JPH043004B2 - - Google Patents
Info
- Publication number
- JPH043004B2 JPH043004B2 JP15580585A JP15580585A JPH043004B2 JP H043004 B2 JPH043004 B2 JP H043004B2 JP 15580585 A JP15580585 A JP 15580585A JP 15580585 A JP15580585 A JP 15580585A JP H043004 B2 JPH043004 B2 JP H043004B2
- Authority
- JP
- Japan
- Prior art keywords
- core
- block
- material block
- dual
- bonding material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 claims description 111
- 238000000034 method Methods 0.000 claims description 22
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000011521 glass Substances 0.000 description 16
- 238000002844 melting Methods 0.000 description 12
- 230000008018 melting Effects 0.000 description 12
- 238000000465 moulding Methods 0.000 description 7
- 238000003466 welding Methods 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、FDD(フロツピーデイスクドライ
ブ)等の磁気記録装置に用いられるバルクヘツド
の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a bulkhead used in a magnetic recording device such as an FDD (floppy disk drive).
従来の技術
この種のバルクヘツドは一般に第2図の平面図
に示すような構造をしている。即ち、このバルク
ヘツドは、情報の書込み及び読出しを行うリー
ド・ライトコア1(以下、R/Wコアと記す)と
情報の消去を行うイレーズコア2(以下、Eコア
と記す)を、中央のガラス等の接合材層3を介し
て互いに接合一体化したもので、R/Wコア1
は、フエライト製のA材4とB材5を、トラツク
溝6にモールドしたガラス等の接合材7によつて
互いに接合した構造とされており、またEコア2
も、フエライト製のA材8とB材9を、トラツク
溝10にモールドしたガラス等の接合材11によ
つて互いに接合した同様な構造とされている。BACKGROUND OF THE INVENTION This type of bulkhead generally has a structure as shown in the plan view of FIG. That is, this bulkhead has a read/write core 1 (hereinafter referred to as R/W core) for writing and reading information and an erase core 2 (hereinafter referred to as E core) for erasing information, and a central glass etc. R/W core 1
has a structure in which a material A 4 and a material B 5 made of ferrite are joined to each other by a bonding material 7 such as glass molded into a track groove 6, and an E core 2
Also has a similar structure in which material A 8 and material B 9 made of ferrite are bonded to each other by a bonding material 11 such as glass molded into a track groove 10.
このような構造のバルクヘツドにあつては、情
報の書込み、読出し、消去を的確に行わせるため
に、R/Wコア1のトラツク幅の中心線Lと、E
コア2のガードバンド幅を定める真中のトラツク
溝10の中心線lとのズレ(以下、センターズレ
と記す)を約3μm以下に抑えることが必要とな
る。 In a bulkhead with such a structure, in order to write, read, and erase information accurately, the center line L of the track width of the R/W core 1 and E
It is necessary to suppress the deviation (hereinafter referred to as center deviation) of the center track groove 10, which defines the guard band width of the core 2, from the center line l to about 3 μm or less.
ところで、上記のようなバルクヘツドの製造は
従来、第3図に示すような所謂二段溶着法によつ
て行われていた。 Incidentally, the above-mentioned bulkhead has conventionally been manufactured by a so-called two-stage welding method as shown in FIG.
即ち、第3図イに示すように、R/Wコア用の
A材ブロツク12とB材ブロツク13に多数のト
ラツク溝6を形成してガラス等の接合材をモール
ドし、第3図ロに示すように、双方のブロツク1
2,13のトラツク溝形成面を当接した状態で接
合材の融点以上に加熱してトラツク溝6内の接合
材7を溶着することにより、ブロツク状のR/W
コア1を形成する。 That is, as shown in FIG. 3A, a large number of track grooves 6 are formed in the A material block 12 and B material block 13 for the R/W core, and a bonding material such as glass is molded, and as shown in FIG. As shown, both block 1
By heating the bonding material 7 above the melting point of the bonding material while the track groove forming surfaces 2 and 13 are in contact with each other and welding the bonding material 7 in the track groove 6, a block-shaped R/W is formed.
Core 1 is formed.
