JPH04314106A - Positioning device - Google Patents
Positioning deviceInfo
- Publication number
- JPH04314106A JPH04314106A JP7957591A JP7957591A JPH04314106A JP H04314106 A JPH04314106 A JP H04314106A JP 7957591 A JP7957591 A JP 7957591A JP 7957591 A JP7957591 A JP 7957591A JP H04314106 A JPH04314106 A JP H04314106A
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric element
- movement control
- coarse movement
- displacement element
- coarse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006073 displacement reaction Methods 0.000 claims abstract description 52
- 238000001514 detection method Methods 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 8
- 230000002706 hydrostatic effect Effects 0.000 description 1
Landscapes
- Control Of Position Or Direction (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は粗動及び微動を用いた位
置決め装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positioning device using coarse and fine movements.
【0002】0002
【従来の技術】図7はかかる位置決め装置の構成図であ
る。テーブル1上にはスライダ2が静圧軸受3によりス
ライド自在に支持されている。このスライダ2には圧電
素子4が設けられるとともにミラー5が設けられている
。又、このスライダ2は粗動機構6の移動ロッド7と連
結している。なお、圧電素子4の変位位置にはミラー4
aが設けられている。2. Description of the Related Art FIG. 7 is a block diagram of such a positioning device. A slider 2 is slidably supported on a table 1 by a hydrostatic bearing 3. The slider 2 is provided with a piezoelectric element 4 and a mirror 5. Further, this slider 2 is connected to a moving rod 7 of a coarse movement mechanism 6. Note that a mirror 4 is located at the displacement position of the piezoelectric element 4.
A is provided.
【0003】一方、レーザ発振器8がテーブル1上に設
けられるとともに各レーザ干渉計9、10、ビームスプ
リッタ11及びミラー12が設けられ、レーザ発振器8
から出力されたレーザ光がビームスプリッタ11により
2方向に分岐され、その一方の分岐レーザ光がレーザ干
渉計9を透過し、ミラー5で反射して再びレーザ干渉計
9に入射するようになっている。又、ビームスプリッタ
11により分岐された他方の分岐レーザ光がミラー12
で反射してレーザ干渉計10に至り、このレーザ干渉計
10を透過してミラー4aで反射して再びレーザ干渉計
10に入射するようになっている。そして、これらレー
ザ干渉計9、10の干渉出力はそれぞれレシーバ13、
14により各電気信号に変換されて位置制御装置15に
送られる。On the other hand, a laser oscillator 8 is provided on the table 1, and each laser interferometer 9, 10, a beam splitter 11, and a mirror 12 are provided.
The laser beam output from the laser beam is split into two directions by the beam splitter 11, and one of the branched laser beams passes through the laser interferometer 9, is reflected by the mirror 5, and enters the laser interferometer 9 again. There is. Also, the other branched laser beam split by the beam splitter 11 is sent to the mirror 12.
The light is reflected by the laser interferometer 10, passes through the laser interferometer 10, is reflected by the mirror 4a, and enters the laser interferometer 10 again. The interference outputs of these laser interferometers 9 and 10 are transmitted to receivers 13 and 10, respectively.
14, the signals are converted into electrical signals and sent to the position control device 15.
【0004】この位置制御装置15は粗動及び微動の各
制御を実行する。すなわち、位置制御装置15の粗動制
御機能はレシーバ13からの電気信号からミラー5の位
置、つまりステージ2の位置を求め、この位置と目標位
置との偏差を求めてこの偏差に応じた粗動制御信号を送
出する。この粗動制御信号は粗動駆動回路16に送られ
、この粗動駆動回路16は粗動制御信号に従って粗動機
構6を駆動する。The position control device 15 performs coarse movement and fine movement control. That is, the coarse movement control function of the position control device 15 determines the position of the mirror 5, that is, the position of the stage 2, from the electrical signal from the receiver 13, calculates the deviation between this position and the target position, and performs coarse movement according to this deviation. Send control signals. This coarse movement control signal is sent to a coarse movement drive circuit 16, and this coarse movement drive circuit 16 drives the coarse movement mechanism 6 in accordance with the coarse movement control signal.
