[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0430971A - Cutting material and cutting method - Google Patents

Cutting material and cutting method

Info

Publication number
JPH0430971A
JPH0430971A JP2135828A JP13582890A JPH0430971A JP H0430971 A JPH0430971 A JP H0430971A JP 2135828 A JP2135828 A JP 2135828A JP 13582890 A JP13582890 A JP 13582890A JP H0430971 A JPH0430971 A JP H0430971A
Authority
JP
Japan
Prior art keywords
fiber
cutting
fibers
resin
cutting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2135828A
Other languages
Japanese (ja)
Inventor
Akira Morii
森井 章
Masaji Harakawa
原川 正司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2135828A priority Critical patent/JPH0430971A/en
Publication of JPH0430971A publication Critical patent/JPH0430971A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
    • B24D7/02Wheels in one piece
    • B24D7/04Wheels in one piece with reinforcing means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Moulding By Coating Moulds (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To increase accuracy, efficiency and durability, by composing a cutting material with an alumina quality fiber being hardened by resin. CONSTITUTION:Organic fiber aggregate and organic fiber reinforcing material are cut by using the cutting material made by hardening an alumina quality fiber with resin. Thus, cutting performance, durability and accuracy are increased without reducing the inclusion rate of abrasive grains.

Description

【発明の詳細な説明】 〈産業上の利用分野) 本発明は、切断、研削用の材、及び切断、研削の方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to cutting and grinding materials and cutting and grinding methods.

更に詳細には、有機系繊維集合体および有機系の強化繊
維で強化された材料を研削、切断する材及び、研削、切
断する方法に関する。
More specifically, the present invention relates to materials for grinding and cutting organic fiber aggregates and materials reinforced with organic reinforcing fibers, and methods for grinding and cutting.

〈従来技術〉 従来の切削材は、ダイアモンド、ザクロ石、ケイ砂等の
天然研磨砥粒や溶融アルミナ、酸化ジルコニウム、酸化
チタン、炭化珪素、窒化珪素、窒化ポロン、焼成アルミ
ナ等の人工砥粒を鋳鉄等の金属や紙、布、不織布等に塗
布したり、樹脂等で接着、または固めた物が用いられて
きた。
<Prior art> Conventional cutting materials include natural abrasive grains such as diamond, garnet, and silica sand, and artificial abrasive grains such as fused alumina, zirconium oxide, titanium oxide, silicon carbide, silicon nitride, poron nitride, and calcined alumina. It has been used by coating metals such as cast iron, paper, cloth, non-woven fabric, etc., or by adhering or hardening with resin etc.

しかし、これら切削材において砥粒は表面に出ている一
部であり、しかも加工途中で砥粒が脱落したりするので
切削効率、切削材の耐久性が低い。
However, in these cutting materials, the abrasive grains are only a part of the surface, and moreover, the abrasive grains fall off during processing, resulting in low cutting efficiency and low durability of the cutting materials.

これを解決すべく砥粒を大量に配合しようとする試みも
あるが、この場合は切削材の強度の低下、切断面が湾曲
し、切削精度が低下する等の問題が有った。
In order to solve this problem, some attempts have been made to mix a large amount of abrasive grains, but in this case, there were problems such as a decrease in the strength of the cutting material, a curved cut surface, and a decrease in cutting accuracy.

これらの点を解決すべく特開昭52−3796号公報で
は炭化珪素繊維で補強した砥石が、特開昭54−827
86号公報、特開昭55−131473号公報、特開昭
59−97845号公報ではガラス繊維で補強した砥石
が、特開昭63−34072号公報では炭素繊維で補強
した砥石が提案されている。
In order to solve these problems, Japanese Patent Application Laid-Open No. 52-3796 discloses a grindstone reinforced with silicon carbide fibers.
No. 86, JP-A-55-131473, and JP-A-59-97845 propose a whetstone reinforced with glass fiber, and JP-A No. 63-34072 proposes a whetstone reinforced with carbon fiber. .

〈発明が解決しようとする課題〉 上記、繊維で強化した砥石のごとき切削材は、補強の為
に混合された繊維の相当する分だけ砥粒の含有率が低下
し、切削性能、耐久性が劣り、かつ精度も充分でない。
<Problem to be solved by the invention> In cutting materials such as the above-mentioned fiber-reinforced grinding wheels, the content of abrasive grains is reduced by the amount of fibers mixed for reinforcement, resulting in poor cutting performance and durability. It is inferior and the accuracy is not sufficient.

〈課題を解決するための手段〉 本発明は、アルミナ質繊維を樹脂で固めてなる、有機系
繊維集合体および有機系繊維強化材料用の切削材であり
、該、切削材を用いた切削方法を提供するにある。
<Means for Solving the Problems> The present invention is a cutting material for an organic fiber aggregate and an organic fiber reinforced material, which is made by solidifying alumina fibers with a resin, and a cutting method using the cutting material. is to provide.

アルミナ質繊維は、周知のものが使用できる。Known alumina fibers can be used.

なかでも、AhOzが60重量%以上、SiO□が3O
N量%以下の成分からなり、引張強度が100kg/f
i”以上、モース硬度が4以上の高強度、高硬度のアル
ミナ繊維が好ましい。
Among them, AhOz is 60% by weight or more, SiO□ is 3O
Consisting of N content% or less, tensile strength is 100kg/f
High strength and high hardness alumina fibers with a Mohs hardness of 4 or more are preferred.

アルミナ質繊維の長さは、その機械的強度の補強効果か
ら10fi以上、好ましくは100以上、より好ましく
は20鶴以上の長さを有する物が好ましい。
The length of the alumina fiber is preferably 10 fi or more, preferably 100 fi or more, and more preferably 20 fi or more in view of its mechanical strength reinforcing effect.

連続長繊維の場合は、そのまま用いても良いが、布、紐
等に加工したものでも良い。
In the case of continuous filaments, they may be used as they are, but they may also be processed into cloth, string, etc.

アルミナ質繊維の径は、3μ以上100μ以下程度で、
直径が大きいと、切削効率は優れるが切削面の平滑性が
劣り、直径の小さいアルミナ質繊維は、切削面の平滑性
は優れるが効率が劣るので、それぞれの用途に応して適
宜選択すればよい。
The diameter of the alumina fiber is approximately 3μ or more and 100μ or less,
If the diameter is large, the cutting efficiency will be excellent, but the smoothness of the cutting surface will be poor, and if the diameter is small, the alumina fiber will have the excellent smoothness of the cutting surface, but the efficiency will be poor. good.

なお、アルミナ質繊維に、炭素繊維、アラミド繊維、ポ
ロン繊維、炭化珪素繊維、窒化珪素繊維、ガラス繊維、
シリカ繊維等の他の繊維を強度、耐衝撃性、電気抵抗、
熱伝導率等の物性を改良するために混合しても良い。
In addition, alumina fibers include carbon fibers, aramid fibers, poron fibers, silicon carbide fibers, silicon nitride fibers, glass fibers,
Other fibers such as silica fiber have strength, impact resistance, electrical resistance,
They may be mixed to improve physical properties such as thermal conductivity.

アルミナを繊維を固める樹脂としては、エポキシ樹脂、
フェノール樹脂、不飽和ポリエステル樹脂、ビニルエス
テル樹脂、アルキッド樹脂、尿素−ホルマリン樹脂、ポ
リイミド樹脂等の勢硬化性樹脂;ポリエチレン、ポリプ
ロピレン、ポリメチルメタクリレート、ポリスチレン、
ポリ塩化ビニール、ABS樹脂、AS樹脂、ポリアクリ
ルアミド、ポリアセタール、ポリスルフォン、ポリカー
ボネート、ポリフェニレンオキサイド、ポリエーテルス
ルフォン、ポリエーテルエーテルケトン、ポリアミドイ
ミド等の熱可塑性樹脂がある。
Examples of resins that harden alumina fibers include epoxy resin,
Hardening resins such as phenolic resin, unsaturated polyester resin, vinyl ester resin, alkyd resin, urea-formalin resin, polyimide resin; polyethylene, polypropylene, polymethyl methacrylate, polystyrene,
There are thermoplastic resins such as polyvinyl chloride, ABS resin, AS resin, polyacrylamide, polyacetal, polysulfone, polycarbonate, polyphenylene oxide, polyether sulfone, polyether ether ketone, and polyamideimide.

これらの中でエポキシ樹脂、ポリエーテルスルフォン樹
脂、ポリエーテルエーテルケトン樹脂、ポリアミドイミ
ド樹脂等の強靭な樹脂か特に好適である。
Among these, tough resins such as epoxy resins, polyether sulfone resins, polyether ether ketone resins, and polyamide-imide resins are particularly suitable.

これらの樹脂を用いてアルミナ質繊維を固めるには、繊
維強化複合材料を作る周知の手法が通用できる。
In order to harden alumina fibers using these resins, well-known methods for producing fiber-reinforced composite materials can be used.

つまり、熱硬化性樹脂では、未硬化または半硬化あるい
は溶剤に溶かした状態で、熱可塑性樹脂では、ン容融ま
たはン容剤にン容かした状態で、アルミナ質繊維に含浸
させる。
That is, thermosetting resins are impregnated into alumina fibers in an uncured or semi-cured state or dissolved in a solvent, and thermoplastic resins are impregnated into alumina fibers in a molten or immersed state.

繊維の形状が連続長繊維でない場合は、そのまま樹脂に
混合したり、不織布や予備成形体に加工した物を樹脂で
固めても良い。
If the fibers are not in the form of continuous filaments, they may be mixed with a resin as is, or they may be processed into a nonwoven fabric or a preformed body and solidified with the resin.

アルミナを繊維を樹脂で固めたものを、種々の切削材の
形状に成形する方法は、繊維強化複合材料で用いられて
いる、各種の成形方法が採用出来る。
Various molding methods used for fiber-reinforced composite materials can be used to mold alumina fibers hardened with resin into the shapes of various cutting materials.

連続長繊維の場合は、プリプレグ積層法、フィラメント
ワインディング法、プルトルージョン法等がある。
In the case of continuous filaments, there are prepreg lamination methods, filament winding methods, pultrusion methods, etc.

非連続繊維の場合は、射出成形等が用いられる。In the case of discontinuous fibers, injection molding or the like is used.

これらの方法により、切削材の形状は板、棒、パイプ、
円盤等使途に合わせて任意の物を用いることが出来る。
With these methods, the shape of the cutting material can be changed to plates, rods, pipes,
Any object can be used depending on the purpose, such as a disk.

切削材に、溝や穴等の加工を施して、切削くずの排出や
潤滑剤の流通を改善することは、切削性能を高めるのに
有効である。
Machining the cutting material with grooves, holes, etc. to improve the discharge of cutting waste and the distribution of lubricant is effective in improving cutting performance.

本発明で、切削材の中に占めるアルミナ質繊維の割合が
高い程、機械的強度及び切削性能が優れるが、20容量
%から80容量%、好ましくは、50容量%から70容
量%である。
In the present invention, the higher the proportion of alumina fibers in the cutting material, the better the mechanical strength and cutting performance, and the proportion is from 20% by volume to 80% by volume, preferably from 50% by volume to 70% by volume.

20容量%未満では、切断性能が低く、80容量%を越
えると、固着させる樹脂が過少になるので好ましくない
If it is less than 20% by volume, the cutting performance will be low, and if it exceeds 80% by volume, the amount of resin to be fixed will be too small, which is not preferable.

また、高強度、高剛性を達成するためには、応力の方向
に繊維が配向するのが好ましい。
Furthermore, in order to achieve high strength and high rigidity, it is preferable that the fibers be oriented in the direction of stress.

被切削材料の内、有機系繊維集合体とは、その繊維の種
類は、例えば木綿、生糸、羊毛、麻等の天然繊維;合成
繊維としてアラミド繊維、ナイロン繊維、ポリエーテル
エーテルケトン繊維、ポリオキシヘンジイル繊維、ポリ
フェニレンスルフィド繊維、ポリエーテルスルフォン繊
維、ポリスルフォン繊維、ポリエチレンテレフタレート
繊維、ポリ塩化ビニル繊維、ポリ塩化ビニリデン繊維、
ポリエチレン繊維、ポリプロピレン繊維等があり、これ
らの繊維を2種以上組合せても良いし、さらに少量の金
属繊維、炭素繊維、セラミック繊維が混在したものであ
る。
Among the materials to be cut, organic fiber aggregates include natural fibers such as cotton, raw silk, wool, and hemp; synthetic fibers such as aramid fibers, nylon fibers, polyether ether ketone fibers, and polyoxy Hengeil fiber, polyphenylene sulfide fiber, polyether sulfone fiber, polysulfone fiber, polyethylene terephthalate fiber, polyvinyl chloride fiber, polyvinylidene chloride fiber,
There are polyethylene fibers, polypropylene fibers, etc., and two or more of these fibers may be combined, and small amounts of metal fibers, carbon fibers, and ceramic fibers may also be mixed.

そして、集合体の形態としては、トウ、織布、不織布、
などである。
The forms of the aggregate include tow, woven fabric, non-woven fabric,
etc.

また繊維太さ、繊維長も任意で良い。Furthermore, the fiber thickness and fiber length may be arbitrary.

有機系繊維強化材料とは、いわゆる繊維強化樹脂(FR
P)や繊維強化ゴムの内、強化繊維が有機系繊維のもの
をいう。
Organic fiber-reinforced materials are so-called fiber-reinforced resins (FR
Among P) and fiber-reinforced rubber, it refers to those whose reinforcing fibers are organic fibers.

この有機系繊維の種類は、 上記のものと同じで ある。This type of organic fiber is same as above be.

また繊維太さ、繊維長も任意で良い。Furthermore, the fiber thickness and fiber length may be arbitrary.

繊維の形態は、一方向引揃え、織布、不織布等いずれの
ものでも良い。
The fibers may be in any form, such as unidirectionally aligned, woven fabric, or nonwoven fabric.

強化される樹脂、ゴムの種類も、熱可塑性樹脂、熱硬化
性樹脂、合成ゴム、天然ゴム及びこれらを組み合せたも
のが該当する。
The types of resin and rubber to be reinforced include thermoplastic resins, thermosetting resins, synthetic rubbers, natural rubbers, and combinations thereof.

有機系繊維強化材料は、周知の繊維強化樹脂、繊維強化
ゴムの製法によって得られものである。
The organic fiber-reinforced material is obtained by a well-known manufacturing method for fiber-reinforced resin and fiber-reinforced rubber.

また、その形状も、平板状、円柱、角柱、円筒、角筒、
■ビーム状、ハニカム状、塊、タイヤ状等、いずれでも
切削可能であるし、他の材料との組み合せたサンドイッ
チ構造、ハニカム構造のものでも可能である。
In addition, its shape can be flat, cylindrical, prismatic, cylindrical, rectangular, etc.
■It is possible to cut into any shape such as beam shape, honeycomb shape, lump, tire shape, etc., and it is also possible to cut into sandwich structure or honeycomb structure in combination with other materials.

咳、切削材を用いて、被切削材料を切削するには、周知
の技術、方法で行えば良い。
To cut a material to be cut using a cutting material, a well-known technique and method may be used.

切削材の形状は、該切削材の駆動方法、駆動方向によっ
て、それに適合した形状にする。
The shape of the cutting material is adapted to the driving method and driving direction of the cutting material.

例えば、該切削材を回転させて切削するには、該切削材
を円板、円筒、円柱、円錐、円柱プラノ状等の形状とす
る。
For example, in order to rotate and cut the cutting material, the cutting material is shaped into a disk, a cylinder, a column, a cone, a cylindrical planar shape, or the like.

そして、切削材を回転具に設置して、約500〜10.
 000rp+w程度で回転させて、被切削材料へ押し
当てることにより、切削する。
Then, the cutting material is placed on the rotating tool, and the cutting material is placed on the rotary tool for approximately 50 to 10 minutes.
The material to be cut is cut by rotating it at about 000 rpm+w and pressing it against the material to be cut.

切削中には、冷却の目的で水や、切削油を添加すること
も可能である。
During cutting, it is also possible to add water or cutting oil for cooling purposes.

切削材の駆動方法として、往復動させるもの、超音波振
動によるもの等がある。
As methods for driving the cutting material, there are methods of reciprocating the cutting material, methods using ultrasonic vibration, and the like.

その他、該切削材を、鋏として、人手により剪断切断す
ることもできる。
In addition, the cutting material can also be manually sheared and cut using scissors.

(発明の効果〉 本発明の切削材は、有機質繊維集合体および有機質繊維
強化材料を、研削、切断したりするのに、その性能つま
り精度、効率、耐久性において、従来からの砥粒やガラ
ス繊維を基にした研磨研削材料に比べて優れている。
(Effects of the Invention) The cutting material of the present invention is superior to conventional abrasive grains and glass in terms of performance, accuracy, efficiency, and durability for grinding and cutting organic fiber aggregates and organic fiber reinforced materials. Superior compared to fiber-based abrasive grinding materials.

つまり、研削、切断によっても、毛羽やハリの発生がな
く、その後の仕上げも不、要である。
In other words, no fuzz or firmness occurs during grinding or cutting, and subsequent finishing is unnecessary.

また、アルミナ質繊維は耐蝕性、耐酸化性に優れ、熱伝
導率が大きいので摩擦熱の除去が容易に行え、被切削材
料の軟化による切削不良も起り難く、また、切削材の変
質も起らず耐久性に優れている。
In addition, alumina fibers have excellent corrosion resistance and oxidation resistance, and have high thermal conductivity, so frictional heat can be easily removed, making cutting defects less likely to occur due to softening of the material to be cut, and deterioration of the quality of the material being cut. It has excellent durability.

さらに、アルミナ!繊維が補強材としても、働くので機
械的強度も特に優れている。
Plus, alumina! Since the fibers also act as reinforcing materials, the mechanical strength is particularly excellent.

〈実施例〉 以下、実施例にてさらに説明するが、本発明はこれに限
定されるものではない。
<Example> The present invention will be further described below with reference to Examples, but the present invention is not limited thereto.

実施例1 ビスフェノールA型エポキシ樹脂(スミー〇エポキソE
LA−134住友化学工業■製)60重量部、クレゾー
ルノポラフク型エポキシ樹脂(スミ ■エポキシESC
N−2208住友化学工業■製)40重量部に、ジンア
ンジアミド5重量部、3(3,4ジクロロフエニル)−
1,1−ジメチル尿素、4重量部を混合し、75℃に加
熱して、連続した離型紙上に流下させ、ドクターナイフ
を通過させ樹脂膜を得た。
Example 1 Bisphenol A type epoxy resin (Sumi〇Epoxo E
LA-134 manufactured by Sumitomo Chemical Co., Ltd.) 60 parts by weight, cresol nopofuku type epoxy resin (Sumi ■Epoxy ESC)
N-2208 (manufactured by Sumitomo Chemical Co., Ltd.) 40 parts by weight, 5 parts by weight of diandiamide, 3(3,4 dichlorophenyl)-
4 parts by weight of 1,1-dimethylurea were mixed, heated to 75° C., allowed to flow down onto a continuous release paper, and passed through a doctor knife to obtain a resin film.

アルミナ質繊維Altex  (Al□Ox85重量%
、SiO□15重量%、太さ15μ、住友化学工業■製
)の連続長繊維トウを一方向に引揃え、シート状に拡げ
、これに該樹脂膜を有する離型紙を上下から挟み120
℃のプレスロールにて3kg/amO線圧をかけて、繊
維目付330 g/mのプリプレグシートを得た。
Alumina fiber Altex (Al□Ox85% by weight
, SiO □ 15% by weight, thickness 15 μm, manufactured by Sumitomo Chemical Co., Ltd.) were aligned in one direction, spread out into a sheet, and a release paper having the resin film was sandwiched between the top and bottom of the tow.
A linear pressure of 3 kg/amO was applied with a press roll at ℃ to obtain a prepreg sheet with a fiber basis weight of 330 g/m.

該プリプレグシートを切り出し、繊維配向角度0”/9
0°/90°10°の4桟積層した後、中央に3c11
の穴を有する、外径2001の円盤も打ち抜いた。
The prepreg sheet was cut out and the fiber orientation angle was 0”/9.
After stacking 4 beams of 0°/90°10°, 3c11 in the center
A disk with an outer diameter of 2001 mm was also punched out with a hole of .

該円盤を金型に入れ、5 kg / d、120℃で熱
プレスし、厚み0.7fi、繊維容積含有率(vr)6
0%の切削材を得た。
The disc was put into a mold and hot pressed at 5 kg/d at 120 °C, with a thickness of 0.7 fi and a fiber volume content (vr) of 6.
0% cutting material was obtained.

アラミド繊維トワロン■1000 (日本アラミド(有
))の連続長繊維トウを用い、ビスフェノールA型エポ
キシ権脂40重量部、グリシジルアミノ型エポキシ樹脂
(スミー■エポキシELM−120住友化学工業特製)
20重置部、タレゾールノボラック型エポキシ樹脂、4
0重量部とジンアンジアミド5重量部、イミダゾール系
硬化剤2E4MZ−CN (四国化成■製)1部を混合
したちのを用い、前記のアルミナ’It繊維のプリプレ
グノートと同様な方法で繊維目付216 g/n(のプ
リプレグシートを得た。
Using continuous long fiber tow of aramid fiber Twaron ■1000 (Nippon Aramid Co., Ltd.), 40 parts by weight of bisphenol A epoxy resin, glycidylamino epoxy resin (Sumi ■Epoxy ELM-120 special product of Sumitomo Chemical Industries)
20 overlapping parts, Talesol novolak type epoxy resin, 4
Using a mixture of 0 parts by weight, 5 parts by weight of ginandiamide, and 1 part of imidazole curing agent 2E4MZ-CN (manufactured by Shikoku Kasei), the fiber weight was determined in the same manner as the alumina 'It fiber prepreg notebook. A prepreg sheet of 216 g/n was obtained.

このプリプレグシートを切り出し、繊維配向角度45°
10°/−45’/90°/90゜/−45°10’ 
/45”の8桟積層した後、金型に入れ5 kg/cd
、120℃の熱プレスし、厚み2fi、縦横150m、
■、60%のアラミド繊維強化樹脂板を得た。
This prepreg sheet was cut out and the fiber orientation angle was 45°.
10°/-45'/90°/90°/-45°10'
After laminating 8 bars of /45", put it in a mold and produce 5 kg/cd.
, heat pressed at 120℃, thickness 2fi, length and width 150m,
(2) A 60% aramid fiber reinforced resin board was obtained.

別途、上記アラミド繊維、連続長繊維トウに代えて6,
6ナイロン平織布を用いた以外は、同様に行い、繊維目
付Bog/gのプリプレグシートを得た。
Separately, instead of the above aramid fiber and continuous long fiber tow, 6,
A prepreg sheet with a fiber basis weight Bog/g was obtained in the same manner except that 6 nylon plain woven fabric was used.

このプリプレグシートを切り出し、繊維方向を90°交
互に変えて16枚積層した以外は、同様に行い、厚み2
謳、縦横150m、Vv60%のナイロン繊維強化樹脂
板を得た。
This prepreg sheet was cut out, and 16 sheets were laminated with the fiber direction alternately changed by 90 degrees.
A nylon fiber-reinforced resin board measuring 150 m in length and width and having a Vv of 60% was obtained.

前述のアラミド繊維強化樹脂板及び、ナイロン繊維強化
樹脂を台に固定し、各々をグラインダー (111マル
ト−製テク二方ルカフターMC−513型)の回転輪に
、該切削材を取り付け、周速度2500m/分で回転さ
せ、送り速度30龍/分で注水しながら押し当て切断し
て、切削材の性能を評価した。
The aforementioned aramid fiber-reinforced resin plate and nylon fiber-reinforced resin were fixed to a stand, and the cutting materials were attached to the rotary wheel of a grinder (111 Maruto Tech Two-Way Cafter MC-513 model) at a circumferential speed of 2500 m. The performance of the cutting material was evaluated by rotating it at a speed of 30/min and pressing and cutting it while pouring water at a feed rate of 30/min.

被切削材料の切断面に毛羽、ハリ、焦げ付きが確認でき
ないものを良、確認されるものを不良とした。
The material to be cut was judged to be good if no fuzz, firmness, or burntness was observed on the cut surface, and bad if any were observed.

切削材の目詰の程度を目視で判定し、良、やや不良、不
良とした。
The degree of clogging of the cut material was visually determined and classified as good, slightly poor, and poor.

切削材の損耗量が10■以下を良、50■以上を不良、
中間をやや不良とした。
If the amount of cutting material wear is less than 10■, it is considered good, and if it is more than 50■, it is bad.
The intermediate score was rated as slightly poor.

結果を第1表に示す。The results are shown in Table 1.

実施例2 実施例1の切削材において、アルミナ質繊維のプリプレ
グの繊維目付を166 g/n(とじ、該プリプレグの
積層を繊維配向角度45°10゜/−45°/90°/
90°/−45”10゜/45゛の8枚とした以外は、
同様に行い、厚み、■、も同じ切削材を得た。
Example 2 In the cutting material of Example 1, the fiber weight of the alumina fiber prepreg was 166 g/n (stitched), and the prepreg was stacked at a fiber orientation angle of 45° 10° / -45° / 90° /
Except for 8 sheets of 90°/-45" and 10°/45".
The same procedure was carried out to obtain cutting materials with the same thickness (■).

この切削材を同様に評価した。This cutting material was similarly evaluated.

結果を第1表に示す。The results are shown in Table 1.

実施例3 実施例1の切削材において、アルミナ質連続長繊維トウ
に代えて、アルミナ質繊維平織布を用い、繊維目付66
2 g/%のプリプレグとし、IIIをO’/90°の
2層で行った以外は同様にし、厚み、■、が同し切削材
を得た。
Example 3 In the cutting material of Example 1, an alumina fiber plain woven cloth was used instead of the alumina continuous long fiber tow, and the fiber basis weight was 66.
A cut material having the same thickness (■) was obtained in the same manner except that 2 g/% prepreg was used and III was performed in two layers of O'/90°.

この切削材を同様に評価した。This cutting material was similarly evaluated.

結果を第1表に示す。The results are shown in Table 1.

実施例4 実施例1の切削材において、アルミナ質連続長繊維トウ
を、A l texに代えて、ALMAX(α−Alz
oi 99.5χく、太さlOμ、三井鉱山■製)とし
た以外は同様にし、厚み、V、が同し切削材を得た。 
この切削材を同様に評価した。
Example 4 In the cutting material of Example 1, the alumina continuous fiber tow was replaced with Al tex and ALMAX (α-Alz
A cut material having the same thickness and V was obtained in the same manner except that the cutting material had an oi of 99.5χ, a thickness of lOμ, and was manufactured by Mitsui Mining Co., Ltd.).
This cutting material was similarly evaluated.

結果を第1表に示す。The results are shown in Table 1.

実施例5 実施例1の切削材において、アルミナ質連続長繊維トウ
を、Altexに代えて、Alcen (A1.0゜8
0X、 5iOi20! 、太さ10μ、電気化学工業
■製)とした以外は同様にし、厚み、■、が同し切削材
を得た。
Example 5 In the cutting material of Example 1, the alumina continuous fiber tow was replaced with Altex and Alcen (A1.0°8
0X, 5iOi20! , thickness 10 μm, manufactured by Denki Kagaku Kogyo (■)), to obtain cutting materials having the same thickness (■).

この切削材を同様に評価した。This cutting material was similarly evaluated.

結果を第1表に示す。The results are shown in Table 1.

比較例1 実施例1の切削材において、アルミナ質連続長繊維トウ
に代えて、ガラス繊維(日本硝子繊維■製、太さ17μ
)の連続長繊維トウを用い、繊維目付263g/mのプ
リプレグシートとした以外は、同様に行い、厚み、V、
も同じ切削材を得た。 この切削材を同様に評価した。
Comparative Example 1 In the cutting material of Example 1, glass fiber (manufactured by Nippon Glass Fiber ■, thickness 17 μm) was used instead of the alumina continuous long fiber tow.
) was used in the same manner except that a prepreg sheet with a fiber basis weight of 263 g/m was used, and the thickness, V,
The same cutting material was also obtained. This cutting material was similarly evaluated.

評価結果を第1表に示す。The evaluation results are shown in Table 1.

比較例2 実施例2の切削材において、比較例1と同しガラス繊維
を用いて、繊維目付132 g/%のプリプレグとした
以外は、同様に行い、切削材を得た。  この切削材を
同様に評価した。
Comparative Example 2 A cut material was obtained in the same manner as in Comparative Example 1, except that the same glass fibers as in Comparative Example 1 were used to prepare a prepreg with a fiber basis weight of 132 g/%. This cutting material was similarly evaluated.

