JPH04309237A - Manufacturing method of chalcopyrite thin film and solar cell - Google Patents
Manufacturing method of chalcopyrite thin film and solar cellInfo
- Publication number
- JPH04309237A JPH04309237A JP3075380A JP7538091A JPH04309237A JP H04309237 A JPH04309237 A JP H04309237A JP 3075380 A JP3075380 A JP 3075380A JP 7538091 A JP7538091 A JP 7538091A JP H04309237 A JPH04309237 A JP H04309237A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- chalcopyrite
- producing
- chalcopyrite thin
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 96
- 229910052951 chalcopyrite Inorganic materials 0.000 title claims abstract description 75
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical compound [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000000758 substrate Substances 0.000 claims abstract description 23
- -1 chalcopyrite compound Chemical class 0.000 claims abstract description 21
- 238000001704 evaporation Methods 0.000 claims abstract description 21
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 230000008020 evaporation Effects 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 11
- 239000002184 metal Substances 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 11
- 239000000470 constituent Substances 0.000 claims abstract description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910001873 dinitrogen Inorganic materials 0.000 claims abstract description 5
- 239000011261 inert gas Substances 0.000 claims abstract description 3
- 238000007740 vapor deposition Methods 0.000 claims description 10
- 238000000151 deposition Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 5
- 238000007738 vacuum evaporation Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 2
- 230000031700 light absorption Effects 0.000 claims description 2
- 239000000463 material Substances 0.000 claims 1
- 239000006104 solid solution Substances 0.000 claims 1
- 238000001771 vacuum deposition Methods 0.000 abstract description 3
- 229940125782 compound 2 Drugs 0.000 abstract 1
- 230000002411 adverse Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000008021 deposition Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/541—CuInSe2 material PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、カルコパイライト薄膜
の作製方法及びそのカルコパイライト薄膜を利用した薄
膜太陽電池に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a chalcopyrite thin film and a thin film solar cell using the chalcopyrite thin film.
【0002】0002
【従来の技術】従来、カルコパイライト薄膜を非晶質基
板あるいは非晶質薄膜あるいは金属薄膜上に形成する場
合は、カルコパイライト化合物そのものを蒸発源として
蒸着させる真空蒸着法、カルコパイライト化合物そのも
のをターゲットとして用いるスパッタリング法、あるい
はカルコパイライト化合物の成分元素を別々に蒸着させ
る多元の真空蒸着法、カルコパイライト化合物の成分元
素を別々にターゲットとして用いるマルチスパッタリン
グ法、あるいは構成要素金属の積層薄膜、例えばCu−
In薄膜のカルコゲナイド化等のプロセスによって形成
する方法が知られている。[Prior Art] Conventionally, when forming a chalcopyrite thin film on an amorphous substrate, an amorphous thin film, or a metal thin film, the vacuum evaporation method uses the chalcopyrite compound itself as an evaporation source, and the chalcopyrite compound itself is used as the target. A multi-source vacuum evaporation method in which the component elements of the chalcopyrite compound are separately deposited as a target, a multi-sputtering method in which the component elements of the chalcopyrite compound are separately used as targets, or a laminated thin film of component metals, such as Cu-
A method of forming an In thin film by a process such as chalcogenidation is known.
【0003】0003
【発明が解決しようとする課題】これらの場合、カルコ
パイライト薄膜は、多結晶薄膜であり、図2は、カルコ
パイライト薄膜のうちのCuInSe2の典型的なX線
回折図である。In these cases, the chalcopyrite thin film is a polycrystalline thin film, and FIG. 2 is a typical X-ray diffraction diagram of CuInSe2 in the chalcopyrite thin film.