【0005】又、位置制御装置15の微動制御機能はレ
シーバ14からの電気信号からミラー4aの位置、つま
り圧電素子4の変位位置を求め、この位置と目標位置と
の偏差を求めてこの偏差に応じた微動制御信号を送出す
る。この微動制御信号は微動駆動回路17に送られ、こ
の微動駆動回路17は微動制御信号に従って圧電素子4
に電圧を印加する。Further, the fine movement control function of the position control device 15 determines the position of the mirror 4a, that is, the displacement position of the piezoelectric element 4, from the electric signal from the receiver 14, determines the deviation between this position and the target position, and calculates the deviation between this position and the target position. Sends a corresponding fine movement control signal. This fine movement control signal is sent to the fine movement drive circuit 17, and this fine movement drive circuit 17 drives the piezoelectric element 4 according to the fine movement control signal.
Apply voltage to.
【0006】しかしながら、上記位置決めでは粗動及び
微動の各制御ともフィードバック系を形成している。こ
のため、微動制御、粗動制御共にレーザ発振器8、レー
ザ干渉計9、10及びレシーバ13、14から構成され
るレーザ測長系をフィードバックセンサとして用いてい
るために、圧電素子4の変位位置の最終的な位置決めは
レーザ測長系の位置検出精度の制限を受ける。However, in the above positioning, both the coarse movement and fine movement controls form a feedback system. For this reason, since a laser length measurement system consisting of a laser oscillator 8, laser interferometers 9 and 10, and receivers 13 and 14 is used as a feedback sensor for both fine movement control and coarse movement control, the displacement position of the piezoelectric element 4 is Final positioning is limited by the position detection accuracy of the laser length measurement system.
【0007】[0007]
【発明が解決しようとする課題】以上のように圧電素子
4の変位位置の最終的な位置決めはレーザ測長系の位置
検出精度の制限を受ける。そこで本発明は、レーザ測長
系の位置検出精度の制限を受けずに高精度に位置決めで
きる位置決め装置を提供することを目的とする。As described above, the final positioning of the displacement position of the piezoelectric element 4 is limited by the position detection accuracy of the laser length measurement system. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a positioning device that can perform highly accurate positioning without being limited by the position detection accuracy of a laser length measurement system.
【0008】[0008]
【課題を解決するための手段】本発明は、微小変位する
微小変位素子と、この微小変位素子を移動させる粗動機
構と、微小変位素子の変位位置を測定する位置検出手段
と、微小変位素子を目標位置に向かって微小変位させる
オープンループ制御手段と、微小変位素子の微小変位に
連動させて粗動機構を粗動させる粗動フィードバック制
御手段とを備えて上記目的を達成しようとする位置決め
装置である。[Means for Solving the Problems] The present invention provides a minute displacement element that makes a minute displacement, a coarse movement mechanism that moves the minute displacement element, a position detection means that measures the displacement position of the minute displacement element, and a minute displacement element that moves the minute displacement element. A positioning device that attempts to achieve the above object by comprising open-loop control means for slightly displacing the micro-displacement element toward a target position, and coarse-motion feedback control means for coarsely moving a coarse-motion mechanism in conjunction with the minute displacement of the micro-displacement element. It is.
【0009】[0009]
【作用】このような手段を備えたことにより、微小変位
素子をオープンループ制御手段により目標位置に向かっ
て微小変位させ、この微小変位素子の変位位置を位置検
出手段により測定してこの変位位置を粗動フィードバッ
ク制御手段にフィードバックし、この粗動フィードバッ
ク制御手段により微小変位素子の微小変位に連動させて
粗動機構を粗動させる。[Operation] By providing such a means, the minute displacement element is minutely displaced toward the target position by the open loop control means, and the displacement position of this minute displacement element is measured by the position detection means to determine this displacement position. The coarse movement feedback control means coarsely moves the coarse movement mechanism in conjunction with the minute displacement of the minute displacement element.
