JPH04301044A - High toughness titanium alloy capable of cold working - Google Patents
High toughness titanium alloy capable of cold workingInfo
- Publication number
- JPH04301044A JPH04301044A JP6479191A JP6479191A JPH04301044A JP H04301044 A JPH04301044 A JP H04301044A JP 6479191 A JP6479191 A JP 6479191A JP 6479191 A JP6479191 A JP 6479191A JP H04301044 A JPH04301044 A JP H04301044A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- toughness
- cold
- cold working
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 35
- 238000005482 strain hardening Methods 0.000 title abstract description 23
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 4
- 239000010936 titanium Substances 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 abstract description 15
- 238000000034 method Methods 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 4
- 238000005097 cold rolling Methods 0.000 abstract description 3
- 238000009863 impact test Methods 0.000 abstract description 3
- 238000005242 forging Methods 0.000 abstract description 2
- 238000005098 hot rolling Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 14
- 229910045601 alloy Inorganic materials 0.000 description 13
- 239000000956 alloy Substances 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000000365 skull melting Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Landscapes
- Forging (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、化学工業およびエネル
ギー開発分野において用いられる、あるいは一般工業用
構造材として用いられるチタン合金、特にα+β型合金
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to titanium alloys, particularly α+β type alloys, used in the chemical industry and energy development fields, or as general industrial structural materials.
【0002】0002
【従来の技術】一般的なチタン合金として現在使用され
ているTi合金では、工業用純Tiおよびα型、α+β
型、β型の各チタン合金が知られており、以下にあって
は、このうちα+β型のチタン合金について説明する。
α+β型のチタン合金としては、Ti−6Al−4V、
Ti−6Al−2Sn−4Zr−6Mo、Ti−6Al
−2Sn−4Zr−2Mo、Ti−3Al−2.5V、
Ti−8Al−1Mo−1Vが知られている。[Prior Art] Ti alloys currently used as general titanium alloys include industrial pure Ti, α type, α+β type, and
Various types of titanium alloys are known, such as titanium alloys of α+β type and α+β type. α+β type titanium alloys include Ti-6Al-4V,
Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al
-2Sn-4Zr-2Mo, Ti-3Al-2.5V,
Ti-8Al-1Mo-1V is known.
【0003】このようにα+β型チタン合金にあって各
種合金元素が知られているが、そのうちチタン合金に対
するNiの添加例には次のようなものがある。
a) α+β型チタン合金に白金族元素を0.02から
0.2 %または白金族元素を0.005 から0.1
2%並びにNi、Co、W、Moのうち1種以上を0.
05〜2.0 %添加し、苛酷な油井環境中での耐食性
を向上させたチタン合金( 特開昭63−114981
号) 。
b) Ti−6Al−4V合金の超塑性特性を改善させ
るため2%のCo、Fe、Ni、Crを添加させること
を特徴とした合金(METALLURGICAL TR
ANSACTION A, Vol.14A,Dec.
1983, pp.2535 〜2544) 。As described above, various alloying elements are known for α+β type titanium alloys, among which the following are examples of Ni added to titanium alloys. a) 0.02 to 0.2% platinum group element or 0.005 to 0.1% platinum group element in α+β type titanium alloy
2% and one or more of Ni, Co, W, and Mo.
A titanium alloy with 0.05 to 2.0% added to improve corrosion resistance in harsh oil well environments (Japanese Patent Application Laid-Open No. 63-114981)
No.). b) An alloy characterized by adding 2% of Co, Fe, Ni, and Cr to improve the superplastic properties of the Ti-6Al-4V alloy (METALLURGICAL TR
ANSACTION A, Vol. 14A, Dec.
1983, pp. 2535-2544).
