) is shown in FIGS. FIG. 12 is a sectional view of an LED lamp using a casting method, and FIG. 13 is a perspective view of a surface-mounted LED lamp using a transfer molding method.

【0003】ここで、図中、1は発光ダイオード、2は
ボンデイングワイヤ、3はリードフレーム、4は透光性
の封止樹脂体である。
In the figure, 1 is a light emitting diode, 2 is a bonding wire, 3 is a lead frame, and 4 is a transparent sealing resin body.

【0004】図12に示すキヤステイング方式のLED
ランプの製造方法は、プラスチツク製の雌型に発光ダイ
オード1を搭載したリードフレーム3を挿入し、液状の
熱硬化性エポキシ樹脂を注入した後、オーブン内でエポ
キシ樹脂を加熱固化させてレンズ状の封止樹脂体4を成
形し、リードフレーム3のタイバー切断を行い製品に分
離する。
[0004] Casting type LED shown in FIG.
The lamp is manufactured by inserting a lead frame 3 equipped with a light emitting diode 1 into a plastic female mold, injecting liquid thermosetting epoxy resin, and heating and solidifying the epoxy resin in an oven to form a lens-shaped mold. The sealing resin body 4 is molded, and the lead frame 3 is cut with tie bars to separate the products.

【0005】一方、図13に示すトランスフアー成形方
式のLEDランプの製造方法は、発光ダイオード1を搭
載したリードフレーム3を成形金型内にインサートした
状態で、熱硬化性のエポキシ樹脂を注入し、金型内で加
熱固化して樹脂封止を行う。樹脂封止後は、バリ取りお
よびタイバー切断を行つて製品に分離し、必要に応じて
、図13の如く、リードフレームをフオーミングする。 なお、図13中、6はバリ部である。
On the other hand, the method of manufacturing an LED lamp using the transfer molding method shown in FIG. 13 involves inserting a lead frame 3 on which a light emitting diode 1 is mounted into a mold, and then injecting a thermosetting epoxy resin. , heat and harden in a mold to seal with resin. After resin sealing, deburring and tie bar cutting are performed to separate the products into products, and if necessary, lead frames are formed as shown in FIG. 13. In addition, in FIG. 13, 6 is a burr part.

【0006】[0006]

【発明が解決しようとする課題】しかし、図12に示す
キヤステイング方式では、以下の問題点が指摘されてい
る。
However, the following problems have been pointed out in the casting method shown in FIG.

【0007】(1)LEDランプのリードフレーム付根
の面形状が、図12の如く、エポキシ樹脂の注入量のば
らつきや樹脂の表面張力により凹凸5が生じ、形状が一
定しない。
(1) As shown in FIG. 12, the surface shape of the base of the lead frame of an LED lamp is not constant, with unevenness 5 occurring due to variations in the amount of epoxy resin injected and the surface tension of the resin.

【0008】(2)プラスチツク製の雌型は、10〜1
00回程度と耐用回数が少なく、頻繁に交換する必要が
ある。
(2) The female mold made of plastic has a diameter of 10 to 1
It has a low service life of about 00 cycles, so it needs to be replaced frequently.

【0009】(3)リードフレームと雌型の位置合わせ
の精度が数100μmと大きいため、リードフレームと
封止樹脂体4との位置ずれが生じる。
(3) Since the accuracy of alignment between the lead frame and the female die is as high as several hundred μm, misalignment between the lead frame and the sealing resin body 4 occurs.

【0010】(4)雌型を成形する際にも樹脂収縮が発
生するために、封止樹脂体4の形状を精度よく成形する
ことができない。
(4) Since resin shrinkage also occurs when molding the female mold, the shape of the sealing resin body 4 cannot be molded with high precision.

【0011】(5)エポキシ樹脂の硬化時間が約10時
間と長いので、生産工程のインライン化が困難である。
(5) Since the curing time of the epoxy resin is as long as about 10 hours, it is difficult to inline the production process.

【0012】一方、図13に示すトランスフアー方式で
は、成形金型にリードフレームを直接インサートするた
め、寸法精度についてはキヤステイング方式に比べて優
れているが、以下の問題点が指摘されている。
On the other hand, in the transfer method shown in FIG. 13, the lead frame is inserted directly into the molding die, so dimensional accuracy is superior to the casting method, but the following problems have been pointed out. .

【0013】(1)トランスファー成形用のエポキシ樹
脂の硬化時間が3〜5分と長く、量産性を上げるには、
成形金型のキャビテイー数を数100程度の多数個取り
にする必要があり、金型の製作コストが高価となる。
(1) The curing time of epoxy resin for transfer molding is as long as 3 to 5 minutes, and in order to increase mass production,
The number of cavities in the molding die must be approximately several hundred, which increases the manufacturing cost of the mold.