他方、第3図ハに示すように、Eコア用のA材
ブロツク15とB材ブロツク16に多数のトラツ
ク溝10を形成してガラス等の接合材をモールド
し、第3図ニに示すように、双方のブロツク1
5,16のトラツク溝形成面を当接した状態で接
合材の融点以上に加熱してトラツク溝10内の接
合材11を溶着することにより、ブロツク状のE
コア2を形成する。 On the other hand, as shown in FIG. 3C, a large number of track grooves 10 are formed in the A material block 15 and the B material block 16 for the E core, and a bonding material such as glass is molded, and as shown in FIG. 3D. Then, both block 1
A block-shaped E
Core 2 is formed.
次いで、第3図ホに示すように、R/Wコア1
のA材ブロツク12又はEコア2のA材ブロツク
15のいずれかの接合面に形成した凹部18に、
前記トラツク溝6,10内の接合材よりも融点の
低いガラス等の接合材3をモールドし、図示のよ
うに双方のA材ブロツク12,15を当接した状
態で接合材3の融点以上に加熱、溶着してR/W
コア1とEコア2を接合一体化する。しかるの
ち、切断線に沿つてスライスしてチツプ状のバ
ルクヘツドコアを得るのである。 Next, as shown in FIG. 3E, the R/W core 1
In the recess 18 formed on the joint surface of either the A material block 12 of the E core 2 or the A material block 15 of the E core 2,
A bonding material 3 such as glass having a melting point lower than that of the bonding material in the track grooves 6 and 10 is molded, and the melting point of the bonding material 3 is melted or higher with both A material blocks 12 and 15 in contact with each other as shown in the figure. R/W by heating and welding
Core 1 and E-core 2 are joined and integrated. Thereafter, it is sliced along the cutting line to obtain chip-shaped bulkhead cores.
発明が解決使用とする問題点
しかしながら、このような二段溶着法では、ブ
ロツク状のR/Wコア1とブロツク状のEコア2
を接合する際、R/Wコア1のトラツク幅の中心
線Lと、Eコア2のガードバンド幅を定めるトラ
ツク溝10の中心線lとが一致するように位置合
わせすることが容易でないため、かなりの誤差を
生じ、前記のセンターズレを3μm以内に抑える
ことが難しいという問題があつた。Problems to be Solved by the Invention However, in such a two-stage welding method, a block-shaped R/W core 1 and a block-shaped E core 2 are
When joining, it is not easy to align the center line L of the track width of the R/W core 1 and the center line L of the track groove 10 that defines the guard band width of the E core 2, so that There was a problem in that a considerable error occurred and it was difficult to suppress the above-mentioned center deviation to within 3 μm.
問題点を解決するための手段
本発明はバルクヘツドの製造方法は、上記問題
を解決するために、リード・ライトコア用のA材
ブロツクとイレーズコア用のA材ブロツクを兼ね
た単一の兼用A材ブロツクの片側面にリード・ラ
イトコア用のB材ブロツクを接合してリード・ラ
イトコアを形成するリード・ライトコア形成工程
と、上記の兼用A材ブロツクの反対側面にイレー
ズコア用のB材ブロツクを接合してイレーズコア
を形成するイレーズコア形成工程と、上記の兼用
A材ブロツクのほぼ中央に深溝を形成し、この深
溝に接合材をモールドしてリード・ライトコア用
のA材ブロツクとイレーズコア用のA材ブロツク
とに区分する区分工程とを含む構成としたことを
要旨とする。Means for Solving the Problems In order to solve the above problems, the present invention provides a bulkhead manufacturing method that uses a single dual-purpose A material block that serves as an A material block for read/write cores and an A material block for erase cores. A read/write core forming process in which a B material block for read/write cores is joined to one side of the block to form a read/write core, and a B material block for erase cores is attached to the opposite side of the above-mentioned dual-purpose A material block. The erase core forming process involves joining to form an erase core, and forming a deep groove approximately in the center of the dual-purpose A material block, molding a bonding material into this deep groove, and forming an A material block for the read/write core and an A material block for the erase core. The gist is that the structure includes a step of sorting into blocks of material.
実施例 以下、実施例を挙げて本発明を詳述する。Example Hereinafter, the present invention will be explained in detail with reference to Examples.
第1図は本発明にかかるバルクヘツドの製造方
法の一実施例の説明図であつて、これによれば、
最初のR/Wコア形成工程において、第1図イに
示す如きR/Wコア用のA材ブロツクとEコア用
のA材ブロツクを兼ねたフエライト製の単一の兼
用A材ブロツク19を使用し、この兼用A材ブロ
ツク19の片側面に所定幅のトラツク溝6を所定
のトラツク幅をあけてダイサー等により多数形成
する。これに対応して、R/Wコア用のB材ブロ
ツク13の接合面にも多数のトラツク溝6を形成
し、これらブロツク19,13の各トラツク溝6
にガラス等の接合材をモールドする。この場合、
モールドされた接合材の表面が若干脹れるので、
研磨して平坦にするのが望ましい。 FIG. 1 is an explanatory diagram of one embodiment of the bulkhead manufacturing method according to the present invention, and according to this,
In the first R/W core forming process, a single dual-purpose A material block 19 made of ferrite, which also serves as an A material block for the R/W core and an A material block for the E core, as shown in Fig. 1A, is used. A large number of track grooves 6 of a predetermined width are formed on one side of this dual-purpose A material block 19 at predetermined track widths using a dicer or the like. Correspondingly, a large number of track grooves 6 are also formed on the joint surface of the B material block 13 for the R/W core, and each track groove 6 of these blocks 19, 13 is formed.
A bonding material such as glass is molded onto the surface. in this case,
The surface of the molded bonding material will swell slightly, so
It is preferable to polish it to make it flat.
次いで、第1図ロに示すように、兼用A材ブロ
ツク19とB材ブロツク13のトラツク溝形成面
同志を当接してそのままの状態で接合材の融点以
上に加熱し、トラツク溝6内にモールドされたガ
ラス等の接合材7を融着することによつて、兼用
A材ブロツク19とB材ブロツク13を接合一体
化してブロツク状のR/Wコア1を形成する。 Next, as shown in FIG. By fusing the bonding material 7 made of glass or the like, the dual-purpose A material block 19 and the B material block 13 are joined and integrated to form a block-shaped R/W core 1.
上記のようにしてR/Wコア1の形成が完了す
ると、次のEコア形成工程において第1図ハに示
すように、一体化されたR/Wコア1の兼用A材
ブロツク19の反対側面に、所定幅のトラツク溝
10を所定のEトラツク幅をあけて多数形成す
る。その場合、R/Wコア1のトラツク幅の中心
線Lと、Eコアのガードバンド幅を定めるトラツ
ク溝10の中心線lとのズレが3μm以下となる
ように、トラツク溝10を形成することが必要に
なるが、このトラツク溝10は、接合体化済みの
A材ブロツク19の側面に、前記の場合と同様に
ダイサー等によつて精密に切削形成されるため、
センターズレが3μmを越えることは皆無に等し
い。この兼用A材ブロツク19反対側面のトラツ
ク溝10に対応してEコア用のB材ブロツク16
の接合面にも多数のトラツク溝10を形成し、こ
れらブロツク19,16の各トラツク溝10に接
合材をモールドする。この場合、接合材として
は、前記R/Wコア形成に使用した接合材7より
も融点の低いガラス等を使用する。 When the formation of the R/W core 1 is completed as described above, in the next E core formation process, as shown in FIG. First, a large number of track grooves 10 having a predetermined width are formed at a predetermined E track width. In that case, the track groove 10 should be formed so that the deviation between the center line L of the track width of the R/W core 1 and the center line L of the track groove 10 that defines the guard band width of the E core is 3 μm or less. However, since this track groove 10 is precisely cut and formed on the side surface of the A-material block 19 that has been assembled into a joined body using a dicer or the like as in the case described above,
The center deviation rarely exceeds 3 μm. Corresponding to the track groove 10 on the opposite side of this dual-purpose A material block 19, a B material block 16 for the E core is installed.
A large number of track grooves 10 are also formed on the bonding surfaces of the blocks 19 and 16, and a bonding material is molded into each of the track grooves 10 of the blocks 19 and 16. In this case, as the bonding material, glass or the like having a lower melting point than the bonding material 7 used for forming the R/W core is used.
次いで、第1図ニに示すように、兼用A材ブロ
ツク19とB材ブロツク16のトラツク溝形成面
同志を当接し、トラツク溝10内の接合材11の
融点より高く且つ前記接合材7の融点より低い温
度で加熱し、トラツク溝10内の接合材11を溶
着することによつて、兼用A材ブロツク19とB
材ブロツク16を接合一体化してブロツク状のE
コア2を形成する。かかる温度範囲で加熱、溶着
を行うと、R/Wコア1のトラツク溝6内の接合
材7が軟化、溶融しないので、兼用A材ブロツク
19とR/Wコア用のB材ブロツク13との接合
位置関係にズレを生じる虞はない。 Next, as shown in FIG. 1D, the track groove forming surfaces of the dual-purpose A material block 19 and B material block 16 are brought into contact with each other so that the melting point is higher than the melting point of the bonding material 11 in the track groove 10 and of the bonding material 7. By heating at a lower temperature and welding the bonding material 11 in the track groove 10, the dual-purpose A material blocks 19 and B
The material blocks 16 are joined and integrated to form a block E.
Core 2 is formed. If heating and welding are performed in such a temperature range, the bonding material 7 in the track groove 6 of the R/W core 1 will not soften or melt, so that the joint material 7 of the dual-purpose A material block 19 and the B material block 13 for the R/W core can be bonded. There is no risk of misalignment in the bonding positional relationship.
上記のようにして、兼用A材ブロツク19を兼
用して両側にR/Wコア1とEコア2を形成した
ものは、次の区分工程において、第1図ニに併せ
て示す如く、兼用A材ブロツク19のほぼ中央に
深溝22をスライサー等を形成し、この深溝22
に非磁性接合材3をモールドすることによつて、
兼用A材ブロツク19をR/Wコア用のA材ブロ
ツク12とEコア用のA材ブロツク15とに、磁
気的に区分する。使用する非磁性接合材3は、前
記接合材7として用いられる融点の高いガラスで
もよいし、前記接合材11として用いられる融点
の低いガラスでもよく、また、これら以外のガラ
ス等でもよい。 As described above, the R/W core 1 and E core 2 are formed on both sides of the dual-purpose A material block 19. In the next dividing process, the dual-purpose A material block 19 is used as the dual-purpose A material block 19, as shown in FIG. A deep groove 22 is formed approximately in the center of the material block 19 using a slicer or the like.
By molding the non-magnetic bonding material 3 on
The dual-purpose A material block 19 is magnetically divided into an A material block 12 for the R/W core and an A material block 15 for the E core. The non-magnetic bonding material 3 used may be a glass with a high melting point used as the bonding material 7, a glass with a low melting point used as the bonding material 11, or a glass other than these.
このように兼用A材ブロツク19を区分したの
ち、第1図ニに一点鎖線で示す切断線に沿つ
て、兼用A材ブロツク19の深溝22の切残した
底部23を切除することによつて、区分された
R/Wコア用のA材ブロツク12とEコア用のA
材ブロツク15を接合材3を介して接合したまま
互いに独立させ、最後に切断線沿いにスライス
して、目的とするチツプ状のバルクヘツドコアを
得る。 After dividing the dual-purpose A material block 19 in this manner, the remaining bottom portion 23 of the deep groove 22 of the dual-purpose A material block 19 is cut out along the cutting line shown by the dashed line in FIG. Separated A material block 12 for R/W core and A material block 12 for E core
The material blocks 15 are separated from each other while being joined through the joining material 3, and finally sliced along the cutting line to obtain the desired chip-shaped bulkhead core.
この実施例では、兼用A材ブロツク19の区分
工程をEコア2の形成工程の後で独立して行つた
が、この区分工程はR/Wコア1の形成工程とE
コア2の形成工程の間で行うようにしてもよく、
またR/Wコア1の成形工程中に含めたり、Eコ
ア2の成型工程中に含めたりすることもできる。 In this embodiment, the dividing process of the dual-purpose A material block 19 was performed independently after the forming process of the E core 2, but this dividing process was carried out independently from the forming process of the R/W core 1 and the
It may be carried out between the steps of forming the core 2,
Further, it can be included in the molding process of the R/W core 1 or the molding process of the E core 2.
R/Wコア1の形成工程とEコア2の形成工程
の間で区分工程を行う場合は、第1図ロに示すよ
うに兼用A材ブロツク19の片側にR/Wコア1
を形成した後、兼用A材ブロツク19のほぼ中央
に深溝22を形成し、接合材3をモールドすれば
よいが、この場合の接合材3は、次のEコア形成
工程における加熱時の軟化溶融を防止するため
に、接合材7として使用される高融点のガラス等
を用いる必要がある。 When performing a dividing process between the R/W core 1 forming process and the E core 2 forming process, the R/W core 1 is placed on one side of the dual-purpose A material block 19 as shown in FIG.