【0010】0010
【実施例】以下、本発明の一実施例について図面を参照
しながら説明する。なお、図7と同一部分には同一符号
を付してその詳しい説明は省略する。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. Note that the same parts as in FIG. 7 are given the same reference numerals, and detailed explanation thereof will be omitted.
【0011】図1は位置決め装置の構成図であり、図2
は電気回路の構成図である。スライダ2上には圧電素子
4が設けられている。この圧電素子4は微動駆動回路1
7から印加された電圧に応じて微小変位する。FIG. 1 is a block diagram of the positioning device, and FIG.
is a configuration diagram of an electric circuit. A piezoelectric element 4 is provided on the slider 2. This piezoelectric element 4 is a fine movement drive circuit 1
It undergoes minute displacement according to the voltage applied from 7.
【0012】一方、レシーバ13の出力端子は微動粗動
制御回路20に接続されている。この微動粗動制御回路
20は粗動制御機能及び微動制御機能を有している。粗
動制御機能はレシーバ13からの電気信号からミラー4
aの位置、つまり圧電素子4の変位位置を求め、この位
置と目標位置との偏差を求めてこの偏差に応じた粗動制
御信号を送出する機能を有している。又、微動制御機能
は粗動制御機能によりスライダ2を移動しているときに
スライダ2の移動分だけ圧電素子4が縮むような電圧を
印加し、スライダ2を停止しているときに微小距離だけ
変位させる微動制御信号を送出する機能を有している。
従って、粗動制御機能はフィードバック制御系を形成し
、又微動制御機能はオープンループ制御系を形成してい
る。On the other hand, the output terminal of the receiver 13 is connected to a fine/coarse movement control circuit 20 . This fine and coarse movement control circuit 20 has a coarse movement control function and a fine movement control function. The coarse movement control function uses electrical signals from the receiver 13 to control the mirror 4.
It has a function of determining the position a, that is, the displacement position of the piezoelectric element 4, determining the deviation between this position and the target position, and sending out a coarse movement control signal according to this deviation. In addition, the fine movement control function applies a voltage that causes the piezoelectric element 4 to contract by the amount of movement of the slider 2 when the slider 2 is moving, and compresses the piezoelectric element 4 by a minute distance when the slider 2 is stopped. It has a function of sending out a fine movement control signal for displacement. Therefore, the coarse movement control function forms a feedback control system, and the fine movement control function forms an open loop control system.
【0013】粗動駆動回路16は微動粗動制御回路20
からの粗動制御信号を受けて粗動機構6を動作させる機
能を有するもので、図2に示すように補償回路16a、
D/A変換器16b、PWM制御回路16c及びアンプ
16dが直列接続された構成となっている。The coarse movement drive circuit 16 is a fine movement coarse movement control circuit 20.
It has a function of operating the coarse movement mechanism 6 in response to a coarse movement control signal from the compensation circuit 16a, as shown in FIG.
The D/A converter 16b, the PWM control circuit 16c, and the amplifier 16d are connected in series.
【0014】微動駆動回路17は微動粗動制御回路20
からの微動制御信号に従って圧電素子4に電圧を印加す
る機能を有するもので、D/A変換器17a及びアンプ
17bが直列接続された構成となっている。The fine movement drive circuit 17 is a fine movement coarse movement control circuit 20.
It has a function of applying voltage to the piezoelectric element 4 according to a fine movement control signal from the piezoelectric element 4, and has a configuration in which a D/A converter 17a and an amplifier 17b are connected in series.
【0015】次に圧電素子4への印加電圧について説明
する。圧電素子4の印加電圧に対する変位特性には図3
に示すようにヒステリシスが生じる。しかしながら、微
小変位領域Aにおけるヒステリシスは小さく、例えば図
4に示すように圧電素子4の微小変位5nmを生じる印
加電圧Vsであれば、ヒステリシスによる誤差は 0.