【0014】(2)図13の如く、金型のパーテイング
面に沿つてバリ部6が発生しやすく、成形後のバリ取り
工程が必要となる。
(2) As shown in FIG. 13, burrs 6 are likely to occur along the parting surface of the mold, requiring a burr removal step after molding.

【0015】(3)バリ取りにより封止樹脂体4にクラ
ツクが入る場合がある。
(3) Cracks may occur in the sealing resin body 4 due to deburring.

【0016】また、キャスティングおよびトランスファ
ーの両方式ともに、図14,15の如く、半田リフロー
時の高温下において、樹脂とリードフレームの線膨張係
数の差により、剥離やクラツクが発生することがあつた
。ここで、図14は耐熱試験後の状態を示す従来の発光
装置の側面図、図15は同じくその平面図の発光ダイオ
ード部拡大図である。図14,15の如く、耐熱試験後
に剥離Zが発生しているのがわかる。
In addition, in both the casting and transfer methods, as shown in FIGS. 14 and 15, peeling and cracking may occur due to the difference in linear expansion coefficient between the resin and the lead frame at high temperatures during solder reflow. . Here, FIG. 14 is a side view of a conventional light emitting device showing the state after the heat resistance test, and FIG. 15 is an enlarged view of the light emitting diode portion of the same plan view. As shown in FIGS. 14 and 15, it can be seen that peeling Z occurred after the heat resistance test.

【0017】さらに、従来の発光装置では、熱硬化性樹
脂であるエポキシ樹脂を使用しているが、エポキシ樹脂
のガラス転移点は100°C程度と比較的低い温度しか
対応できない。これに対し、特に表面実装型LEDラン
プについて、表面実装時半田リフローにより、その温度
は250°Cとなり、上記樹脂の耐熱特性では対応が困
難である。
Further, conventional light emitting devices use epoxy resin, which is a thermosetting resin, but the glass transition point of epoxy resin can only be used at a relatively low temperature of about 100°C. On the other hand, especially for surface-mounted LED lamps, the temperature reaches 250° C. due to surface-mounted solder reflow, which is difficult to cope with with the heat resistance properties of the resin described above.

【0018】本発明は、上記に鑑み、バリ取り工程の省
略、金型費用の低減、および表面実装対応の発光装置の
提供を目的とする。
In view of the above, the present invention aims to omit the deburring process, reduce mold costs, and provide a light emitting device compatible with surface mounting.

【0019】[0019]

【課題を解決するための手段】本発明請求項1による課
題解決手段は、図1〜11の如く、発光素子1と、該発
光素子1が搭載されるリードフレーム3と、これらを被
覆してなる透光性の封止樹脂体4とを備えた発光装置に
おいて、前記封止樹脂体4の成形時に、線膨張係数が低
い熱可塑性樹脂を用いて射出成形されたものである。
[Means for Solving the Problems] The means for solving the problems according to claim 1 of the present invention, as shown in FIGS. In the light emitting device equipped with a translucent sealing resin body 4, the sealing resin body 4 is injection molded using a thermoplastic resin having a low coefficient of linear expansion.

【0020】また、本発明請求項2による課題解決手段
は、請求項1記載の熱可塑性樹脂として、熱可塑性ポリ
イミド樹脂が使用されたものである。
[0020] Furthermore, the problem solving means according to claim 2 of the present invention is that a thermoplastic polyimide resin is used as the thermoplastic resin according to claim 1.

【0021】[0021]

【作用】上記請求項1による課題解決手段において、透
光性を有する熱可塑性樹脂を用いて、成形金型に射出成
形により封止樹脂体4を形成しているので、成形サイク
ルは数十秒と、従来に比べて短くなり、少数取りの金型
でも十分に量産性を得ることができる。したがつて、金
型費用の低減を実現できる。
[Operation] In the means for solving the problem according to claim 1, since the sealing resin body 4 is formed by injection molding in the mold using a thermoplastic resin having translucency, the molding cycle takes several tens of seconds. This makes it shorter than conventional molds, making it possible to sufficiently mass-produce even molds with a small number of molds. Therefore, it is possible to reduce mold costs.

【0022】しかも、熱可塑性樹脂は、熔融粘度が高い
ことから、粘度の高い状態で成形を行なうことができ、
成形バリが発生しにくくなり、成形後のバリ取り工程を
省略し得る。
Moreover, since the thermoplastic resin has a high melt viscosity, it can be molded in a high viscosity state.
Molding burrs are less likely to occur, and the burr removal process after molding can be omitted.