【0004】その他、α+β型のチタン合金であるTi
−3Al−2.5V合金は、冷間加工可能な合金として
知られており、その基本的な成分はAlが2.5 〜3
.5 %、Vが2.0 〜3.0 %である。この合金
はAMS に規格化されており、特にAMS 4943
A には焼鈍材としての規格がある。これによると冷間
加工後、593〜788 ℃に15〜60分焼鈍するこ
とが規定されている。またAMS 4944には冷間加
工材の規格があり、これによると冷間加工後、370
℃以上の温度で30分以上応力除去焼鈍することが規定
されている。しかしながら、上記の2つの規格には冷間
加工度に関する規定はない。In addition, Ti, which is an α+β type titanium alloy,
-3Al-2.5V alloy is known as a cold-workable alloy, and its basic composition is Al of 2.5 to 3
.. 5%, and V is 2.0 to 3.0%. This alloy is standardized by AMS, specifically AMS 4943
A has standards as an annealed material. According to this document, after cold working, annealing is prescribed at 593 to 788°C for 15 to 60 minutes. In addition, AMS 4944 has a standard for cold-worked materials, and according to this, after cold working, 370
It is specified that stress relief annealing should be performed at a temperature of 30 minutes or more at a temperature of 0.degree. C. or higher. However, the above two standards do not specify the degree of cold work.
【0005】[0005]
【発明が解決しようとする課題】チタン合金はその高強
度、低比重の特性を活かし構造材として用いられている
。ところがチタン合金は靱性が低いため構造材として用
いた場合、亀裂に対する抵抗が弱くなる。従って、チタ
ン合金を構造材として用いる場合、強度の向上のみを主
眼とするのではなく靱性値の向上にも注意を注ぐ必要が
ある。しかしながら、現在までのところ、強度を確保し
つつ靱性値を向上させる方法が不明である。[Problems to be Solved by the Invention] Titanium alloys are used as structural materials by taking advantage of their characteristics of high strength and low specific gravity. However, since titanium alloys have low toughness, when used as structural materials, their resistance to cracking becomes weak. Therefore, when using a titanium alloy as a structural material, it is necessary to pay attention not only to improving the strength but also to improving the toughness value. However, to date, it is unclear how to improve toughness while ensuring strength.
【0006】そこで冷間加工により加工強化することが
一つの手段として考えられるが、従来知られている冷間
加工可能な合金である前述のTi−3Al−2.5V合
金では冷間加工後の靱性が著しく低下し、強度目標は満
足されるものの、靱性の点から不十分な結果となる。こ
こに、本発明の一般的目的は、冷間加工可能であって、
強度および靱性値のバランスに優れたチタン合金を提供
することである。[0006] One way to solve this problem is to strengthen the process by cold working, but in the previously known Ti-3Al-2.5V alloy, which is a cold-workable alloy, after cold working, The toughness is significantly reduced, and although the strength target is met, the result is unsatisfactory in terms of toughness. It is herein a general object of the present invention that cold workable
An object of the present invention is to provide a titanium alloy with an excellent balance of strength and toughness.
【0007】本発明のより具体的目的は、室温における
0.2 %耐力が70.0kgf/mm2 以上で、か
つ靱性値をシャルピーにて評価し室温(25 ℃) で
のシャルピー衝撃値が5.0 kgf/mm2 以上で
ある強度および靱性に優れたチタン合金を提供すること
である。A more specific object of the present invention is to have a 0.2% proof stress of 70.0 kgf/mm2 or more at room temperature, and a Charpy impact value of 5.0 kgf/mm2 at room temperature (25°C) when the toughness is evaluated by Charpy. An object of the present invention is to provide a titanium alloy having excellent strength and toughness of 0 kgf/mm2 or more.
【0008】さらに、本発明の目的は、チタン合金の成
分割合と冷間での加工条件と熱処理条件とを最適に組合
わせることにより、強度および靱性値のバランスに優れ
たチタン合金を提供することである。A further object of the present invention is to provide a titanium alloy with an excellent balance of strength and toughness by optimally combining the component proportions of the titanium alloy, cold working conditions, and heat treatment conditions. It is.
【0009】[0009]
【課題を解決するための手段】本発明者らは、かかる課
題を解決するために種々検討を重ね、次のような知見を
得た。
(a) 冷間加工可能な合金として知られているTi−
3Al−2.5V合金に冷間加工を行ったところ、冷間
加工により強度が向上するが、しかし、冷間加工度の上
昇によって強化すると強度の上昇に伴い靱性が低下する
。
(b) 上記のチタン合金の靱性を評価するとともに、
その破壊形態を観察した結果、破壊の際に伝播している
主亀裂の前方に微細な割れが発生しこの割れが連結して
亀裂に発展する。さらに微細な割れの発生場所はα相と
β相の界面である。従って、破壊の亀裂発生に対する抵
抗を増加させることが可能ならばα+β型のチタン合金
の靱性向上が可能である。すなわち、α相とβ相の界面
を強化すれば微少な亀裂発生に対する抵抗を高めること
が可能となり、靱性の向上が可能である。[Means for Solving the Problems] The present inventors have conducted various studies in order to solve the above problems, and have obtained the following knowledge. (a) Ti-, which is known as a cold-workable alloy
When a 3Al-2.5V alloy is subjected to cold working, its strength is improved by cold working, but when the strength is strengthened by increasing the degree of cold working, the toughness decreases as the strength increases. (b) Evaluating the toughness of the above titanium alloy,
As a result of observing the fracture mode, it was found that fine cracks occur in front of the main crack that propagates during the fracture, and these cracks connect and develop into cracks. Furthermore, the location where fine cracks occur is at the interface between the α and β phases. Therefore, if it is possible to increase the resistance to fracture cracking, it is possible to improve the toughness of α+β type titanium alloys. That is, by strengthening the interface between the α phase and the β phase, it is possible to increase the resistance to the generation of minute cracks, and it is possible to improve the toughness.
【0010】(c) 一方、Niはチタン合金にとって
β相に固溶するいわゆるβ安定化元素として知られてい
る。前記のα相とβ相の界面を強化するためには、Ni
を微量添加して、かつ必要により熱処理を適切に行うこ
とでα相とβ相の界面を強化することが有効であり、従
って亀裂の伝播抵抗すなわち靱性値を高めることができ
る。
(d) また加工強化の目的で冷間加工する場合、冷間
加工後の熱処理条件を適切に制御すれば靱性の低下はな
く、前記の強度・靱性の目標に到達可能である。(c) On the other hand, Ni is known as a so-called β-stabilizing element that dissolves solidly in the β phase of titanium alloys. In order to strengthen the interface between the α phase and β phase, Ni
It is effective to strengthen the interface between the α phase and the β phase by adding a small amount of and performing appropriate heat treatment if necessary, thereby increasing the crack propagation resistance, that is, the toughness value. (d) In addition, when cold working is performed for the purpose of strengthening work, if the heat treatment conditions after cold working are appropriately controlled, there is no decrease in toughness and the above-mentioned targets for strength and toughness can be achieved.
【0011】ここに、本発明は、重量%にて、Alが2
.0 〜4.0 %、Vが1.5 〜3.0 %、Ni
が0.1 〜1.5 %を含み、残部がTiおよび不可
避的な不純物から成る、高い靱性値と良好な冷間加工性
を有するチタン合金である。また本発明にかかる合金の
製造条件については前記目標を達成するために冷間で2
0%以上の加工を加えた後、350 ℃以上800 ℃
以下の温度で15分以上焼鈍することが望ましい。[0011] Here, in the present invention, Al is 2% by weight.
.. 0 to 4.0%, V 1.5 to 3.0%, Ni
It is a titanium alloy with a high toughness value and good cold workability, containing 0.1 to 1.5% of Ti and the remainder consisting of Ti and unavoidable impurities. In addition, regarding the manufacturing conditions of the alloy according to the present invention, in order to achieve the above-mentioned goal,
After 0% or more processing, 350 ℃ or more 800 ℃
It is desirable to anneal at the following temperature for 15 minutes or more.
【0012】0012
【作用】次に本発明における合金組成の限定理由および
好適加工条件の限定理由についてそれぞれ記載する。
(1) Al、V
Alはチタン合金にはα相安定化元素であり最も一般的
に用いられる添加元素である。一方、Vはβ相安定化元
素である。これらの元素は固溶強化の目的でチタン合金
に添加されている。まず強化するためにはAlが2.0
%以上、またVが1.5 %以上添加することが必要
である。しかし、Alの濃度が4.0 %超になると固
溶強化が著しくなり、冷間加工性が低下するため冷間加
工時に割れが生じる。またVが3.0 %超含まれると
強度が著しく上昇するが、これに伴って靱性の低下が大
きく、強度・靱性の前述の目標値を満足することができ
なくなる。[Operation] Next, reasons for limiting the alloy composition and suitable processing conditions in the present invention will be described. (1) Al, V Al is an α-phase stabilizing element in titanium alloys and is the most commonly used additive element. On the other hand, V is a β-phase stabilizing element. These elements are added to titanium alloys for the purpose of solid solution strengthening. First, in order to strengthen, Al is 2.0
% or more, and it is necessary to add V in an amount of 1.5% or more. However, when the Al concentration exceeds 4.0%, solid solution strengthening becomes significant and cold workability decreases, resulting in cracking during cold working. Further, when V is contained in an amount exceeding 3.0%, the strength increases significantly, but the toughness decreases accordingly, making it impossible to satisfy the above-mentioned target values for strength and toughness.
【0013】(2) Ni
Niの濃度が0.1 %未満であると靱性値の向上効果
が発揮されない。また1.5 %超含有するとTi2N
i の金属間化合物を析出し、脆化を招くため靱性値の
向上は不可能となる。その他、不可避な不純物としては
Fe、C、H、O、N、Y等が包含され、これらは通常
以下の範囲内で含まれることが許容される。
Fe:0.3%以下、C:0.10 %以下、H:0.
0125 %以下、O:0.20 %以下、N:0.0
5 %以下、Y:0.005%以下本発明にかかるチタ
ン合金の製造条件は以下の範囲内であることが望ましい
。(2) Ni If the concentration of Ni is less than 0.1%, the effect of improving the toughness value will not be exhibited. Also, if the content exceeds 1.5%, Ti2N
Since the intermetallic compound of i is precipitated and causes embrittlement, it becomes impossible to improve the toughness value. Other unavoidable impurities include Fe, C, H, O, N, Y, etc., and these are normally allowed to be included within the following ranges. Fe: 0.3% or less, C: 0.10% or less, H: 0.
0125% or less, O: 0.20% or less, N: 0.0
5% or less, Y: 0.005% or less It is desirable that the manufacturing conditions for the titanium alloy according to the present invention be within the following range.
【0014】すなわち、冷間で20%以上の加工を行い
、その後350 ℃以上800 ℃以下の温度範囲で1
5分以上保持した後空冷する熱処理を加える。上記の内
、冷間加工での加工度は以下の式で与えられる。
R=100 × (Ao −Af ) /AoR :
冷間加工度 (%)
Ao: 加工前断面積
Af : 加工後の製品断面積
なお、冷間での加工度が20%未満であれば強度目標が
達成されない。また熱処理温度が350 ℃未満では冷
間加工の影響が残存し靱性の目標が達成されず、一方、
800 ℃超の温度では完全に再結晶を起こし強度の目
標が達成されなくなる。更に熱処理時の保持時間が15
分未満では熱処理の効果が発揮されず靱性目標が達成で
きなくなる。
熱処理時間の上限側では経済的な理由から8時間程度を
限定とするのが適当である。[0014] That is, 20% or more of the material is cold-processed, and then it is processed at a temperature of 350°C or more and 800°C or less.
Add heat treatment by holding for 5 minutes or more and then cooling in air. Among the above, the working degree in cold working is given by the following formula. R=100×(Ao−Af)/AoR:
Degree of cold working (%) Ao: Cross-sectional area before working Af: Cross-sectional area of product after working Note that if the degree of cold working is less than 20%, the strength target will not be achieved. Furthermore, if the heat treatment temperature is less than 350 °C, the effects of cold working will remain and the toughness target will not be achieved;
At temperatures above 800°C, complete recrystallization occurs and the strength target cannot be achieved. Furthermore, the holding time during heat treatment is 15
If it is less than 1 minute, the effect of heat treatment will not be exhibited and the toughness target will not be achieved. For economic reasons, it is appropriate to limit the heat treatment time to about 8 hours.
【0015】[0015]
【実施例1】本例では、表1に示す組成割合の各チタン
合金を溶解し機械的性質を調査した。供試材は各1kg
のインゴット (外径φ50mm×高さ110mm)を
アルゴン雰囲気下でスカル溶解により溶製した。インゴ
ットは1100℃に加熱後、幅50mm×厚さ30mm
まで鍛造によって加工してから、900 ℃に再加熱し
て幅50mm×厚さ7mmまで熱間圧延を行った。熱間
での圧延後の素材は熱間加工で発生したスケールを除去
する目的で厚さ6mmまで機械加工した後、厚さ3mm
まで冷間で50%の圧延を加えた。Example 1 In this example, titanium alloys having the composition ratios shown in Table 1 were melted and their mechanical properties were investigated. Each sample material weighs 1 kg.
An ingot (outer diameter 50 mm x height 110 mm) was prepared by skull melting in an argon atmosphere. After heating the ingot to 1100℃, it is 50mm wide x 30mm thick.
After processing by forging to 900° C., it was reheated to 900° C. and hot rolled to a width of 50 mm and a thickness of 7 mm. After hot rolling, the material was machined to a thickness of 6mm to remove scale generated during hot working, and then rolled to a thickness of 3mm.
50% cold rolling was applied until
【0016】添加した成分系によってはこの冷間加工で
割れが発生する場合があった。この場合、冷間加工後に
製品端部から1mm以上の割れが発生したものは冷間加
工性が乏しいものとして機械的性質の評価対象から除外
した。冷間圧延後の素材は550 ℃に加熱後、30分
間保持し空冷を行った。熱処理後の素材より圧延長手方
向に平行部の肉厚3mm、幅6.25mm、標点間距離
=25mmの板状試験片を採取し、ASTMに準拠して
室温で引張性質を調査した。また靱性値を評価する目的
で圧延長手方向に幅2.5 mm JIS4号 1/4
サイズのシャルピー衝撃試験片(Vノッチ) を採取し
25℃にて試験を行った。この場合、シャルピー衝撃試
験片の採取方向は圧延方向に平行で亀裂の進展方向は圧
延方向と直角とした。[0016] Depending on the added component system, cracks may occur during this cold working. In this case, products in which cracks of 1 mm or more were generated from the edges of the product after cold working were considered to have poor cold workability and were excluded from the evaluation of mechanical properties. The material after cold rolling was heated to 550°C, held for 30 minutes, and air cooled. A plate-shaped specimen with a wall thickness of 3 mm in the longitudinal direction of the rolling direction, a width of 6.25 mm, and a gage distance of 25 mm was taken from the heat-treated material, and its tensile properties were investigated at room temperature in accordance with ASTM. In addition, for the purpose of evaluating the toughness value, a width of 2.5 mm in the longitudinal direction of rolling JIS No. 4 1/4
A Charpy impact test piece (V-notch) of the same size was taken and tested at 25°C. In this case, the direction in which the Charpy impact test specimens were collected was parallel to the rolling direction, and the direction of crack propagation was perpendicular to the rolling direction.
【0017】表1に試験結果を示す。試験結果の評価は
、0.2 %耐力とシャルピー衝撃値に注目して行い、
0.2 %耐力が70.0 kgf/mm2以上、かつ
シャルピー値が5.0 kgf/mm2以上を達成し
た場合に評価○とした。表1の結果より本発明の規定す
る範囲内の成分において強度・靱性値の目標が達成され
ていることが判る。Table 1 shows the test results. The test results were evaluated by focusing on 0.2% proof stress and Charpy impact value.
A rating of ○ was given when the 0.2% proof stress was 70.0 kgf/mm2 or more and the Charpy value was 5.0 kgf/mm2 or more. From the results in Table 1, it can be seen that the targets for strength and toughness values were achieved with the components within the range defined by the present invention.
【0018】[0018]
【実施例2】本例では、Ti−3.2 Al−2.6
V−0.6Ni の合金150 kgを真空アーク溶解
し、得られたインゴット (φ300mm)を1150
℃に加熱後、鍛造にて幅50mm×厚さ30mmとした
。さらに900 ℃に加熱後、熱間圧延にて幅50mm
厚さ12mmに仕上げた。圧延後の素材より厚さ10m
mの冷間圧延素材を採取し冷間加工度を70%まで変化
させ冷間加工度の影響を調べた。冷間加工後の熱処理は
、500 ℃で30分間の焼鈍を行った。表2に加工お
よび処理条件を示す。熱処理後の機械的性質の調査方法
は実施例1の場合と同じであった。ただし、引張試験片
の厚みは2mmとした。[Example 2] In this example, Ti-3.2 Al-2.6
150 kg of V-0.6Ni alloy was melted in a vacuum arc, and the resulting ingot (φ300 mm) was
After heating to ℃, it was forged into a width of 50 mm and a thickness of 30 mm. After further heating to 900℃, it is hot rolled to a width of 50mm.
Finished with a thickness of 12mm. 10m thicker than the rolled material
A cold-rolled material of m was sampled and the degree of cold working was varied up to 70% to examine the influence of the degree of cold working. The heat treatment after cold working was annealing at 500°C for 30 minutes. Table 2 shows processing and treatment conditions. The method for investigating mechanical properties after heat treatment was the same as in Example 1. However, the thickness of the tensile test piece was 2 mm.
【0019】機械的性質の調査結果を表2に併せて示す
。評価方法は実施例1と同じであった。これより前記の
望ましい製造条件下で加工が実施された場合、強度・靱
性はそれぞれ目標値を満足していることが判る。また熱
処理条件の検討は厚さ5mmまで50%冷間加工した素
材について行った。表3に検討した条件を示す。結果の
評価方法は実施例1と同じであった。この結果を表3に
併せて示す。これより前記の望ましい製造条件下で熱処
理された場合に強度・靱性の目標が満足していることが
判る。The results of the investigation on mechanical properties are also shown in Table 2. The evaluation method was the same as in Example 1. From this, it can be seen that when processing is carried out under the above-mentioned desirable manufacturing conditions, the strength and toughness each satisfy the target values. Further, the heat treatment conditions were examined on a material that had been 50% cold worked to a thickness of 5 mm. Table 3 shows the conditions studied. The method for evaluating the results was the same as in Example 1. The results are also shown in Table 3. This shows that the targets for strength and toughness are met when heat treated under the above-mentioned desirable manufacturing conditions.
【0020】[0020]
【表1】[Table 1]
【0021】[0021]
【表2】[Table 2]
【0022】[0022]
【表3】[Table 3]
【0023】[0023]
【発明の効果】本発明によれば、構造材として用いられ
る高強度で高靱性を有する冷間加工可能なチタン合金と
その製造方法が提供され、チタン合金、特にα+β型チ
タン合金の利用分野が大きく拡大される。Effects of the Invention According to the present invention, a titanium alloy with high strength and high toughness that can be cold-worked and used as a structural material and a method for producing the same are provided, and the field of use of titanium alloys, especially α+β type titanium alloys, is expanded. greatly enlarged.
Claims (1)
%、Vが1.5 〜3.0 %、Niが0.1 〜1
.5 %を含み、残部がTiおよび不可避的な不純物か
ら成る、高い靱性値と良好な冷間加工性を有するチタン
合金。Claim 1: Al in weight% is 2.0 to 4.0
%, V 1.5 to 3.0%, Ni 0.1 to 1
.. 5%, the balance consisting of Ti and unavoidable impurities, a titanium alloy with high toughness values and good cold workability.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6479191A JPH04301044A (en) | 1991-03-28 | 1991-03-28 | High toughness titanium alloy capable of cold working |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6479191A JPH04301044A (en) | 1991-03-28 | 1991-03-28 | High toughness titanium alloy capable of cold working |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04301044A true JPH04301044A (en) | 1992-10-23 |
Family
ID=13268414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6479191A Withdrawn JPH04301044A (en) | 1991-03-28 | 1991-03-28 | High toughness titanium alloy capable of cold working |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04301044A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005118898A1 (en) * | 2004-06-02 | 2005-12-15 | Sumitomo Metal Industries, Ltd. | Titanium alloy and method of manufacturing titanium alloy material |
CN104745867A (en) * | 2015-03-27 | 2015-07-01 | 常熟市双羽铜业有限公司 | High-temperature-resistant titanium alloy plate |
CN108165822A (en) * | 2018-02-10 | 2018-06-15 | 洛阳双瑞精铸钛业有限公司 | A kind of preparation method of low-intensity, easily molded welded tube TA2 cold rolled titanium bands |
CN112481568A (en) * | 2020-11-30 | 2021-03-12 | 陕西宏远航空锻造有限责任公司 | Ti6Al4V alloy forging beta annealing heat treatment method |
CN112626372A (en) * | 2019-10-08 | 2021-04-09 | 大田精密工业股份有限公司 | Titanium alloy sheet material and method for producing same |
-
1991
- 1991-03-28 JP JP6479191A patent/JPH04301044A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005118898A1 (en) * | 2004-06-02 | 2005-12-15 | Sumitomo Metal Industries, Ltd. | Titanium alloy and method of manufacturing titanium alloy material |
CN104745867A (en) * | 2015-03-27 | 2015-07-01 | 常熟市双羽铜业有限公司 | High-temperature-resistant titanium alloy plate |
CN108165822A (en) * | 2018-02-10 | 2018-06-15 | 洛阳双瑞精铸钛业有限公司 | A kind of preparation method of low-intensity, easily molded welded tube TA2 cold rolled titanium bands |
CN112626372A (en) * | 2019-10-08 | 2021-04-09 | 大田精密工业股份有限公司 | Titanium alloy sheet material and method for producing same |
CN112481568A (en) * | 2020-11-30 | 2021-03-12 | 陕西宏远航空锻造有限责任公司 | Ti6Al4V alloy forging beta annealing heat treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2485122C (en) | Alpha-beta ti-al-v-mo-fe alloy | |
US4067734A (en) | Titanium alloys | |
CA2014970C (en) | Oxidation resistant titanium-base alloy | |
JPH05117791A (en) | High strength and high toughness cold workable titanium alloy | |
US11920231B2 (en) | Creep resistant titanium alloys | |
JPH04103737A (en) | High strength and high toughness titanium alloy and its manufacture | |
US11384413B2 (en) | High temperature titanium alloys | |
KR101536402B1 (en) | Titanium alloy product having high strength and excellent cold rolling property | |
US4711761A (en) | Ductile aluminide alloys for high temperature applications | |
EP1772528B1 (en) | Titanium alloy and method of manufacturing titanium alloy material | |
EP3856944A2 (en) | Titanium alloy with moderate strength and high ductility | |
JPH04301044A (en) | High toughness titanium alloy capable of cold working | |
JP4304425B2 (en) | Cold rolled titanium alloy sheet and method for producing cold rolled titanium alloy sheet | |
US5429690A (en) | Method of precipitation-hardening a nickel alloy | |
JPH03294442A (en) | High toughness titanium alloy and its manufacture | |
JPH04107234A (en) | High strength and high toughness titanium alloy | |
RU2772153C1 (en) | Creep-resistant titanium alloys | |
JP2800651B2 (en) | High corrosion resistance titanium alloy with excellent cold workability and weldability | |
JPH02250931A (en) | Intermetallic compound ti-al base alloy refined material having excellent fracture toughness | |
JPH059629A (en) | High touchness titanium alloy and production thereof | |
JPS6343457B2 (en) | ||
Brown et al. | Effect of Rolling Parameters on the Properties of Al-Fe-V Sheet Rolled on an Experimental Mill |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980514 |