3nmの範囲内になる。この範囲 0.3nmを無視で
きるオーダの位置決めにあたってヒステリシスによる誤
差の影響はほとんどない。従って、微動粗動制御回路2
0の微動制御機能は圧電素子4に対して1ステップ 2
.5nm以下変位の微動制御信号を送出する。なお、粗
動機構6及びレーザ発振器8はコンピュータ21により
動作制御されている。次に上記の如く構成された装置の
作用について説明する。Next, the voltage applied to the piezoelectric element 4 will be explained. Figure 3 shows the displacement characteristics of the piezoelectric element 4 with respect to the applied voltage.
Hysteresis occurs as shown in . However, the hysteresis in the minute displacement region A is small. For example, if the applied voltage Vs causes a minute displacement of 5 nm in the piezoelectric element 4 as shown in FIG. 4, the error due to hysteresis is 0.
It falls within the range of 3 nm. When positioning is on the order of negligible within this range of 0.3 nm, there is almost no influence of errors due to hysteresis. Therefore, the fine and coarse movement control circuit 2
The fine movement control function of 0 is 1 step for piezoelectric element 4 2
.. Sends a fine movement control signal with a displacement of 5 nm or less. Note that the coarse movement mechanism 6 and the laser oscillator 8 are operationally controlled by a computer 21. Next, the operation of the apparatus configured as described above will be explained.
【0016】例えば、微動粗動制御回路20の微動制御
機能は圧電素子4を1nm変位させる微動制御信号を送
出する。この場合、圧電素子4が1nm/10Vの変位
特性を有すれば、1nm変位させるのに10Vの電圧を
圧電素子4に印加する微動制御信号を送出する。この微
動制御信号は微動駆動回路17に送られ、この微動駆動
回路17は変位1nmに応じた電圧Vsを圧電素子4に
印加する。この電圧印加により圧電素子4は図6に示す
ように1ステップ1nm変位する。再び微動制御機能は
圧電素子4を次のステップでさらに1nmだけ変位させ
る微動制御信号つまり2nm変位させる微動制御信号を
送出する。以下、同様に微動制御機能は圧電素子4を1
ステップ1nmだけ変位させる微動制御信号を5ステッ
プ送出する。従って、圧電素子4は5ステップで5nm
変位し、このとき圧電素子4には50Vの電圧が印加さ
れる。For example, the fine movement control function of the fine and coarse movement control circuit 20 sends out a fine movement control signal that displaces the piezoelectric element 4 by 1 nm. In this case, if the piezoelectric element 4 has a displacement characteristic of 1 nm/10 V, a fine movement control signal is sent to apply a voltage of 10 V to the piezoelectric element 4 to displace it by 1 nm. This fine movement control signal is sent to the fine movement drive circuit 17, and this fine movement drive circuit 17 applies a voltage Vs to the piezoelectric element 4 according to a displacement of 1 nm. By applying this voltage, the piezoelectric element 4 is displaced by 1 nm in one step, as shown in FIG. Again, the fine movement control function sends out a fine movement control signal to further displace the piezoelectric element 4 by 1 nm in the next step, that is, a fine movement control signal to displace it by 2 nm. Hereinafter, similarly, the fine movement control function controls the piezoelectric element 4 to 1.
A fine movement control signal for displacing by 1 nm in steps is sent in 5 steps. Therefore, the piezoelectric element 4 has a thickness of 5 nm in 5 steps.
At this time, a voltage of 50V is applied to the piezoelectric element 4.
【0017】微動粗動制御回路20の微動制御機能は圧
電素子4が5nm変位すると、圧電素子4への印加電圧
を「0」とし、これと同時に微動粗動制御回路20の粗
動制御機能はスライダ2を5nm変位させる粗動制御信
号を送出する。かくして、スライダ2は粗動機構6によ
り5nm変位する。The fine movement control function of the fine and coarse movement control circuit 20 sets the voltage applied to the piezoelectric element 4 to "0" when the piezoelectric element 4 is displaced by 5 nm, and at the same time, the coarse movement control function of the fine and coarse movement control circuit 20 A coarse movement control signal is sent to displace the slider 2 by 5 nm. In this way, the slider 2 is displaced by 5 nm by the coarse movement mechanism 6.