【0023】請求項2では、熱可塑性樹脂として熱可塑
性ポリイミド樹脂を使用しているので、封止樹脂体4の
線膨張係数を下げてリードフレーム3の線膨張率との差
を小さくできる。
In the second aspect, since a thermoplastic polyimide resin is used as the thermoplastic resin, the coefficient of linear expansion of the sealing resin body 4 can be lowered to reduce the difference between the coefficient of linear expansion and the coefficient of linear expansion of the lead frame 3.

【0024】したがつて、封止樹脂体4とリードフレー
ム3間の剥離や封止樹脂体4にひび(クラツク)等が起
こりにくくなり、信頼性が向上する。
Therefore, peeling between the sealing resin body 4 and the lead frame 3 and cracks in the sealing resin body 4 are less likely to occur, and reliability is improved.

【0025】また、熱可塑性ポリイミド樹脂は、熱変形
温度が238°C、ガラス転移点が250°Cと非常に
高耐熱性を有しており、半田リフローによる表面実装時
の温度250°Cに対応可能である。
Furthermore, thermoplastic polyimide resin has extremely high heat resistance, with a heat distortion temperature of 238°C and a glass transition point of 250°C, and can withstand temperatures of 250°C during surface mounting by solder reflow. It is possible.

【0026】[0026]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments Hereinafter, embodiments of the present invention will be explained based on the drawings.

【0027】〔第一実施例〕 図1は本発明の第一実施例の発光装置の樹脂封止作業を
示す断面図、図2は同じくその完成後の状態を示す断面
図、図3は同じく耐熱試験後の状態を示す発光装置の側
面図、図4は同じくその平面図の発光ダイオード部拡大
図である。なお、図12,13に示した従来技術と同一
機能部品については同一符号を付している。
[First Embodiment] FIG. 1 is a sectional view showing the resin sealing work of a light emitting device according to the first embodiment of the present invention, FIG. 2 is a sectional view showing the state after completion, and FIG. FIG. 4 is a side view of the light emitting device showing the state after the heat resistance test, and FIG. 4 is an enlarged view of the light emitting diode portion of the same plan view. Note that the same reference numerals are given to the same functional parts as those of the prior art shown in FIGS. 12 and 13.

【0028】図2の如く、本実施例の発光装置(LED
ランプ)は、発光素子1(発光ダイオード)と、該発光
ダイオード1が搭載され発光ダイオード1とボンデイン
グワイヤ2を介して内部結線されるリードフレーム3と
、これらを被覆する封止樹脂体4(レンズ体)とから構
成されている。
As shown in FIG. 2, the light emitting device (LED
The lamp) includes a light emitting element 1 (light emitting diode), a lead frame 3 on which the light emitting diode 1 is mounted and internally connected to the light emitting diode 1 via bonding wires 2, and a sealing resin body 4 (lens) covering these elements. body).

【0029】そして、該レンズ体4は、線膨張係数が低
くかつ熔融粘度が高い透光性の熱可塑性ポリイミド樹脂
を用いて、粘度の高い状態で射出成形されたものである
The lens body 4 is injection molded in a highly viscous state using a translucent thermoplastic polyimide resin having a low linear expansion coefficient and high melt viscosity.

【0030】ここで、本実施例では、熱可塑性ポリイミ
ド樹脂として、熔融粘度が500〜1000ポイズ、熱
変形温度が238°C、線膨張係数が5.5×10−5
(cm/cm・°C)のものが使用されている。
In this example, the thermoplastic polyimide resin has a melt viscosity of 500 to 1000 poise, a heat distortion temperature of 238° C., and a linear expansion coefficient of 5.5×10 −5
(cm/cm・°C) is used.

【0031】なお、図1中、8は封止樹脂体4の成形時
に用いられる成形金型、8aはその上型、8bは下型、
9は樹脂を金型内へ注入する注入口を示している。また
、8cはLEDランプのレンズ体4のレンズ形状を円滑
に形成すべく特別に設けられた金型部材であり、上型8
aの取り外し時に水平方向Xに移動させて着脱するスラ
イド式のものである。
In FIG. 1, 8 is a molding die used for molding the sealing resin body 4, 8a is an upper mold thereof, 8b is a lower mold,
Reference numeral 9 indicates an injection port for injecting resin into the mold. Further, 8c is a mold member specially provided to smoothly form the lens shape of the lens body 4 of the LED lamp.
It is a sliding type that can be attached and detached by moving it in the horizontal direction X when removing a.

【0032】上記LEDランプは、以下のようにして製
造される。
[0032] The above LED lamp is manufactured as follows.

【0033】まず、リードフレーム3に発光ダイオード
1を導電性ペースト(例えば、銀ペースト)でダイボン
デイングし、次にボンデイングワイヤ2で内部結線を行
う。次に、図1の如く、成形金型8にこのリードフレー
ムをインサートした状態で、透光性の熱可塑性ポリイミ
ド樹脂を注入口9から射出して樹脂封止を行う。
First, the light emitting diode 1 is die-bonded to the lead frame 3 using a conductive paste (for example, silver paste), and then internal connections are made using the bonding wire 2. Next, as shown in FIG. 1, with this lead frame inserted into the molding die 8, a translucent thermoplastic polyimide resin is injected from the injection port 9 to perform resin sealing.

【0034】この際、熱可塑性樹脂を用いて射出成型し
ているので、樹脂が硬化するまでの成形サイクルが10
〜30秒と短くなる。したがつて、少数取りの金型でも
十分な量産性を得ることができる。
At this time, since injection molding is performed using thermoplastic resin, it takes 10 molding cycles until the resin hardens.
It will be as short as ~30 seconds. Therefore, sufficient mass productivity can be achieved even with a mold for a small number of molds.

【0035】しかる後、リードフレームのタブ切断で個
別の製品に分離して完成する。
Thereafter, the lead frame is separated into individual products by tab cutting.

【0036】ここで、上述の樹脂封止工程にあたつて、
ポリイミド樹脂以外の樹脂を用いた場合、樹脂の膨張係
数は、一般に10×10−5(cm/cm・°C)程度
である。例えば、ポリメチルペンテンは11.7×10
−5(cm/cm・°C)、メタクリル樹脂は6×10
−5(cm/cm・°C)、ポリカーボネートは7×1
0−5(cm/cm・°C)、トランスフア用エポキシ
樹脂は7.5×10−5(cm/cm・°C)である。
[0036] Here, in the above-mentioned resin sealing process,
When a resin other than polyimide resin is used, the expansion coefficient of the resin is generally about 10×10 −5 (cm/cm·°C). For example, polymethylpentene is 11.7×10
-5 (cm/cm・°C), 6×10 for methacrylic resin
-5 (cm/cm・°C), polycarbonate is 7×1
0-5 (cm/cm·°C), and the epoxy resin for transfer is 7.5×10-5 (cm/cm·°C).

【0037】これに対し、リードフレームの線膨張係数
は、鉄フレームで1.18×10−5(cm/cm・°
C)、銅合金フレームで1.7×10−5(cm/cm
・°C)程度である。これらの樹脂とリードフレーム3
の間の線膨張係数の不一致のために、温度サイクル等の
環境試験で、レンズ体4とリードフレーム3間の剥離や
レンズ体4のクラツクが発生する。これらを防ぐために
は、樹脂の線膨張係数をできるだけ小さくする必要があ
る。
On the other hand, the linear expansion coefficient of a lead frame is 1.18×10-5 (cm/cm・°) for an iron frame.
C), 1.7 x 10-5 (cm/cm) with copper alloy frame
・°C). These resins and lead frame 3
Due to the mismatch in linear expansion coefficients between them, peeling between the lens body 4 and lead frame 3 and cracking of the lens body 4 occur during environmental tests such as temperature cycling. In order to prevent these, it is necessary to reduce the linear expansion coefficient of the resin as much as possible.

【0038】そこで、本実施例では、封止樹脂体4のエ
ポキシとして、熱可塑性ポリイミド樹脂を用い、樹脂の
線膨張係数を5.5×10−5(cm/cm・°C)程
度に小さくしているので、上記の剥離やクラツクの発生
を防止できる。
Therefore, in this embodiment, a thermoplastic polyimide resin is used as the epoxy for the sealing resin body 4, and the coefficient of linear expansion of the resin is as small as 5.5×10-5 (cm/cm・°C). This prevents the above-mentioned peeling and cracks from occurring.

【0039】ここで、本実施例の発光装置の耐熱試験を
してみた。すなわち、樹脂とリードフレームとが密着さ
れた発光装置を、260°Cまで30秒間熱してみた。 その結果、図3,4の如く、剥離やクラツクが生じなか
つた。これにより、本実施例の発光装置が耐熱性に優れ
ていることが検証できた。
Here, a heat resistance test was conducted on the light emitting device of this example. That is, a light emitting device in which a resin and a lead frame were closely bonded was heated to 260° C. for 30 seconds. As a result, as shown in FIGS. 3 and 4, no peeling or cracking occurred. This verified that the light emitting device of this example had excellent heat resistance.

【0040】ところで、従来のような熱硬化性樹脂は、
熔融粘度が低く、例えばトランスフア用のエポキシ樹脂
が100〜150ポイズである。ここで、樹脂の熔融粘
度が低いと、金型8による成形時に、上型8a、下型8
b等の間にできる隙間に硬化前の樹脂が入り込んでしま
い、これが硬化した際に樹脂バリが発生する。これを防
ぐためには、樹脂の熔融粘度を高く設定する必要がある
By the way, conventional thermosetting resins are
The melt viscosity is low, for example, epoxy resin for transfer is 100 to 150 poise. Here, if the melt viscosity of the resin is low, when molding with the mold 8, the upper mold 8a and the lower mold 8
Uncured resin gets into the gaps created between b, etc., and when this hardens, resin burrs occur. In order to prevent this, it is necessary to set the melt viscosity of the resin high.

【0041】そこで、本実施例では、熱可塑性のエンジ
ニアリングプラスチツクが、エポキシ樹脂と比較し一般
に熔融粘度の高い特性を有することを利用して、これを
封止樹脂体4(レンズ体)に用いることにより、樹脂バ
リの発生を防止している。
Therefore, in this embodiment, thermoplastic engineering plastics are used for the sealing resin body 4 (lens body) by taking advantage of the fact that they generally have a higher melt viscosity than epoxy resins. This prevents resin burrs from forming.

【0042】しかも、この熱可塑性のエンジニアリング
プラスチツクとして、ポリイミド樹脂を用いているので
、表1の如く、通常2000〜10000ポイズの熔融
粘度を有する熱可塑性樹脂の中にあつて、その熔融粘度
が500〜1000ポイズと、いわば中程度の熔融粘度
に保つことができ、従来より粘度を高めて樹脂バリを防
止しながらも、樹脂の粘度が高すぎることによりボンデ
イングワイヤ2が断線するのを防止できる。
Moreover, since polyimide resin is used as this thermoplastic engineering plastic, as shown in Table 1, it is among the thermoplastic resins that usually have a melt viscosity of 2,000 to 10,000 poise, and its melt viscosity is 500 poise. The melt viscosity can be maintained at a medium level of ~1000 poise, and while the viscosity is higher than that of the conventional method and resin burrs are prevented, the bonding wire 2 can be prevented from breaking due to too high resin viscosity.

【0043】[0043]

【表1】[Table 1]

【0044】以上のことから、次の効果を得ることがで
きる。
From the above, the following effects can be obtained.

【0045】■リードフレームと封止樹脂体との間のズ
レや封止樹脂体のクラツク等の発生を防止し、信頼性を
向上させ得る。
(2) Misalignment between the lead frame and the sealing resin body, cracks in the sealing resin body, etc. can be prevented, and reliability can be improved.

【0046】■成形バリの発生を防止し、成形後のバリ
取り工程を省略し得る。
(2) The occurrence of molding burrs can be prevented, and the burr removal process after molding can be omitted.

【0047】■少数取りの金型でも十分な量産性を得る
ことができるため、金型費用の低減を実現できる。
■Since sufficient mass productivity can be achieved even with a mold for a small number of molds, it is possible to reduce mold costs.

【0048】〔第二実施例〕 図5は本発明の第二実施例に係る発光装置の樹脂封止作
業を示す断面図、図6は同じくその完成後の状態を示す
断面図である。
[Second Embodiment] FIG. 5 is a sectional view showing a resin sealing operation of a light emitting device according to a second embodiment of the present invention, and FIG. 6 is a sectional view showing the state after completion.

【0049】図示の如く、本実施例の発光装置は、表面
実装型LEDランプであり、封止樹脂体4は矩形に形成
されており、また、必要に応じてリードフレーム2のフ
オーミングを行つたものである。
As shown in the figure, the light emitting device of this embodiment is a surface-mounted LED lamp, the sealing resin body 4 is formed in a rectangular shape, and the lead frame 2 is formed as necessary. It is something.

【0050】本実施例においても、図5に示した金型8
を用いて、熱可塑性ポリイミド樹脂を用いて注入口9か
ら射出して成形する。
In this embodiment as well, the mold 8 shown in FIG.
The thermoplastic polyimide resin is injected from the injection port 9 to be molded.

【0051】成形後、発光装置を図示しない基板上に表
面実装する。
After molding, the light emitting device is surface mounted on a substrate (not shown).

【0052】ところで、半田リフローによる表面実装時
の温度は約250°Cであり、樹脂のガラス転移点が低
いと、リフロー時に樹脂変形が発生し、発光装置の品質
を劣化させるおそれがある。
By the way, the temperature during surface mounting by solder reflow is approximately 250° C. If the glass transition point of the resin is low, resin deformation may occur during reflow, which may deteriorate the quality of the light emitting device.

【0053】しかし、本実施例で使用した熱可塑性ポリ
イミド樹脂は、熱変形温度が238°C、ガラス転移点
が250°Cと非常に高耐熱性を有しており、表面実装
温度250°Cに対応可能である。
However, the thermoplastic polyimide resin used in this example has extremely high heat resistance, with a heat distortion temperature of 238°C and a glass transition point of 250°C, and a surface mounting temperature of 250°C. It is possible to correspond to

【0054】また、樹脂とリードフレームとの間の剥離
やクラツクについても、第一実施例と同様に耐熱試験を
してみた。すなわち、発光装置を260°Cまで30秒
間熱してみた。その結果、第一実施例と同様に剥離やク
ラツクが生じなかつた。その他の作用、効果は第一実施
例と同様である。
A heat resistance test was also conducted in the same manner as in the first example to check for peeling and cracks between the resin and the lead frame. That is, the light emitting device was heated to 260°C for 30 seconds. As a result, as in the first example, no peeling or cracking occurred. Other functions and effects are the same as in the first embodiment.

【0055】なお、本発明は、上記実施例に限定される
ものではなく、本発明の範囲内で上記実施例に多くの修
正および変更を加え得ることは勿論である。
It should be noted that the present invention is not limited to the above embodiments, and it goes without saying that many modifications and changes can be made to the above embodiments within the scope of the present invention.

【0056】図7,8は本発明LEDランプの応用例を
示す断面図である。これらは何れも樹脂封止した後、光
反射率のよい熱可塑性樹脂(例えば、チタンホワイトな
どの白色無機質フイラーを混入し白色に着色した液晶ポ
リマーやポリフエニレンサルフアイド等の熱可塑性樹脂
)で、LEDランプの底面および側面部分を囲むように
反射板10を成形し、反射効果を持たせて光の高出力化
を図つた例である。
FIGS. 7 and 8 are cross-sectional views showing an application example of the LED lamp of the present invention. All of these are sealed with resin and then filled with a thermoplastic resin with good light reflectivity (for example, a liquid crystal polymer colored white by mixing a white inorganic filler such as titanium white, or a thermoplastic resin such as polyphenylene sulfide). This is an example in which a reflector plate 10 is formed so as to surround the bottom and side surfaces of an LED lamp to provide a reflective effect and increase the output of light.

【0057】その他にも、図9のようなサイドリード型
フオトダイオードの例、図10のような表面実装型フオ
トダイオードの例、または、図11のようなセラミツク
ステム11を使用したフオトダイオードの例等について
も、第一、第二実施例と同様に熱可塑性ポリイミド樹脂
を用いれば同様の効果を奏し得る。
In addition, there are examples of side-lead type photodiodes as shown in FIG. 9, examples of surface-mounted photodiodes as shown in FIG. 10, and examples of photodiodes using a ceramic stem 11 as shown in FIG. The same effect can be obtained in the case of using thermoplastic polyimide resin as in the first and second embodiments.

【0058】また、封止樹脂体4の線膨張係数を下げる
ため、封止樹脂体4に透明無機質フイラーを混入しても
よい。
Furthermore, in order to lower the coefficient of linear expansion of the sealing resin body 4, a transparent inorganic filler may be mixed into the sealing resin body 4.

【0059】[0059]

【発明の効果】以上の説明から明らかな通り、本発明請
求項1によると、発光装置の封止樹脂体成形時に、熱可
塑性樹脂を用いて射出成形しているので、成形サイクル
は数十秒と、従来に比べて短くなり、少数取りの金型で
も十分に量産性を得ることができる。したがつて、金型
費用の低減を実現できる。
As is clear from the above description, according to claim 1 of the present invention, injection molding is performed using thermoplastic resin when molding the sealing resin body of the light emitting device, so the molding cycle takes several tens of seconds. This makes it shorter than conventional molds, making it possible to sufficiently mass-produce even molds with a small number of molds. Therefore, it is possible to reduce mold costs.

【0060】また、一般に、熱可塑性樹脂の熔融粘度が
高いことから、粘度の高い状態で成形を行なうことがで
きるので、成形バリが発生しにくくなり、成形後のバリ
取り工程を省略し得る。
Furthermore, since thermoplastic resins generally have a high melt viscosity, molding can be carried out in a high viscosity state, making it difficult for molding burrs to occur, and making it possible to omit the burr removal step after molding.

【0061】請求項2では、熱可塑性樹脂として線膨張
係数の小さい熱可塑性ポリイミド樹脂を使用しているの
で、封止樹脂体とリードフレームとの線膨張率の差を小
さくでき、封止樹脂体とリードフレームとの間の剥離や
封止樹脂体にクラツク等が起こりにくくなり、信頼性が
向上する。
In claim 2, since a thermoplastic polyimide resin having a small linear expansion coefficient is used as the thermoplastic resin, the difference in linear expansion coefficient between the sealing resin body and the lead frame can be reduced, and the sealing resin body Peeling between the lead frame and the lead frame and cracks in the sealing resin body are less likely to occur, improving reliability.

【0062】また、熱可塑性ポリイミド樹脂は、熱変形
温度が238°C、ガラス転移点が250°Cと、非常
に高耐熱性を有しているので、半田リフローによる表面
実装温度250°Cに対応できるといつた優れた効果が
ある。
Furthermore, thermoplastic polyimide resin has extremely high heat resistance, with a heat distortion temperature of 238°C and a glass transition point of 250°C, so it can be used at surface mounting temperatures of 250°C by solder reflow. It has great effects if you can handle it.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】図1は本発明の第一実施例の発光装置の樹脂封
止作業を示す断面図である。
FIG. 1 is a sectional view showing a resin sealing operation of a light emitting device according to a first embodiment of the present invention.

【図2】図2は同じくその完成後の状態を示す断面図で
ある。
FIG. 2 is a cross-sectional view showing the state after completion.

【図3】図3は同じく耐熱試験後の状態を示す発光装置
の側面図である。
FIG. 3 is a side view of the light emitting device showing the state after the heat resistance test.

【図4】図4は同じくその平面図の発光ダイオード部拡
大図である。
FIG. 4 is an enlarged view of a light emitting diode portion of the same plan view.

【図5】図5は本発明の第二実施例に係る発光装置の樹
脂封止作業を示す断面図である。
FIG. 5 is a sectional view showing a resin sealing operation of a light emitting device according to a second embodiment of the present invention.

【図6】図6は同じくその完成後の状態を示す断面図で
ある。
FIG. 6 is a cross-sectional view showing the state after completion.

【図7】図7は本発明の発光装置の底部に反射板を設け
た応用例を示す断面図である。
FIG. 7 is a sectional view showing an application example in which a reflective plate is provided at the bottom of the light emitting device of the present invention.

【図8】図8は本発明の発光装置の底部に反射板を設け
た他の応用例を示す断面図である。
FIG. 8 is a sectional view showing another application example in which a reflector is provided at the bottom of the light emitting device of the present invention.

【図9】図9は本発明をサイドリード型フオトダイオー
ドに適応した応用例を示す断面図である。
FIG. 9 is a cross-sectional view showing an application example in which the present invention is applied to a side lead type photodiode.

【図10】図10は本発明を表面実装型フオトダイオー
ドに適応した応用例を示す断面図である。
FIG. 10 is a cross-sectional view showing an example of application of the present invention to a surface-mounted photodiode.

【図11】図11は本発明をセラミツクステム型のフオ
トダイオードに適応した応用例を示す断面図である。
FIG. 11 is a sectional view showing an example of application of the present invention to a ceramic stem type photodiode.

【図12】図12は従来のキヤステイング方式による発
光装置の断面図である。
FIG. 12 is a sectional view of a light emitting device using a conventional casting method.

【図13】図13は同じくトランスフアー成形方式によ
る表面実装型発光装置の斜視図である。
FIG. 13 is a perspective view of a surface-mounted light emitting device also using the transfer molding method.

【図14】図14は同じく耐熱試験後の状態を示す従来
の発光装置の側面図である。
FIG. 14 is a side view of the conventional light emitting device showing the state after the heat resistance test.

【図15】図15は同じくその平面図の発光ダイオード
部拡大図である。
FIG. 15 is an enlarged view of the light emitting diode portion of the same plan view.

【符号の説明】[Explanation of symbols]

1    発光素子 2    ボンデイングワイヤ 3    リードフレーム 4    封止樹脂体 1 Light emitting element 2 Bonding wire 3 Lead frame 4 Sealing resin body

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  発光素子と、該発光素子が搭載される
リードフレームと、これらを被覆してなる透光性の封止
樹脂体とを備えた発光装置において、前記封止樹脂体の
成形時に、熱膨張係数が低い熱可塑性樹脂を用いて、射
出成形されたことを特徴とする発光装置。
1. A light-emitting device comprising a light-emitting element, a lead frame on which the light-emitting element is mounted, and a translucent sealing resin body covering these, wherein during molding of the sealing resin body, A light emitting device characterized by being injection molded using a thermoplastic resin having a low coefficient of thermal expansion.
【請求項2】  請求項1記載の熱可塑性樹脂として、
熱可塑性ポリイミド樹脂が使用されたことを特徴とする
発光装置。
[Claim 2] The thermoplastic resin according to Claim 1,
A light emitting device characterized by using thermoplastic polyimide resin.
JP3100016A 1991-05-01 1991-05-01 Light emitting device Pending JPH04329680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3100016A JPH04329680A (en) 1991-05-01 1991-05-01 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3100016A JPH04329680A (en) 1991-05-01 1991-05-01 Light emitting device

Publications (1)

Publication Number Publication Date
JPH04329680A true JPH04329680A (en) 1992-11-18

Family

ID=14262760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3100016A Pending JPH04329680A (en) 1991-05-01 1991-05-01 Light emitting device

Country Status (1)

Country Link
JP (1) JPH04329680A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163519A (en) * 1996-10-01 1998-06-19 Toshiba Corp Semiconductor device and manufacture thereof
JP2003037296A (en) * 2001-07-25 2003-02-07 Sanyo Electric Co Ltd Lighting system and manufacturing method therefor
DE10159522A1 (en) * 2001-12-05 2003-06-26 G L I Global Light Ind Gmbh Light conducting LED members are formed by locating electrical components in an injection mould, evacuating the mould, and injecting a material through an injection opening
DE10242947A1 (en) * 2002-09-16 2004-03-25 G.L.I. Global Light Industries Gmbh Manufacture of light-guiding LED body, by restricting flow of casting material when distance of electrode plane from insertion point is greater than 35 per cent of spacing to opposing side of mold
JP2009200463A (en) * 2008-01-23 2009-09-03 Panasonic Corp Semiconductor device
JP2016086053A (en) * 2014-10-24 2016-05-19 スタンレー電気株式会社 Led lamp and manufacturing method of the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163519A (en) * 1996-10-01 1998-06-19 Toshiba Corp Semiconductor device and manufacture thereof
JP2003037296A (en) * 2001-07-25 2003-02-07 Sanyo Electric Co Ltd Lighting system and manufacturing method therefor
DE10159522A1 (en) * 2001-12-05 2003-06-26 G L I Global Light Ind Gmbh Light conducting LED members are formed by locating electrical components in an injection mould, evacuating the mould, and injecting a material through an injection opening
WO2003054920A2 (en) * 2001-12-05 2003-07-03 G.L.I. Global Light Industries Gmbh Method for the production of led bodies
WO2003054920A3 (en) * 2001-12-05 2004-02-19 G L I Global Light Ind Gmbh Method for the production of led bodies
US7205170B2 (en) 2001-12-05 2007-04-17 G.L.I. Global Light Industries Gmbh Method for the production of LED bodies
WO2004027883A1 (en) * 2002-09-16 2004-04-01 G.L.I. Global Light Industries Gmbh Method for producing led bodies with the aid of a cross-sectional restriction
DE10242947A1 (en) * 2002-09-16 2004-03-25 G.L.I. Global Light Industries Gmbh Manufacture of light-guiding LED body, by restricting flow of casting material when distance of electrode plane from insertion point is greater than 35 per cent of spacing to opposing side of mold
US7241637B2 (en) 2002-09-16 2007-07-10 G.L.I. Global Light Industries Gmbh Method of producing LED bodies with the aid of a cross-sectional constriction
DE10242947B4 (en) * 2002-09-16 2008-12-18 G.L.I. Global Light Industries Gmbh Method for producing LED bodies by means of a cross-sectional constriction and apparatus for carrying out the production method
DE10242947B8 (en) * 2002-09-16 2009-06-18 Odelo Led Gmbh Method for producing LED bodies by means of a cross-sectional constriction and apparatus for carrying out the production method
JP2009200463A (en) * 2008-01-23 2009-09-03 Panasonic Corp Semiconductor device
JP2016086053A (en) * 2014-10-24 2016-05-19 スタンレー電気株式会社 Led lamp and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US5893723A (en) Manufacturing method for semiconductor unit
CN1992361B (en) Lens-equipped light-emitting diode device
CN100481546C (en) Power LED with glue-filling formed bottom and manufacturing method thereof
US6358773B1 (en) Method of making substrate for use in forming image sensor package
TWI485878B (en) Method for forming an led lens structure and related structure
JP2002368281A (en) Method of manufacturing light-emitting diode
KR19980070526A (en) Semiconductor light emitting device and manufacturing method thereof
JPH04147814A (en) Mold for resin seal molding
JPH07283441A (en) Optical semiconductor device and manufacture thereof
KR100591718B1 (en) Resin-sealed semiconductor device
JPH04329680A (en) Light emitting device
CN106876543A (en) A kind of QFN surface mounts RGB LED packages and its manufacture method
KR20060002282A (en) Light-emitting diode package with heat transfer slug and method for manufacturing the same
JPH0653554A (en) Optical semiconductor device
JPH098357A (en) Light emitting device and production thereof
JPH11186304A (en) Manufacture of hybrid integrated circuit device
CN102709440A (en) Paster LED (light-emitting diode) support, paster LED manufacturing method and paster LED
JPH10270627A (en) Manufacture of semiconductor device and lead frame
JP2000124507A (en) Surface-mounted light-emitting diode
KR100912328B1 (en) Constructure of frame association member of surface-mounting light diodes and manufacturing method thereof
JPH0745765A (en) Resin sealing method for semiconductor device
JPH1168254A (en) Optical module and manufacture of optical module
CN101752465A (en) Mold for packaging lens of high-power light-emitting diode and packaging method thereof
JPH0466381B2 (en)
JP7297768B2 (en) Light-emitting device and manufacturing method thereof