評価結果を第1表に示す。The evaluation results are shown in Table 1.

比較例3 実施例3の切削材において、アルミナ質繊維平織布に代
えて、ガラス繊維平織布を用いて、繊維目付528g/
mのプリプレグとした以外は、同様に行って切削材を得
た。
Comparative Example 3 In the cutting material of Example 3, a glass fiber plain woven cloth was used instead of the alumina fiber plain woven cloth, and the fiber basis weight was 528 g/
A cut material was obtained in the same manner except that a prepreg of m was used.

この切削材を同様に評価した。This cutting material was similarly evaluated.

評価結果を第1表に示す。The evaluation results are shown in Table 1.

比較例4 市販の切削材、ダイヤモンドブレード(−マルト−製)
を用い、同様にして評価した。
Comparative Example 4 Commercially available cutting material, diamond blade (manufactured by Malto)
Evaluation was made in the same manner using .

結果を第1表に示す。The results are shown in Table 1.

第1表Table 1

Claims (1)

【特許請求の範囲】 1)アルミナ質繊維を樹脂で固めてなる、有機系繊維集
合体および有機系繊維強化材料用の切削材。 2)アルミナ質繊維を樹脂で固めてなる切削材を用いて
、有機系繊維集合体および有機系繊維強化材料を切削す
る方法。
[Claims] 1) A cutting material for organic fiber aggregates and organic fiber reinforced materials, which is made by hardening alumina fibers with resin. 2) A method of cutting an organic fiber aggregate and an organic fiber reinforced material using a cutting material made of alumina fibers hardened with resin.
JP2135828A 1990-05-25 1990-05-25 Cutting material and cutting method Pending JPH0430971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2135828A JPH0430971A (en) 1990-05-25 1990-05-25 Cutting material and cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2135828A JPH0430971A (en) 1990-05-25 1990-05-25 Cutting material and cutting method

Publications (1)

Publication Number Publication Date
JPH0430971A true JPH0430971A (en) 1992-02-03

Family

ID=15160741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2135828A Pending JPH0430971A (en) 1990-05-25 1990-05-25 Cutting material and cutting method

Country Status (1)

Country Link
JP (1) JPH0430971A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102832A (en) * 2004-10-01 2006-04-20 Asahi Machinery Ltd Cutter roll made of carbon fiber reinforced plastic and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102832A (en) * 2004-10-01 2006-04-20 Asahi Machinery Ltd Cutter roll made of carbon fiber reinforced plastic and its manufacturing method
JP4514126B2 (en) * 2004-10-01 2010-07-28 旭マシナリー株式会社 Mold for cutter roll made of carbon fiber reinforced plastic

Similar Documents

Publication Publication Date Title
US5224970A (en) Abrasive material
KR100372592B1 (en) Coated abrasive article, method for preparing the same, and method of using
KR100271893B1 (en) Abrasion Resistant Polishing Forge and Polishing Forge Disc
FI75582B (en) SLIPKROPPAR MED LAOG HALT AV SLIPMEDEL OCH HOEG HALT AV FYLLNADSMEDEL.
TW201024035A (en) Reinforced bonded abrasive tools
CN106891271B (en) A kind of stainless steel cutting wheel and preparation method thereof
US20100190420A1 (en) Abrasive disc
KR0145292B1 (en) Abrasive
JP3261712B2 (en) Abrasive grinding material
CN106041763A (en) High-strength waterproof resin grinding wheel and preparation method thereof
JPH0430971A (en) Cutting material and cutting method
JP5779125B2 (en) Centerless grinding wheel
KR100624237B1 (en) Abrasive
JP2830232B2 (en) Abrasive grinding material
JP2861269B2 (en) Abrasive grinding material
GB2028860A (en) Grinding wheels
JP3679191B2 (en) Wrapping material and method for producing the same
JPH07227939A (en) Honeycomb cocuring molding method
JPH052292Y2 (en)
JPH06280186A (en) Doctor blade made of composite material
JP2019527147A (en) Non-woven abrasive articles containing abrasive particles
JPS63272467A (en) Manufacture of disc-shaped cutting grindstone
Asami et al. Abrasives
JPH0835326A (en) Concrete form panel
JPH01109069A (en) Sharpening material for whetstone