【0018】以下、同様に微動制御と粗動制御とが連動
して粗動制御により圧電素子4が1ステップ1nmづつ
変位して5ステップ5nm変位し、次に粗動制御により
5nm変位する。このようにして圧電素子4の変位位置
が目標位置に到達すると、位置決め制御は終了する。[0018] Thereafter, the fine movement control and coarse movement control are similarly linked, and the piezoelectric element 4 is displaced by 1 nm per step by coarse movement control, then 5 nm in 5 steps, and then by 5 nm by coarse movement control. When the displacement position of the piezoelectric element 4 reaches the target position in this way, the positioning control ends.
【0019】このように上記一実施例においては、圧電
素子4をオープンループ制御により目標位置に向かって
微小変位させ、圧電素子4の微小変位に連動させて粗動
機構6を粗動させるようにしたので、圧電素子4の1ス
テップを1nmとし、5ステップごとに粗微動運動させ
たときにヒステリシスは上記の如く 0.3nmとなり
、圧電素子4の位置決め精度をオープンループで1nm
オーダにすることができる。この場合、レーザ測長系の
測定制限の影響を受けることはない。そのうえ、圧電素
子4のヒステリシスの影響も受けない。従って、圧電素
子4の変位特性を有効に使用できて高精度に位置決めが
できる。As described above, in the above embodiment, the piezoelectric element 4 is minutely displaced toward the target position by open loop control, and the coarse movement mechanism 6 is coarsely moved in conjunction with the minute displacement of the piezoelectric element 4. Therefore, when one step of the piezoelectric element 4 is 1 nm and coarse and fine movements are made every 5 steps, the hysteresis is 0.3 nm as described above, and the positioning accuracy of the piezoelectric element 4 is set to 1 nm in an open loop.
Can be ordered. In this case, it is not affected by the measurement limitations of the laser length measurement system. Moreover, it is not affected by the hysteresis of the piezoelectric element 4. Therefore, the displacement characteristics of the piezoelectric element 4 can be used effectively and positioning can be performed with high precision.
【0020】なお、本発明は上記一実施例に限定される
ものでなくその要旨を変更しない範囲で変形すればよい
。例えば、圧電素子に代えて電歪素子、磁歪素子などを
用いてもよく、又レーザ測長系に代えてリニアスケール
を用いてもよい。又、ヒステリシスのない圧電素子を用
いれば、さらに精度高い位置決めができる。It should be noted that the present invention is not limited to the above-mentioned embodiment, and may be modified without changing the gist thereof. For example, an electrostrictive element, a magnetostrictive element, etc. may be used in place of the piezoelectric element, and a linear scale may be used in place of the laser length measurement system. Further, if a piezoelectric element without hysteresis is used, even more accurate positioning can be achieved.
【0021】[0021]
【発明の効果】以上詳記したように本発明によれば、レ
ーザ測長系の位置検出精度の制限を受けずに高精度に位
置決めできる位置決め装置を提供できる。As described in detail above, according to the present invention, it is possible to provide a positioning device that can perform highly accurate positioning without being limited by the position detection accuracy of a laser length measurement system.
【図1】本発明に係わる位置決め装置の一実施例を示す
構成図。FIG. 1 is a configuration diagram showing an embodiment of a positioning device according to the present invention.
【図2】同装置の回路構成図。FIG. 2 is a circuit configuration diagram of the device.
【図3】同装置における圧電素子の変位特性図。FIG. 3 is a displacement characteristic diagram of a piezoelectric element in the same device.
【図4】同装置における圧電素子の低電圧領域の変位特
性図。FIG. 4 is a displacement characteristic diagram in the low voltage region of the piezoelectric element in the same device.
