[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04324628A - Manufacture of silicon thin film - Google Patents

Manufacture of silicon thin film

Info

Publication number
JPH04324628A
JPH04324628A JP14648091A JP14648091A JPH04324628A JP H04324628 A JPH04324628 A JP H04324628A JP 14648091 A JP14648091 A JP 14648091A JP 14648091 A JP14648091 A JP 14648091A JP H04324628 A JPH04324628 A JP H04324628A
Authority
JP
Japan
Prior art keywords
gas
thin film
silicon thin
hydrogen chloride
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14648091A
Other languages
Japanese (ja)
Inventor
Hideki Takeuchi
英樹 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14648091A priority Critical patent/JPH04324628A/en
Publication of JPH04324628A publication Critical patent/JPH04324628A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly deposit an excellent polycrystalline or amorphous silicon thin film, and restrain the generation of particles in a vapor phase, by using hydrogenated silicon compound or gas containing hydrogenated silicon compound by adding hydrogen chloride gas to it. CONSTITUTION:In a method for forming a polycrystalline or amorphous silicon thin film by a low pressure CVD method using hydrogenated silicon compound or gas containing hydrogenated silicon compound, it is used by adding hydrogen chloride gas. For example, when a polycrystalline silicon thin film is formed by a LPCVD method using monosilane gas, the supply gas is set as two systems constituted of monosilane 1 and helium-diluted 0.1% hydrogen chloride gas 2, which are subjected to flow rate control and then supplied. A polycrystalline silicon thin film for a gate electrode is formed on a single crystal silicon substrate under the following conditions; 550-700 deg.C, 0.1-10.0Torr, monosilane gas 300cm<3>/min, and helium-diluted hydrogen chloride gas 200cm<3>/mim.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体チップや液晶表示
パネルなどに用いられる多結晶または非晶質の珪素薄膜
をCVD法で製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing polycrystalline or amorphous silicon thin films used in semiconductor chips, liquid crystal display panels, etc. by CVD.

【0002】0002

【従来の技術】従来の多結晶珪素薄膜の製造方法は半導
体チップ(LSI)として利用するため基板として単結
晶珪素を用いる場合、窒素希釈または希釈ガスなしのモ
ノシラン(SiH 4)ガスを原料として、0.3To
rr前後の減圧下、基板温度600度C前後で熱分解堆
積させる減圧CVD法(LPCVD)が用いられていた
。 また光学素子に利用する非晶質珪素薄膜をガラス基板に
形成させる場合には、反応温度を低くするため分解温度
がモノシランより低いジシラン(Si 2H 6)また
はトリシラン(Si 3H 6)を原料としたLPCV
Dが400から500度C程度の温度で用いられていた
BACKGROUND OF THE INVENTION Conventional methods for manufacturing polycrystalline silicon thin films use monocrystalline silicon as a substrate for use as semiconductor chips (LSI), using monosilane (SiH 4 ) gas as a raw material with nitrogen dilution or without diluting gas. 0.3To
A low pressure CVD method (LPCVD) was used in which thermal decomposition deposition is carried out under a reduced pressure of around rr and at a substrate temperature of around 600 degrees Celsius. In addition, when forming an amorphous silicon thin film used in optical elements on a glass substrate, disilane (Si 2H 6) or trisilane (Si 3H 6), which has a lower decomposition temperature than monosilane, is used as a raw material to lower the reaction temperature. LPCV
D was used at a temperature of about 400 to 500 degrees Celsius.

【0003】0003

【発明が解決しようとする課題】従来はモノシラン、ジ
シラン、トリシランなど水素化珪素化合物ガスを原料と
する場合、(1)膜厚の均一性が悪化し易い、(2)気
相中で粒子が自己発生することがある、(3)その粒子
を原因とする膜中のピンホールにより膜質が悪化する、
(4)特にジシランやトリシランの高次シランを用いた
場合は段差被覆率(ステップカバレッジ)が悪化し易い
という問題があった。そこで、この発明は他のプロセス
条件を変えることなく混合ガス成分を変えることのみに
よって上記課題を同時に解決する方法を提供することを
目的とする。
[Problems to be Solved by the Invention] Conventionally, when using a silicon hydride compound gas such as monosilane, disilane, or trisilane as a raw material, (1) the uniformity of the film thickness tends to deteriorate, and (2) particles form in the gas phase. (3) The quality of the film deteriorates due to pinholes in the film caused by the particles.
(4) Particularly when a higher-order silane such as disilane or trisilane is used, there is a problem in that the step coverage tends to deteriorate. Therefore, an object of the present invention is to provide a method for simultaneously solving the above problems by only changing the mixed gas components without changing other process conditions.

【0004】0004

【課題を解決するための手段】本発明は上記課題を解決
するものであって、水素化珪素化合物または水素化珪素
化合物を含むガスを用いて減圧CVD法により多結晶ま
たは非晶質の珪素薄膜を形成させる方法において、水素
化珪素化合物または水素化珪素化合物を含むガスに塩化
水素ガスを添加して用いることを特徴とするものである
[Means for Solving the Problems] The present invention solves the above-mentioned problems, and is directed to forming a polycrystalline or amorphous silicon thin film by a low pressure CVD method using a silicon hydride compound or a gas containing a silicon hydride compound. This method is characterized in that hydrogen chloride gas is added to a silicon hydride compound or a gas containing a silicon hydride compound.

【0005】[0005]

【作用】モノシラン、ジシラン、トリシランなど水素化
珪素化合物ガスはLPCVD反応器内において、基板に
直接析出するのみならず、気相中で分解して活性な反応
中間体を生成することはよく知られている。気相分解の
傾向は高次シランほど強い。前述した本発明の解決すべ
き課題はすべてこの気相生成の反応中間体(シリレン:
SiH 2など)に帰することができる。
[Operation] It is well known that silicon hydride compound gases such as monosilane, disilane, and trisilane not only deposit directly on the substrate in the LPCVD reactor, but also decompose in the gas phase to produce active reaction intermediates. ing. The tendency of gas phase decomposition is stronger for higher order silanes. All of the problems to be solved by the present invention described above are solved by the reaction intermediate (silylene:
SiH2, etc.).

【0006】すなわち(1)気相拡散速度に対して表面
反応速度の大きい活性な中間体は反応器内に均一濃度で
存在することができず、膜厚の均一性は悪化する、(2
)活性な中間体同士が気相中で衝突重合することによっ
て粒子が自己発生する、(3)特にジシランやトリシラ
ンを用いた場合には気相中間体の生成量が多くなるが、
活性な中間体はミクロンオーダーの段差内をも拡散する
ことができず、側壁に付着してしまうため被覆性が悪化
してしまうと説明できる。
That is, (1) active intermediates whose surface reaction rate is higher than the gas phase diffusion rate cannot exist at a uniform concentration in the reactor, and the uniformity of the film thickness deteriorates; (2)
) Particles are self-generated by collision polymerization between active intermediates in the gas phase. (3) Particularly when disilane or trisilane is used, the amount of gas phase intermediates produced increases;
This can be explained by the fact that the active intermediate cannot diffuse even within the micron-order step and adheres to the side wall, resulting in poor coverage.

【0007】本発明によれば、上記課題の原因である気
相生成の活性な反応中間体を選択的に除去することがで
きる。すなわち添加した塩化水素ガスは活性な気相中間
体と反応して安定な塩素化珪素化合物ガス(ジクロロシ
ラン、トリクロロシラン等)を生成するため、反応中間
体の選択的な除去が可能である。
According to the present invention, active reaction intermediates generated in the gas phase, which are the cause of the above problems, can be selectively removed. That is, since the added hydrogen chloride gas reacts with an active gas phase intermediate to generate a stable chlorinated silicon compound gas (dichlorosilane, trichlorosilane, etc.), the reaction intermediate can be selectively removed.

【0008】従って装置形状などに大幅な変更を加える
ことなく既存の装置に塩化水素ガスラインを付加するだ
けで高品質な珪素薄膜を均一に堆積することができる。 なお、塩化水素の添加量は微量ですむのでヘリウム等で
あらかじめ希釈された塩化水素ガスを用いるのがよい。 本発明においてこのような希釈ガスが含まれていること
は差し支えない。すなわち水素化珪素化合物または水素
化珪素化合物を含むガスいずれを用いる場合にも本発明
は適用できる。
[0008] Therefore, a high quality silicon thin film can be uniformly deposited by simply adding a hydrogen chloride gas line to an existing device without making any major changes to the device shape or the like. Note that since only a small amount of hydrogen chloride is added, it is preferable to use hydrogen chloride gas pre-diluted with helium or the like. In the present invention, there is no problem in including such a diluent gas. That is, the present invention is applicable to any case where a silicon hydride compound or a gas containing a silicon hydride compound is used.

【0009】[0009]

【実施例】【Example】

実施例1 図1はモノシランガスを用いたLPCVD法による多結
晶珪素薄膜製造装置である。供給ガスはモノシラン1及
びヘリウム希釈0.1%塩化水素ガス2の2系統であり
、サーマルマスフローコントローラ3A、3Bでそれぞ
れ流量調節して供給される。反応装置は石英製ベルジャ
ー5内にウエハ支持用ボート6及びボート支持台7、石
英内管9などを納めた回転機構8を有する縦型の電気炉
4である。減圧、ガス置換のためロータリーポンプ11
、メカニカルブースターポンプ10による排気装置が設
けられている。
Example 1 FIG. 1 shows an apparatus for producing a polycrystalline silicon thin film by the LPCVD method using monosilane gas. The gases to be supplied are two systems, monosilane 1 and helium diluted 0.1% hydrogen chloride gas 2, which are supplied with their flow rates adjusted by thermal mass flow controllers 3A and 3B, respectively. The reaction apparatus is a vertical electric furnace 4 having a rotation mechanism 8 in which a wafer support boat 6, a boat support stand 7, a quartz inner tube 9, etc. are housed in a quartz bell jar 5. Rotary pump 11 for pressure reduction and gas replacement
, an exhaust system using a mechanical booster pump 10 is provided.

【0010】本装置を用いて6インチ単結晶珪素基板上
にゲート電極用多結晶珪素薄膜を、550から700度
C、0.1から10.0Torr、モノシランガス30
0立方センチメートル/分、ヘリウム希釈塩化水素ガス
200立方センチメートル/分の条件下で作成したとこ
ろ、面内膜厚均一性0.2%以下の良質な薄膜が得られ
た。
Using this apparatus, a polycrystalline silicon thin film for a gate electrode was formed on a 6-inch single crystal silicon substrate at 550 to 700 degrees Celsius, 0.1 to 10.0 Torr, and monosilane gas at 30° C.
When produced under the conditions of 0 cubic centimeters/minute and helium-diluted hydrogen chloride gas at 200 cubic centimeters/minute, a high-quality thin film with an in-plane film thickness uniformity of 0.2% or less was obtained.

【0011】実施例2 図2はジシランガスを用いたLPCVD法によるガラス
基板上への非晶質珪素薄膜製造装置である。非晶質珪素
薄膜においては未結合手(ダングリングボンド)が大量
にあるので、半導体的性質を得るにはこれらを水素で終
端する必要がある。このため成膜後水素化する必要があ
るが、本実施例においてはこのためのラジカルアニール
装置も備えている。
Embodiment 2 FIG. 2 shows an apparatus for producing an amorphous silicon thin film on a glass substrate by the LPCVD method using disilane gas. Since there are a large number of dangling bonds in an amorphous silicon thin film, it is necessary to terminate these with hydrogen in order to obtain semiconductor properties. For this reason, it is necessary to perform hydrogenation after film formation, and this embodiment also includes a radical annealing device for this purpose.

【0012】すなわち、本装置はロードロックチェンバ
ー15、薄膜堆積チェンバー13、水素ラジカルアニー
ルチェンバー17の3つのチェンバーよりなる。ロード
ロックチェンバー15にガラス基板14を設置した後、
同チェンバー内を脱気し薄膜堆積チェンバー13内へ移
送した。供給ガスはジシラン12及びヘリウム希釈0.
1%塩化水素ガス2の2系統である。薄膜堆積の条件は
450から550度C、0.1から10.0Torr、
ジシラン15立方センチメートル/分、ヘリウム希釈塩
化水素ガス35立方センチメートル/分で行なった。
That is, this apparatus consists of three chambers: a load lock chamber 15, a thin film deposition chamber 13, and a hydrogen radical annealing chamber 17. After installing the glass substrate 14 in the load lock chamber 15,
The chamber was deaerated and transferred to the thin film deposition chamber 13. The feed gas was 12% disilane and 0% helium diluted.
There are two systems: 1% hydrogen chloride gas and 2. The conditions for thin film deposition were 450 to 550 degrees Celsius, 0.1 to 10.0 Torr,
The reaction was carried out using disilane at 15 cubic centimeters/minute and helium diluted hydrogen chloride gas at 35 cubic centimeters/minute.

【0013】本工程後、再びロードロックチェンバー1
5を経由して水素ラジカルアニールチェンバー17へ移
送した。本工程では薄膜内に存在する非晶質珪素の未結
合手を水素原子と結合させた。水素ラジカルアニールチ
ェンバー17には水素ガスボンベ19よりサーマルマス
フローコントローラ3Cを経て水素が供給されるが、こ
れに水銀恒温槽18から蒸発した水銀ガスが添加される
。低圧水銀ランプ16により紫外線を照射することによ
り水銀原子を励起させ、その水銀原子のエネルギーを利
用して水素ラジカルを生成させた。水素ラジカルは非晶
質珪素薄膜上で珪素と反応し、表面から水素を拡散させ
膜質を改善することができた。
[0013] After this step, the load lock chamber 1 is
5 to the hydrogen radical annealing chamber 17. In this step, the dangling bonds of amorphous silicon present in the thin film were combined with hydrogen atoms. Hydrogen is supplied to the hydrogen radical annealing chamber 17 from a hydrogen gas cylinder 19 via a thermal mass flow controller 3C, to which mercury gas evaporated from a mercury constant temperature bath 18 is added. The mercury atoms were excited by irradiating ultraviolet rays with a low-pressure mercury lamp 16, and the energy of the mercury atoms was used to generate hydrogen radicals. Hydrogen radicals reacted with silicon on the amorphous silicon thin film, allowing hydrogen to diffuse from the surface and improving the film quality.

【0014】[0014]

【発明の効果】以上説明したように本発明によれば、良
質な多結晶または非晶質珪素薄膜を均一性よく堆積する
ことが可能であり、気相中での粒子の発生も抑制するこ
とができる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to deposit a high-quality polycrystalline or amorphous silicon thin film with good uniformity, and the generation of particles in the gas phase can also be suppressed. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明方法により多結晶珪素薄膜を製造するた
めの装置の例を示す図
FIG. 1 is a diagram showing an example of an apparatus for producing a polycrystalline silicon thin film by the method of the present invention.

【図2】本発明方法により非晶質珪素薄膜を製造するた
めの装置の例を示す図
FIG. 2 is a diagram showing an example of an apparatus for producing an amorphous silicon thin film by the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  水素化珪素化合物または水素化珪素化
合物を含むガスを用いて減圧CVD法により多結晶また
は非晶質の珪素薄膜を形成させる方法において、水素化
珪素化合物または水素化珪素化合物を含むガスに塩化水
素ガスを添加して用いることを特徴とする珪素薄膜の製
造方法。
Claim 1. A method for forming a polycrystalline or amorphous silicon thin film by low pressure CVD using a silicon hydride compound or a gas containing the silicon hydride compound, the method comprising: containing the silicon hydride compound or the silicon hydride compound; A method for producing a silicon thin film, characterized in that hydrogen chloride gas is added to the gas.
JP14648091A 1991-04-24 1991-04-24 Manufacture of silicon thin film Withdrawn JPH04324628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14648091A JPH04324628A (en) 1991-04-24 1991-04-24 Manufacture of silicon thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14648091A JPH04324628A (en) 1991-04-24 1991-04-24 Manufacture of silicon thin film

Publications (1)

Publication Number Publication Date
JPH04324628A true JPH04324628A (en) 1992-11-13

Family

ID=15408596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14648091A Withdrawn JPH04324628A (en) 1991-04-24 1991-04-24 Manufacture of silicon thin film

Country Status (1)

Country Link
JP (1) JPH04324628A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100731A (en) * 1998-09-18 2000-04-07 Seiko Epson Corp Manufacture of semiconductor device
US6514803B1 (en) * 1993-12-22 2003-02-04 Tdk Corporation Process for making an amorphous silicon thin film semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514803B1 (en) * 1993-12-22 2003-02-04 Tdk Corporation Process for making an amorphous silicon thin film semiconductor device
JP2000100731A (en) * 1998-09-18 2000-04-07 Seiko Epson Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JP5075627B2 (en) Low temperature epitaxial growth of silicon-containing films using UV radiation
JP3517934B2 (en) Method of forming silicon film
US4501769A (en) Method for selective deposition of layer structures consisting of silicides of HMP metals on silicon substrates and products so-formed
JP2001358139A (en) Cvd synthesis of silicon nitride material
JP2005513793A (en) Method and apparatus for depositing a crystalline coating on a crystalline substrate
JPH03286531A (en) Formation of silicon oxide film
US20050048796A1 (en) Forming method and a forming apparatus of nanocrystalline silicon structure
JPH02258689A (en) Method for forming crystalline thin film
JPH04324628A (en) Manufacture of silicon thin film
JPH04324627A (en) Manufacture of silicon thin film
JPH02102531A (en) Manufacture of silicon nitride and boron layer
JPH04235282A (en) Optical cvd method and optical cvd apparatus
JPS63258016A (en) Manufacture of amorphous thin film
JPH1149507A (en) Production of silicon particles and formation of silicon film
JPH0817738A (en) Formation method for crystalline semiconductor thin film
JP2024131207A (en) SUBSTRATE PROCESSING METHOD, SEMICONDUCTOR DEVICE MANUFACTURING APPARATUS, PROGRAM, AND SUBSTRATE PROCESSING APPARATUS
JP2002175993A (en) Thin-film manufacturing method
JPH01258416A (en) Vapor growth method
JP4246042B2 (en) Method for forming silicon thin film
JPH0951035A (en) Formation of interlayer insulation layer
JP2511808B2 (en) Depressurized gas phase method
JP2005163084A (en) Method of depositing silicon thin film
JPH01313395A (en) Method for growing silicon in vapor phase
JPH02310372A (en) Photo-reactor
JPH09251958A (en) Crystalline silicon film and its manufacturing method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711