After forming, a deep groove 22 is formed approximately in the center of the dual-purpose A material block 19, and the bonding material 3 is molded. In order to prevent this, it is necessary to use glass or the like having a high melting point as the bonding material 7.
また、R/Wコア1の形成工程中に区分工程を
組み入れる場合は、兼用A材ブロツク19の片側
面にトラツク溝6を形成する際に深溝22を形成
し、トラツク溝6に接合材7をモールドする際に
深溝22にも接合材3をモールドすればよいが、
この場合も接合材3として高融点のガラス等を使
用する必要がある。 Furthermore, when a dividing process is incorporated into the forming process of the R/W core 1, the deep grooves 22 are formed when forming the track grooves 6 on one side of the dual-purpose A material block 19, and the bonding material 7 is applied to the track grooves 6. When molding, the bonding material 3 may also be molded into the deep groove 22, but
In this case as well, it is necessary to use glass or the like with a high melting point as the bonding material 3.
これに対し、Eコア2の形成工程中に区分工程
を組み入れる場合は、第1図ハに示すように兼用
A材ブロツク19の反対側面にトラツク溝10を
形成する際に深溝22を形成し、トラツク溝10
に接合材11をモールドする際に深溝22にも接
合材3をモールドすればよいが、この場合は接合
材3として、接合材7のような高融点のガラス又
は接合材11のような低融点のガラスのいずれも
使用可能である。 On the other hand, when a dividing process is incorporated into the forming process of the E core 2, as shown in FIG. Track groove 10
When molding the bonding material 11, the bonding material 3 may also be molded in the deep groove 22, but in this case, the bonding material 3 may be glass with a high melting point like the bonding material 7 or a low melting point like the bonding material 11. Any of these glasses can be used.
発明の効果
以上の説明から理解できるように、本発明の製
造方法は、R/WコアとEコアを個別に形成して
あとから接合する従来の二段溶着法と正反対の発
想に立ち、最初に兼用A材ブロツクを使用し、あ
とからこの兼用A材ブロツクに深溝を形成して接
合材をモールドすることによつて、R/Wコア用
のA材ブロツクとEコア用のA材ブロツクとに区
分するようにしたため、双方のA材ブロツクは最
後まで固定的関係にあり相対的な位置ズレを生じ
ることがない。従つて、兼用A材ブロツクの片側
面のトラツク溝と反対側面のトラツク溝を適正な
相対的位置関係となるように精密に形成すればす
るほど、センターズレが少なくなるので、精密切
削加工が可能なダイサー等を使用してトラツク溝
の形成を行なうことにより、容易にセンターズレ
を、例えば3μm以下に抑えることが可能となる。Effects of the Invention As can be understood from the above explanation, the manufacturing method of the present invention is based on an idea that is completely opposite to the conventional two-step welding method in which the R/W core and E core are formed separately and then joined together. By using a dual-purpose A material block for the R/W core and the A material block for the E core by later forming deep grooves in the dual-purpose A material block and molding the bonding material. Since the blocks are divided into two, both blocks of A material are in a fixed relationship until the end, and no relative positional deviation occurs. Therefore, the more precisely the track grooves on one side of the dual-purpose A material block and the track grooves on the opposite side are formed so that they have an appropriate relative positional relationship, the less center deviation will occur, and precision cutting will be possible. By forming the track grooves using a suitable dicer or the like, it is possible to easily suppress center deviation to, for example, 3 μm or less.
第1図は本発明製造方法の一実施例を示すコア
ブロツク斜視図、第2図はバルクヘツドの平面
図、第3図は従来方法を示すコアブロツクの斜視
図又は平面図である。
1……R/Wコア、2……Eコア、3,7,1
1……接合材、6,10……トラツク溝、12…
…R/Wコア用のA材ブロツク、13……R/W
コア用のB材ブロツク、15……Eコア用のA材
ブロツク、16……Eコア用のB材ブロツク、1
9……兼用A材ブロツク、22……深溝。
FIG. 1 is a perspective view of a core block showing an embodiment of the manufacturing method of the present invention, FIG. 2 is a plan view of a bulkhead, and FIG. 3 is a perspective view or a plan view of a core block showing a conventional method. 1...R/W core, 2...E core, 3,7,1
1... Bonding material, 6, 10... Track groove, 12...
...A material block for R/W core, 13...R/W
B material block for core, 15...A material block for E core, 16...B material block for E core, 1
9...Dual use A material block, 22...Deep groove.
Claims (1)
ーズコア用のA材ブロツクを兼ねた単一の兼用A
材ブロツクの片側面にリード・ライトコア用のB
材ブロツクを接合してリード・ライトコアを形成
するリード・ライトコア形成工程と、 上記の兼用A材ブロツクの反対側面にイレーズ
コア用のB材ブロツクを接合してイレーズコアを
形成するイレーズコア形成工程と、 上記の兼用A材ブロツクのほぼ中央に深溝を形
成し、この深溝に接合材をモールドしてリード・
ライトコア用のA材ブロツクとイレーズコア用の
A材ブロツクとに区分する区分工程とを含むこと
を特徴とするバルクヘツドの製造方法。 2 イレーズコア形成工程の後に区分工程をおく
ことを特徴とする特許請求の範囲第1項記載の製
造方法。 3 リード・ライトコア形成工程とイレーズコア
形成工程の間に区分工程をおくことを特徴とする
特許請求の範囲第1項記載の製造方法。[Scope of Claims] 1. A single dual-purpose A that serves as an A material block for read/write cores and an A material block for erase cores.
B for read/write core on one side of the material block
a read/write core forming step in which a read/write core is formed by joining material blocks; an erase core forming step in which a B material block for an erase core is joined to the opposite side of the dual-purpose A material block to form an erase core; A deep groove is formed approximately in the center of the dual-purpose A block, and a bonding material is molded into this deep groove to form a lead.
1. A method for manufacturing a bulkhead, comprising a step of dividing into A material blocks for light cores and A material blocks for erase cores. 2. The manufacturing method according to claim 1, wherein a dividing step is performed after the erase core forming step. 3. The manufacturing method according to claim 1, characterized in that a dividing step is provided between the read/write core forming step and the erase core forming step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15580585A JPS6216217A (en) | 1985-07-15 | 1985-07-15 | Manufacturing method for bulkhead |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15580585A JPS6216217A (en) | 1985-07-15 | 1985-07-15 | Manufacturing method for bulkhead |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6216217A JPS6216217A (en) | 1987-01-24 |
JPH043004B2 true JPH043004B2 (en) | 1992-01-21 |
Family
ID=15613836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15580585A Granted JPS6216217A (en) | 1985-07-15 | 1985-07-15 | Manufacturing method for bulkhead |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6216217A (en) |
-
1985
- 1985-07-15 JP JP15580585A patent/JPS6216217A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6216217A (en) | 1987-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6233642B2 (en) | ||
US4916563A (en) | Magnetic head and method for the production thereof | |
JPH043004B2 (en) | ||
US6400530B1 (en) | Complex magnetic head and manufacturing method of complex magnetic head core | |
US5305166A (en) | Magnetic head slider | |
JPS59215022A (en) | Manufacture of magnetic head | |
JP2693431B2 (en) | Combination magnetic head and method of manufacturing the same | |
JP2507686B2 (en) | Composite magnetic head core and method of manufacturing the same | |
JPS62197908A (en) | Manufacture of magnetic head | |
JPH042408Y2 (en) | ||
JPS6220113A (en) | Composite type magnetic head and its manufacture | |
JP2563246B2 (en) | Manufacturing method of magnetic head | |
JPS599973B2 (en) | Method for manufacturing multi-element magnetic head | |
JPH03203805A (en) | Production of magnetic head | |
JPH01143007A (en) | Production of magnetic head | |
JPS60140503A (en) | Production for magnetic head | |
JPH0366009A (en) | Production of magnetic head | |
JPS61145715A (en) | Production of magnetic head | |
JPH0684131A (en) | Manufacture for core composite magnetic head | |
JPH06176307A (en) | Magnetic head and its production | |
JPS60113306A (en) | Manufacture of magnetic head | |
JPH02260206A (en) | Production of composite type hdd magnetic head | |
JPH0438612A (en) | Composite magnetic head core and its production | |
JPH01220207A (en) | Manufacture of magnetic head | |
JPS62232716A (en) | Manufacture of magnetic head core |