【図5】同装置における微動及び粗動による変位を示す
図。FIG. 5 is a diagram showing displacement due to fine movement and coarse movement in the same device.
【図6】同装置における微動及び粗動の連動を示す図。FIG. 6 is a diagram showing the interlocking of fine movement and coarse movement in the same device.
【図7】従来装置の構成図。FIG. 7 is a configuration diagram of a conventional device.
2…スライダ、4…圧電素子、6…粗動機構、8…レー
ザ発振器、9…レーザ干渉計、13…レシーバ、16…
粗動駆動回路、17…微動駆動回路、20…微動粗動制
御回路。2...Slider, 4...Piezoelectric element, 6...Coarse movement mechanism, 8...Laser oscillator, 9...Laser interferometer, 13...Receiver, 16...
Coarse movement drive circuit, 17... Fine movement drive circuit, 20... Fine movement coarse movement control circuit.
Claims (1)
小変位素子を移動させる粗動機構と、前記微小変位素子
の変位位置を測定する位置検出手段と、前記微小変位素
子を目標位置に向かって微小変位させるオープンループ
制御手段と、前記微小変位素子の微小変位に連動させて
前記粗動機構を粗動させる粗動フィードバック制御手段
とを具備したことを特徴とする位置決め装置。1. A minute displacement element that makes a minute displacement, a coarse movement mechanism that moves the minute displacement element, a position detection means that measures a displacement position of the minute displacement element, and a position detecting means that moves the minute displacement element toward a target position. 1. A positioning device comprising: open loop control means for making a minute displacement; and coarse movement feedback control means for coarsely moving the coarse movement mechanism in conjunction with the minute displacement of the minute displacement element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07957591A JP3256556B2 (en) | 1991-04-12 | 1991-04-12 | Positioning device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07957591A JP3256556B2 (en) | 1991-04-12 | 1991-04-12 | Positioning device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04314106A true JPH04314106A (en) | 1992-11-05 |
JP3256556B2 JP3256556B2 (en) | 2002-02-12 |
Family
ID=13693796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07957591A Expired - Fee Related JP3256556B2 (en) | 1991-04-12 | 1991-04-12 | Positioning device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3256556B2 (en) |
-
1991
- 1991-04-12 JP JP07957591A patent/JP3256556B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3256556B2 (en) | 2002-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0556041B1 (en) | Compact laser probe for profilometry | |
US4193693A (en) | Velocity servo for continuous scan Fourier interference spectrometer | |
JP3473057B2 (en) | Displacement detector | |
JP2735153B2 (en) | Precision position control device and precision position control method | |
JPH07168625A (en) | Method and device for positioning control | |
KR0138337B1 (en) | Focus control method and apparatus | |
KR100193153B1 (en) | Positioning device | |
US5097456A (en) | Optical head | |
US4385835A (en) | Compensating device | |
JPH04314106A (en) | Positioning device | |
Gorman et al. | Multiloop control of a nanopositioning mechanism for ultraprecision beam steering | |
US4994661A (en) | Optical two-dimensional servo-loop for laser beam stabilization and/or position encoding | |
JPH04259015A (en) | Fine driving device | |
JPH04366711A (en) | Displacement detecting device | |
Winkler et al. | A magnetic tuning system for dye lasers | |
JPH0563807B2 (en) | ||
JPH04320504A (en) | Rough and fine positioning device | |
JPH07270114A (en) | Measuring apparatus of change in optical path length | |
JP2638157B2 (en) | Shape measuring apparatus and method | |
JPS6293603A (en) | Optical displacement measuring apparatus | |
SU657242A1 (en) | Photoelectric device for automatic measuring of displacements | |
JPH04162110A (en) | Scan type tunnel microscope device | |
JPS63225171A (en) | Optical physical quantity measuring apparatus | |
JPH04115304A (en) | Automatic gain control servo circuit | |
JPH06310772A (en) | Positioning controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |