JPH04324628A - Manufacture of silicon thin film - Google Patents
Manufacture of silicon thin filmInfo
- Publication number
- JPH04324628A JPH04324628A JP14648091A JP14648091A JPH04324628A JP H04324628 A JPH04324628 A JP H04324628A JP 14648091 A JP14648091 A JP 14648091A JP 14648091 A JP14648091 A JP 14648091A JP H04324628 A JPH04324628 A JP H04324628A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- thin film
- silicon thin
- hydrogen chloride
- polycrystalline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 22
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims description 4
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 229910052710 silicon Inorganic materials 0.000 title claims description 4
- 239000010703 silicon Substances 0.000 title claims description 4
- 239000007789 gas Chemical class 0.000 claims abstract description 44
- 238000000034 method Methods 0.000 claims abstract description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims abstract description 14
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 12
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 12
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims abstract description 9
- 229910052990 silicon hydride Inorganic materials 0.000 claims description 12
- -1 silicon hydride compound Chemical class 0.000 claims description 12
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract description 12
- 239000000758 substrate Substances 0.000 abstract description 8
- 239000002245 particle Substances 0.000 abstract description 5
- 150000003377 silicon compounds Chemical class 0.000 abstract description 5
- 229910021421 monocrystalline silicon Inorganic materials 0.000 abstract description 3
- 239000012808 vapor phase Substances 0.000 abstract 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000010408 film Substances 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000000543 intermediate Substances 0.000 description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- VEDJZFSRVVQBIL-UHFFFAOYSA-N trisilane Chemical compound [SiH3][SiH2][SiH3] VEDJZFSRVVQBIL-UHFFFAOYSA-N 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 239000007806 chemical reaction intermediate Substances 0.000 description 4
- 239000001307 helium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000000427 thin-film deposition Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XMIJDTGORVPYLW-UHFFFAOYSA-N [SiH2] Chemical compound [SiH2] XMIJDTGORVPYLW-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 1
- 239000005052 trichlorosilane Substances 0.000 description 1
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は半導体チップや液晶表示
パネルなどに用いられる多結晶または非晶質の珪素薄膜
をCVD法で製造する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing polycrystalline or amorphous silicon thin films used in semiconductor chips, liquid crystal display panels, etc. by CVD.
【0002】0002
【従来の技術】従来の多結晶珪素薄膜の製造方法は半導
体チップ(LSI)として利用するため基板として単結
晶珪素を用いる場合、窒素希釈または希釈ガスなしのモ
ノシラン(SiH 4)ガスを原料として、0.3To
rr前後の減圧下、基板温度600度C前後で熱分解堆
積させる減圧CVD法(LPCVD)が用いられていた
。
また光学素子に利用する非晶質珪素薄膜をガラス基板に
形成させる場合には、反応温度を低くするため分解温度
がモノシランより低いジシラン(Si 2H 6)また
はトリシラン(Si 3H 6)を原料としたLPCV
Dが400から500度C程度の温度で用いられていた
。BACKGROUND OF THE INVENTION Conventional methods for manufacturing polycrystalline silicon thin films use monocrystalline silicon as a substrate for use as semiconductor chips (LSI), using monosilane (SiH 4 ) gas as a raw material with nitrogen dilution or without diluting gas. 0.3To
A low pressure CVD method (LPCVD) was used in which thermal decomposition deposition is carried out under a reduced pressure of around rr and at a substrate temperature of around 600 degrees Celsius. In addition, when forming an amorphous silicon thin film used in optical elements on a glass substrate, disilane (Si 2H 6) or trisilane (Si 3H 6), which has a lower decomposition temperature than monosilane, is used as a raw material to lower the reaction temperature. LPCV
D was used at a temperature of about 400 to 500 degrees Celsius.
【0003】0003
【発明が解決しようとする課題】従来はモノシラン、ジ
シラン、トリシランなど水素化珪素化合物ガスを原料と
する場合、(1)膜厚の均一性が悪化し易い、(2)気
相中で粒子が自己発生することがある、(3)その粒子
を原因とする膜中のピンホールにより膜質が悪化する、
(4)特にジシランやトリシランの高次シランを用いた
場合は段差被覆率(ステップカバレッジ)が悪化し易い
という問題があった。そこで、この発明は他のプロセス
条件を変えることなく混合ガス成分を変えることのみに
よって上記課題を同時に解決する方法を提供することを
目的とする。[Problems to be Solved by the Invention] Conventionally, when using a silicon hydride compound gas such as monosilane, disilane, or trisilane as a raw material, (1) the uniformity of the film thickness tends to deteriorate, and (2) particles form in the gas phase. (3) The quality of the film deteriorates due to pinholes in the film caused by the particles.
(4) Particularly when a higher-order silane such as disilane or trisilane is used, there is a problem in that the step coverage tends to deteriorate. Therefore, an object of the present invention is to provide a method for simultaneously solving the above problems by only changing the mixed gas components without changing other process conditions.
【0004】0004
【課題を解決するための手段】本発明は上記課題を解決
するものであって、水素化珪素化合物または水素化珪素
化合物を含むガスを用いて減圧CVD法により多結晶ま
たは非晶質の珪素薄膜を形成させる方法において、水素
化珪素化合物または水素化珪素化合物を含むガスに塩化
水素ガスを添加して用いることを特徴とするものである
。[Means for Solving the Problems] The present invention solves the above-mentioned problems, and is directed to forming a polycrystalline or amorphous silicon thin film by a low pressure CVD method using a silicon hydride compound or a gas containing a silicon hydride compound. This method is characterized in that hydrogen chloride gas is added to a silicon hydride compound or a gas containing a silicon hydride compound.
【0005】[0005]
【作用】モノシラン、ジシラン、トリシランなど水素化
珪素化合物ガスはLPCVD反応器内において、基板に
直接析出するのみならず、気相中で分解して活性な反応
中間体を生成することはよく知られている。気相分解の
傾向は高次シランほど強い。前述した本発明の解決すべ
き課題はすべてこの気相生成の反応中間体(シリレン:
SiH 2など)に帰することができる。[Operation] It is well known that silicon hydride compound gases such as monosilane, disilane, and trisilane not only deposit directly on the substrate in the LPCVD reactor, but also decompose in the gas phase to produce active reaction intermediates. ing. The tendency of gas phase decomposition is stronger for higher order silanes. All of the problems to be solved by the present invention described above are solved by the reaction intermediate (silylene:
SiH2, etc.).
【0006】すなわち(1)気相拡散速度に対して表面
反応速度の大きい活性な中間体は反応器内に均一濃度で
存在することができず、膜厚の均一性は悪化する、(2
)活性な中間体同士が気相中で衝突重合することによっ
て粒子が自己発生する、(3)特にジシランやトリシラ
ンを用いた場合には気相中間体の生成量が多くなるが、
活性な中間体はミクロンオーダーの段差内をも拡散する
ことができず、側壁に付着してしまうため被覆性が悪化
してしまうと説明できる。That is, (1) active intermediates whose surface reaction rate is higher than the gas phase diffusion rate cannot exist at a uniform concentration in the reactor, and the uniformity of the film thickness deteriorates; (2)
) Particles are self-generated by collision polymerization between active intermediates in the gas phase. (3) Particularly when disilane or trisilane is used, the amount of gas phase intermediates produced increases;
This can be explained by the fact that the active intermediate cannot diffuse even within the micron-order step and adheres to the side wall, resulting in poor coverage.
【0007】本発明によれば、上記課題の原因である気
相生成の活性な反応中間体を選択的に除去することがで
きる。すなわち添加した塩化水素ガスは活性な気相中間
体と反応して安定な塩素化珪素化合物ガス(ジクロロシ
ラン、トリクロロシラン等)を生成するため、反応中間
体の選択的な除去が可能である。According to the present invention, active reaction intermediates generated in the gas phase, which are the cause of the above problems, can be selectively removed. That is, since the added hydrogen chloride gas reacts with an active gas phase intermediate to generate a stable chlorinated silicon compound gas (dichlorosilane, trichlorosilane, etc.), the reaction intermediate can be selectively removed.
【0008】従って装置形状などに大幅な変更を加える
ことなく既存の装置に塩化水素ガスラインを付加するだ
けで高品質な珪素薄膜を均一に堆積することができる。
なお、塩化水素の添加量は微量ですむのでヘリウム等で
あらかじめ希釈された塩化水素ガスを用いるのがよい。
本発明においてこのような希釈ガスが含まれていること
は差し支えない。すなわち水素化珪素化合物または水素
化珪素化合物を含むガスいずれを用いる場合にも本発明
は適用できる。[0008] Therefore, a high quality silicon thin film can be uniformly deposited by simply adding a hydrogen chloride gas line to an existing device without making any major changes to the device shape or the like. Note that since only a small amount of hydrogen chloride is added, it is preferable to use hydrogen chloride gas pre-diluted with helium or the like. In the present invention, there is no problem in including such a diluent gas. That is, the present invention is applicable to any case where a silicon hydride compound or a gas containing a silicon hydride compound is used.
【0009】[0009]
実施例1
図1はモノシランガスを用いたLPCVD法による多結
晶珪素薄膜製造装置である。供給ガスはモノシラン1及
びヘリウム希釈0.1%塩化水素ガス2の2系統であり
、サーマルマスフローコントローラ3A、3Bでそれぞ
れ流量調節して供給される。反応装置は石英製ベルジャ
ー5内にウエハ支持用ボート6及びボート支持台7、石
英内管9などを納めた回転機構8を有する縦型の電気炉
4である。減圧、ガス置換のためロータリーポンプ11
、メカニカルブースターポンプ10による排気装置が設
けられている。Example 1 FIG. 1 shows an apparatus for producing a polycrystalline silicon thin film by the LPCVD method using monosilane gas. The gases to be supplied are two systems, monosilane 1 and helium diluted 0.1% hydrogen chloride gas 2, which are supplied with their flow rates adjusted by thermal mass flow controllers 3A and 3B, respectively. The reaction apparatus is a vertical electric furnace 4 having a rotation mechanism 8 in which a wafer support boat 6, a boat support stand 7, a quartz inner tube 9, etc. are housed in a quartz bell jar 5. Rotary pump 11 for pressure reduction and gas replacement
, an exhaust system using a mechanical booster pump 10 is provided.
【0010】本装置を用いて6インチ単結晶珪素基板上
にゲート電極用多結晶珪素薄膜を、550から700度
C、0.1から10.0Torr、モノシランガス30
0立方センチメートル/分、ヘリウム希釈塩化水素ガス
200立方センチメートル/分の条件下で作成したとこ
ろ、面内膜厚均一性0.2%以下の良質な薄膜が得られ
た。Using this apparatus, a polycrystalline silicon thin film for a gate electrode was formed on a 6-inch single crystal silicon substrate at 550 to 700 degrees Celsius, 0.1 to 10.0 Torr, and monosilane gas at 30° C.
When produced under the conditions of 0 cubic centimeters/minute and helium-diluted hydrogen chloride gas at 200 cubic centimeters/minute, a high-quality thin film with an in-plane film thickness uniformity of 0.2% or less was obtained.
【0011】実施例2
図2はジシランガスを用いたLPCVD法によるガラス
基板上への非晶質珪素薄膜製造装置である。非晶質珪素
薄膜においては未結合手(ダングリングボンド)が大量
にあるので、半導体的性質を得るにはこれらを水素で終
端する必要がある。このため成膜後水素化する必要があ
るが、本実施例においてはこのためのラジカルアニール
装置も備えている。Embodiment 2 FIG. 2 shows an apparatus for producing an amorphous silicon thin film on a glass substrate by the LPCVD method using disilane gas. Since there are a large number of dangling bonds in an amorphous silicon thin film, it is necessary to terminate these with hydrogen in order to obtain semiconductor properties. For this reason, it is necessary to perform hydrogenation after film formation, and this embodiment also includes a radical annealing device for this purpose.
【0012】すなわち、本装置はロードロックチェンバ
ー15、薄膜堆積チェンバー13、水素ラジカルアニー
ルチェンバー17の3つのチェンバーよりなる。ロード
ロックチェンバー15にガラス基板14を設置した後、
同チェンバー内を脱気し薄膜堆積チェンバー13内へ移
送した。供給ガスはジシラン12及びヘリウム希釈0.
1%塩化水素ガス2の2系統である。薄膜堆積の条件は
450から550度C、0.1から10.0Torr、
ジシラン15立方センチメートル/分、ヘリウム希釈塩
化水素ガス35立方センチメートル/分で行なった。That is, this apparatus consists of three chambers: a load lock chamber 15, a thin film deposition chamber 13, and a hydrogen radical annealing chamber 17. After installing the glass substrate 14 in the load lock chamber 15,
The chamber was deaerated and transferred to the thin film deposition chamber 13. The feed gas was 12% disilane and 0% helium diluted.
There are two systems: 1% hydrogen chloride gas and 2. The conditions for thin film deposition were 450 to 550 degrees Celsius, 0.1 to 10.0 Torr,
The reaction was carried out using disilane at 15 cubic centimeters/minute and helium diluted hydrogen chloride gas at 35 cubic centimeters/minute.
【0013】本工程後、再びロードロックチェンバー1
5を経由して水素ラジカルアニールチェンバー17へ移
送した。本工程では薄膜内に存在する非晶質珪素の未結
合手を水素原子と結合させた。水素ラジカルアニールチ
ェンバー17には水素ガスボンベ19よりサーマルマス
フローコントローラ3Cを経て水素が供給されるが、こ
れに水銀恒温槽18から蒸発した水銀ガスが添加される
。低圧水銀ランプ16により紫外線を照射することによ
り水銀原子を励起させ、その水銀原子のエネルギーを利
用して水素ラジカルを生成させた。水素ラジカルは非晶
質珪素薄膜上で珪素と反応し、表面から水素を拡散させ
膜質を改善することができた。[0013] After this step, the load lock chamber 1 is
5 to the hydrogen radical annealing chamber 17. In this step, the dangling bonds of amorphous silicon present in the thin film were combined with hydrogen atoms. Hydrogen is supplied to the hydrogen radical annealing chamber 17 from a hydrogen gas cylinder 19 via a thermal mass flow controller 3C, to which mercury gas evaporated from a mercury constant temperature bath 18 is added. The mercury atoms were excited by irradiating ultraviolet rays with a low-pressure mercury lamp 16, and the energy of the mercury atoms was used to generate hydrogen radicals. Hydrogen radicals reacted with silicon on the amorphous silicon thin film, allowing hydrogen to diffuse from the surface and improving the film quality.
【0014】[0014]
【発明の効果】以上説明したように本発明によれば、良
質な多結晶または非晶質珪素薄膜を均一性よく堆積する
ことが可能であり、気相中での粒子の発生も抑制するこ
とができる。[Effects of the Invention] As explained above, according to the present invention, it is possible to deposit a high-quality polycrystalline or amorphous silicon thin film with good uniformity, and the generation of particles in the gas phase can also be suppressed. Can be done.
【図1】本発明方法により多結晶珪素薄膜を製造するた
めの装置の例を示す図FIG. 1 is a diagram showing an example of an apparatus for producing a polycrystalline silicon thin film by the method of the present invention.
【図2】本発明方法により非晶質珪素薄膜を製造するた
めの装置の例を示す図FIG. 2 is a diagram showing an example of an apparatus for producing an amorphous silicon thin film by the method of the present invention.
Claims (1)
合物を含むガスを用いて減圧CVD法により多結晶また
は非晶質の珪素薄膜を形成させる方法において、水素化
珪素化合物または水素化珪素化合物を含むガスに塩化水
素ガスを添加して用いることを特徴とする珪素薄膜の製
造方法。Claim 1. A method for forming a polycrystalline or amorphous silicon thin film by low pressure CVD using a silicon hydride compound or a gas containing the silicon hydride compound, the method comprising: containing the silicon hydride compound or the silicon hydride compound; A method for producing a silicon thin film, characterized in that hydrogen chloride gas is added to the gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14648091A JPH04324628A (en) | 1991-04-24 | 1991-04-24 | Manufacture of silicon thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14648091A JPH04324628A (en) | 1991-04-24 | 1991-04-24 | Manufacture of silicon thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04324628A true JPH04324628A (en) | 1992-11-13 |
Family
ID=15408596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14648091A Withdrawn JPH04324628A (en) | 1991-04-24 | 1991-04-24 | Manufacture of silicon thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04324628A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000100731A (en) * | 1998-09-18 | 2000-04-07 | Seiko Epson Corp | Manufacture of semiconductor device |
US6514803B1 (en) * | 1993-12-22 | 2003-02-04 | Tdk Corporation | Process for making an amorphous silicon thin film semiconductor device |
-
1991
- 1991-04-24 JP JP14648091A patent/JPH04324628A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6514803B1 (en) * | 1993-12-22 | 2003-02-04 | Tdk Corporation | Process for making an amorphous silicon thin film semiconductor device |
JP2000100731A (en) * | 1998-09-18 | 2000-04-07 | Seiko Epson Corp | Manufacture of semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5075627B2 (en) | Low temperature epitaxial growth of silicon-containing films using UV radiation | |
JP3517934B2 (en) | Method of forming silicon film | |
US4501769A (en) | Method for selective deposition of layer structures consisting of silicides of HMP metals on silicon substrates and products so-formed | |
JP2001358139A (en) | Cvd synthesis of silicon nitride material | |
JP2005513793A (en) | Method and apparatus for depositing a crystalline coating on a crystalline substrate | |
JPH03286531A (en) | Formation of silicon oxide film | |
US20050048796A1 (en) | Forming method and a forming apparatus of nanocrystalline silicon structure | |
JPH02258689A (en) | Method for forming crystalline thin film | |
JPH04324628A (en) | Manufacture of silicon thin film | |
JPH04324627A (en) | Manufacture of silicon thin film | |
JPH02102531A (en) | Manufacture of silicon nitride and boron layer | |
JPH04235282A (en) | Optical cvd method and optical cvd apparatus | |
JPS63258016A (en) | Manufacture of amorphous thin film | |
JPH1149507A (en) | Production of silicon particles and formation of silicon film | |
JPH0817738A (en) | Formation method for crystalline semiconductor thin film | |
JP2024131207A (en) | SUBSTRATE PROCESSING METHOD, SEMICONDUCTOR DEVICE MANUFACTURING APPARATUS, PROGRAM, AND SUBSTRATE PROCESSING APPARATUS | |
JP2002175993A (en) | Thin-film manufacturing method | |
JPH01258416A (en) | Vapor growth method | |
JP4246042B2 (en) | Method for forming silicon thin film | |
JPH0951035A (en) | Formation of interlayer insulation layer | |
JP2511808B2 (en) | Depressurized gas phase method | |
JP2005163084A (en) | Method of depositing silicon thin film | |
JPH01313395A (en) | Method for growing silicon in vapor phase | |
JPH02310372A (en) | Photo-reactor | |
JPH09251958A (en) | Crystalline silicon film and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980711 |