【0004】この図2に明らかなように、結晶癖(クリ
スタルハビック)として、基板に対して、(112)面
に配向し安い傾向があるが、他の面のピークも観測され
、一般に基板に対する配向性は悪い。また、成分元素の
組成制御という点では、前記の方法は、全て、困難が伴
う。例えば、カルコパイライト化合物そのものを蒸発源
、あるいはターゲットとして用いる場合は、基板を加熱
していたため、カルコゲナイト元素の離脱により、堆積
した薄膜には組成ずれが起こり、さらに蒸発源、あるい
はターゲットそのものも組成ずれを起こし、再現性のよ
い薄膜の作製ができない。成分元素を別々に蒸着、スパ
ッタする場合は、個々の元素の蒸着速度の厳密な制御が
難しい等の問題が生じる。また、構成要素金属の積層薄
膜をカルコゲナイド化する場合にも、各積層薄膜の量を
所望の組成比にすることは困難である。As is clear from FIG. 2, there is a tendency for crystal habit to be oriented in the (112) plane with respect to the substrate, but peaks in other planes are also observed, and generally The orientation is poor. In addition, all of the above methods involve difficulties in controlling the composition of component elements. For example, when a chalcopyrite compound itself is used as an evaporation source or target, the substrate is heated, which causes a compositional shift in the deposited thin film due to the detachment of chalcogenite elements, and also a compositional shift in the evaporation source or target itself. This makes it impossible to produce thin films with good reproducibility. When component elements are vapor-deposited and sputtered separately, problems arise such as difficulty in strictly controlling the vapor-deposition rate of each element. Further, even when forming laminated thin films of component metals into chalcogenides, it is difficult to adjust the amount of each laminated thin film to a desired composition ratio.
【0005】即ち、先に述べた様に、従来のプロセスで
作製したカルコパイライト薄膜は、基板に対する配向性
は悪い。これは、太陽電池等を作製するために、カルコ
パイライト薄膜と例えばCdS薄膜とのヘテロp−n接
合を作製した場合、格子定数を整合させることが困難で
ある。この格子不整合のために、接合界面に多数の欠陥
が生じ、太陽電池の開放電圧の低下等、デバイス特性を
劣化させる原因となっていた。That is, as mentioned above, the chalcopyrite thin film produced by the conventional process has poor orientation with respect to the substrate. This is because when a hetero pn junction between a chalcopyrite thin film and, for example, a CdS thin film is fabricated to fabricate a solar cell or the like, it is difficult to match the lattice constants. This lattice mismatch causes many defects to occur at the junction interface, causing deterioration of device characteristics such as a decrease in the open-circuit voltage of the solar cell.
【0006】また、従来のプロセスでは、組成を厳密に
制御して、カルコパイライト薄膜の作製を行うことが困
難である。このために、成分元素の、意図しない化学量
論比からのずれが生じ、過剰成分の析出、カルコパイラ
イト薄膜以外の異相化合物の出現等、電気特性に悪影響
を与える現象が生ずる。また、一般的に、カルコパイラ
イト薄膜は、成分元素の組成比を化学量論比からずらす
ことで、電気的性質、例えば、導電率、伝導型を制御す
ることができる。しかし、前記のように、組成制御が困
難であるため、例えば、伝導型の制御では、必要以上に
組成比を変えるために、同じく過剰成分の析出、カルコ
パイライト薄膜以外の異相化合物の出現等、電気特性に
悪影響を与える現象が生ずる。このために、太陽電池等
のデバイス特性を劣化させていた。[0006] Furthermore, with conventional processes, it is difficult to precisely control the composition and produce a chalcopyrite thin film. For this reason, an unintended deviation of the component elements from the stoichiometric ratio occurs, and phenomena that adversely affect the electrical properties occur, such as the precipitation of excessive components and the appearance of different phase compounds other than the chalcopyrite thin film. Furthermore, in general, the electrical properties of a chalcopyrite thin film, such as electrical conductivity and conductivity type, can be controlled by shifting the composition ratio of component elements from the stoichiometric ratio. However, as mentioned above, composition control is difficult; for example, in conduction type control, changing the composition ratio more than necessary may lead to precipitation of excessive components, appearance of different phase compounds other than chalcopyrite thin film, etc. A phenomenon occurs that adversely affects electrical characteristics. For this reason, the characteristics of devices such as solar cells have been deteriorated.
【0007】本発明は、このような従来のカルコパイラ
イト薄膜の作成方法の課題を解決することを目的とする
ものである。The object of the present invention is to solve the problems of the conventional method for producing a chalcopyrite thin film.
【0008】[0008]
【課題を解決するための手段】本発明は、非晶質基板あ
るいは非晶質薄膜あるいは金属薄膜上の所定領域に、真
空蒸着法によりカルコパイライト薄膜を堆積する際に、
蒸発源として、成分元素の組成が化学量論比であるカル
コパイライト化合物を用い、蒸着用るつぼに入れたカル
コパイライト化合物を全て蒸発させるカルコパイライト
薄膜の作製方法である。[Means for Solving the Problems] The present invention provides a method for depositing a chalcopyrite thin film on a predetermined region on an amorphous substrate, an amorphous thin film, or a metal thin film by vacuum evaporation.
This method uses a chalcopyrite compound whose constituent elements are in a stoichiometric ratio as an evaporation source, and evaporates all of the chalcopyrite compound placed in a vapor deposition crucible.
【0009】また、本発明は、本発明のカルコパイライ
ト薄膜の作製方法によって得られたカルコパイライト薄
膜が光吸収層として用いられた薄膜太陽電池である。The present invention also provides a thin film solar cell in which a chalcopyrite thin film obtained by the method for producing a chalcopyrite thin film of the present invention is used as a light absorption layer.
【0010】0010
【作用】本発明では、例えば非晶質基板あるいは非晶質
薄膜あるいは金属薄膜上の所定領域に、真空蒸着法によ
り、カルコパイライト薄膜を堆積する場合に、基板温度
を100c以下に保ち、蒸発源として、成分元素の組成
が化学量論比であるカルコパイライト化合物を用い、蒸
発源用のるつぼに入れた、カルコパイライト化合物を全
て蒸発させて、基板に堆積させる。そして、その後、堆
積したカルコパイライト薄膜を空気、窒素ガス、或は不
活性ガス雰囲気中で熱処理する。[Operation] In the present invention, when a chalcopyrite thin film is deposited on a predetermined area on an amorphous substrate, an amorphous thin film, or a metal thin film by vacuum evaporation, the substrate temperature is kept below 100°C, and the evaporation source Using a chalcopyrite compound in which the composition of component elements is in a stoichiometric ratio, all of the chalcopyrite compound placed in a crucible for an evaporation source is evaporated and deposited on a substrate. Then, the deposited chalcopyrite thin film is heat-treated in an atmosphere of air, nitrogen gas, or inert gas.
【0011】前記の作製法によって、基板にたいして、
(112)面が配向し、且つ、成分元素の組成が化学量
論比であるカルコパイライト薄膜を作製することができ
る。[0011] By the above manufacturing method, on the substrate,
It is possible to produce a chalcopyrite thin film in which the (112) plane is oriented and the composition of the component elements is in a stoichiometric ratio.
【0012】また、カルコパイライト薄膜の電気的性質
、例えば、導電率、伝導型を制御するために、成分元素
の組成比を化学量論比からずらす場合には、カルコパイ
ライト薄膜の蒸着において、蒸発源として、カルコパイ
ライト化合物以外に、カルコゲナイト元素を除くカルコ
パイライト化合物の成分元素の1つ、あるいは複数の元
素を蒸発源とする、多元蒸着法で作製する。この時、カ
ルコゲナイト元素を除くカルコパイライト化合物の成分
元素の1つ、あるいは複数の元素は、カルコパイライト
化合物の成分元素というより、むしろ、カルコパイライ
ト化合物にドーピングされる不純物として扱われる。
このようにして、組成を厳密に制御して、カルコパイラ
イト薄膜の作製を行うことが可能となり、所望の電気特
性を有するカルコパイライト薄膜の作製を行うことがで
きる。In addition, in order to control the electrical properties of the chalcopyrite thin film, such as electrical conductivity and conductivity type, when the composition ratio of component elements is shifted from the stoichiometric ratio, the evaporation It is produced by a multi-component evaporation method using one or more of the component elements of the chalcopyrite compound other than the chalcogenite element as an evaporation source in addition to the chalcopyrite compound. At this time, one or more of the constituent elements of the chalcopyrite compound other than the chalcogenite element are treated as impurities doped into the chalcopyrite compound rather than as constituent elements of the chalcopyrite compound. In this way, it is possible to manufacture a chalcopyrite thin film by strictly controlling the composition, and it is possible to manufacture a chalcopyrite thin film having desired electrical properties.
【0013】即ち繰り返すと、基板に対して(112)
面の配向性がよく、且つ、厳密に組成制御されたカルコ
パイライト薄膜の作製を行うことが可能となり、所望の
電気特性を有するカルコパイライト薄膜の作製を行うこ
とができる。これによりは、カルコパイライト薄膜と例
えばCdS薄膜とのヘテロp−n接合を作製した場合、
格子定数を整合させることができ、接合界面に生じる欠
陥を減少させ、太陽電池等デバイスの、特性劣化を抑え
ることができる。また、組成を厳密に制御して、カルコ
パイライト薄膜の作製を行うことが可能となるために、
過剰成分の析出、カルコパイライト薄膜以外の異相化合
物の出現等、電気特性に悪影響を与える現象が起こらず
、太陽電池等のデバイス特性が改善される。That is, to repeat, (112)
It becomes possible to produce a chalcopyrite thin film with good plane orientation and strictly controlled composition, and it is possible to produce a chalcopyrite thin film having desired electrical properties. Accordingly, when a hetero p-n junction between a chalcopyrite thin film and, for example, a CdS thin film is fabricated,
The lattice constants can be matched, defects occurring at the bonding interface can be reduced, and characteristic deterioration of devices such as solar cells can be suppressed. In addition, since it becomes possible to fabricate chalcopyrite thin films by strictly controlling the composition,
Phenomena that adversely affect electrical properties, such as precipitation of excessive components and appearance of foreign phase compounds other than the chalcopyrite thin film, do not occur, and device properties such as solar cells are improved.
【0014】[0014]
【実施例】以下、本発明の実施例について図面を参照し
て説明する。Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.
【0015】図1は、本発明の1実施例である。図1に
示すように、内部に、成分元素の組成が化学量論比であ
る、カルコパイライト化合物CuInSe2の粉末の蒸
着源2と、Cuの蒸着源3の2元の蒸着源を備えた真空
容器1を用意する。そして、蒸着前に、あらかじめガラ
ス基板4を水冷し、CuInSe2 薄膜の堆積中に、
基板温度が100c(度)以下になるようにする。その
後、試料Aとして、蒸発源2は温度を1300cとして
、積めた2.0gのCuInSe2の粉末が全て蒸発す
るまで蒸着を行い、その後、窒素ガス雰囲気で400c
、1時間の熱処理を行った。試料Bは、積めた2.0g
のCuInSe2の粉末が全て蒸発するまで蒸着を行な
った後、蒸発源3の温度を、1100cとして、10分
間Cuの蒸着を行った後で、1気圧の窒素ガス雰囲気中
で400c、1時間の熱処理を行った。FIG. 1 shows one embodiment of the invention. As shown in FIG. 1, a vacuum container is provided with two vapor deposition sources inside thereof: a vapor deposition source 2 for powder of chalcopyrite compound CuInSe2 and a vapor deposition source 3 for Cu, each of which has a stoichiometric composition of component elements. Prepare 1. Then, before vapor deposition, the glass substrate 4 is cooled with water in advance, and during the deposition of the CuInSe2 thin film,
Make sure that the substrate temperature is below 100c (degrees). Thereafter, as sample A, the evaporation source 2 was set at a temperature of 1300C, and evaporation was performed until all of the 2.0g of CuInSe2 powder that had been loaded was evaporated, and then the temperature was set to 1300C, and then the temperature was evaporated at 400C in a nitrogen gas atmosphere.
, heat treatment was performed for 1 hour. Sample B has a load of 2.0g.
After vapor deposition was performed until all the CuInSe2 powder was evaporated, the temperature of the evaporation source 3 was set to 1100 c, and Cu was vapor deposited for 10 minutes, followed by heat treatment at 400 c for 1 hour in a nitrogen gas atmosphere of 1 atm. I did it.
【0016】図3(a)、(b)は試料A,BのX線回
折図である。従来方法で作製した図2と比べると明らか
なように、本発明により、配向性の良いCuInSe2
薄膜を得ることができる。また、(表1)、(表2)は
試料A,Bの組成比並びに導電率、伝導型である。FIGS. 3(a) and 3(b) are X-ray diffraction diagrams of samples A and B. As is clear from the comparison with FIG. 2 produced by the conventional method, the present invention allows CuInSe2 with good orientation.
A thin film can be obtained. Moreover, (Table 1) and (Table 2) show the composition ratio, conductivity, and conductivity type of samples A and B.
【0017】[0017]
【表1】[Table 1]
【0018】[0018]
【表2】[Table 2]
【0019】この表から明かなように、試料A,B膜は
、ほぼ化学量論比のCuInSe2薄膜であるが、試料
Bは蒸発源3から不純物として膜に導入した微小量のC
uのために、低抵抗p型となっている。それに対して、
試料Aは高抵抗となっている。As is clear from this table, Samples A and B films are CuInSe2 thin films with a nearly stoichiometric ratio, but Sample B contains a minute amount of C introduced into the film as an impurity from the evaporation source 3.
Because of u, it is a low resistance p type. On the other hand,
Sample A has high resistance.
【0020】図4は上記の作製方法で作製したCuIn
Se2の薄膜を用いた太陽電池の1例を示す断面図であ
る。
図4に示したように、金属薄膜5上の所定領域に、本発
明の方法により、低抵抗p型のCuInSe2薄膜6を
形成する。その上にヘテロp−n接合を形成するために
CdS薄膜7を真空蒸着法で形成する。その上の所定領
域に、上部電極8を形成する。このようにして、作製し
たCuInSe2薄膜は基板に対して(112)面の配
向性がよく、CdS薄膜とのヘテロp−n接合を作製し
た場合、格子定数を整合させることができ、接合界面に
生じる欠陥を減少させることができる。また、過剰成分
の析出、薄膜以外の異相化合物の出現等、電気特性に悪
影響を与える現象がないために、太陽電池の高効率化が
図れる。FIG. 4 shows CuIn fabricated using the above fabrication method.
FIG. 2 is a cross-sectional view showing an example of a solar cell using a Se2 thin film. As shown in FIG. 4, a low resistance p-type CuInSe2 thin film 6 is formed in a predetermined region on the metal thin film 5 by the method of the present invention. A CdS thin film 7 is formed thereon by vacuum evaporation to form a hetero p-n junction. An upper electrode 8 is formed in a predetermined region thereon. In this way, the produced CuInSe2 thin film has good orientation in the (112) plane with respect to the substrate, and when a hetero p-n junction is made with a CdS thin film, the lattice constant can be matched, and the junction interface The number of defects that occur can be reduced. Furthermore, since there are no phenomena that adversely affect electrical characteristics, such as precipitation of excessive components or appearance of foreign phase compounds other than thin films, the efficiency of the solar cell can be increased.
【0021】また、カルコパイライト薄膜を堆積する時
の基板温度が100c以上では、成分元素の基板からの
再蒸発が起こり、所望の組成比のカルコパイライト薄膜
が得られない。また、カルコパイライト薄膜を堆積後熱
処理する時の温度が300c以下では、作製した薄膜は
アモルファスとなるか、若しくはカルコパイライト化合
物以外の異相が発生し、所望のCu系カルコパイライト
薄膜が得られない。Furthermore, if the substrate temperature when depositing the chalcopyrite thin film is 100° C. or higher, re-evaporation of component elements from the substrate occurs, making it impossible to obtain a chalcopyrite thin film with a desired composition ratio. Furthermore, if the temperature during the heat treatment after depositing the chalcopyrite thin film is below 300°C, the produced thin film will become amorphous or a different phase other than the chalcopyrite compound will occur, making it impossible to obtain the desired Cu-based chalcopyrite thin film.
【0022】また、カルコパイライト薄膜を堆積後熱処
理する時の雰囲気ガスの圧力が1気圧では、成分元素の
基板からの再蒸発が起こり、所望の組成比のカルコパイ
ライト薄膜が得られない。Furthermore, if the pressure of the atmospheric gas is 1 atm when heat-treating the chalcopyrite thin film after deposition, re-evaporation of component elements from the substrate occurs, making it impossible to obtain a chalcopyrite thin film with a desired composition ratio.
【0023】[0023]
【発明の効果】以上説明したところから明らかなように
、本発明によって、非晶質基板あるいは非晶質薄膜ある
いは金属薄膜の所定領域に、配向性がよく且つ、成分元
素が所望の組成比の、すなわち、所望の電気特性を持っ
たカルコパイライト薄膜を作製することができる。Effects of the Invention As is clear from the above explanation, according to the present invention, it is possible to provide a predetermined region of an amorphous substrate, an amorphous thin film, or a metal thin film with good orientation and a desired composition ratio of component elements. That is, a chalcopyrite thin film having desired electrical properties can be produced.
【0024】また、そのような優れた品質のカルコパイ
ライト薄膜を用いて、デバイスの高性能化、例えば太陽
電池の高効率化が図れる。Furthermore, by using such a chalcopyrite thin film of excellent quality, it is possible to improve the performance of devices, for example, the efficiency of solar cells.
【図1】本発明のカルコパイライト薄膜の作製方法の1
実施例に用いられる装置の略示側面図である。FIG. 1: 1 of the method for producing a chalcopyrite thin film of the present invention
FIG. 2 is a schematic side view of the apparatus used in the example.
【図2】従来法により作製したCuInSe2薄膜のX
線回折図である。[Figure 2] X of CuInSe2 thin film produced by conventional method
It is a line diffraction diagram.
【図3】本発明により作製したCuInSe2 薄膜の
X線回折図である。FIG. 3 is an X-ray diffraction diagram of a CuInSe2 thin film produced according to the present invention.
【図4】本発明にかかる薄膜太陽電池の一実施例の断面
図である。FIG. 4 is a cross-sectional view of an embodiment of a thin film solar cell according to the present invention.
1 真空容器 2 CuInSe2粉末の蒸着源 3 Cu蒸着源 4 ガラス基板 5 金属薄膜 6 CuInSe2薄膜 7 CdS薄膜 8 太陽電池の上部電極 1 Vacuum container 2 Vapor deposition source of CuInSe2 powder 3 Cu evaporation source 4 Glass substrate 5 Metal thin film 6 CuInSe2 thin film 7 CdS thin film 8 Upper electrode of solar cell
Claims (9)
は金属薄膜上の所定領域に、真空蒸着法によりカルコパ
イライト薄膜を堆積する際に、蒸発源として、成分元素
の組成が化学量論比であるカルコパイライト化合物を用
い、蒸着用るつぼに入れたカルコパイライト化合物を全
て蒸発させる事を特徴とするカルコパイライト薄膜の作
製方法。Claim 1: When depositing a chalcopyrite thin film on a predetermined region on an amorphous substrate, an amorphous thin film, or a metal thin film by vacuum evaporation, an evaporation source in which the composition of the component elements is in a stoichiometric ratio is used. A method for producing a chalcopyrite thin film using a certain chalcopyrite compound, which is characterized by evaporating all of the chalcopyrite compound placed in a crucible for vapor deposition.
工程において、同時に基板を100度以下に保つ工程を
含む事を特徴とする請求項1のカルコパイライト薄膜の
作製方法。2. The method for producing a chalcopyrite thin film according to claim 1, wherein the step of depositing the chalcopyrite thin film includes a step of simultaneously maintaining the substrate at 100 degrees or less.
熱処理工程を含む事を特徴とする請求項1又は2のカル
コパイライト薄膜の作製方法。3. After depositing the chalcopyrite thin film,
3. The method for producing a chalcopyrite thin film according to claim 1 or 2, comprising a heat treatment step.
とを特徴とする請求項3のカルコパイライト薄膜の作製
方法。4. The method for producing a chalcopyrite thin film according to claim 3, wherein the temperature of the heat treatment is 300 degrees or higher.
上であること特徴とす請求項3又は4のカルコパイライ
ト薄膜の作製方法。5. The method for producing a chalcopyrite thin film according to claim 3 or 4, wherein the pressure of the atmospheric gas in the heat treatment is 1 atm or more.
ガス雰囲気で行われる事を特徴とする請求項3、4又は
5のカルコパイライト薄膜の作製方法。6. The method for producing a chalcopyrite thin film according to claim 3, wherein the heat treatment is performed in an atmosphere of air, nitrogen gas, or inert gas.
において、前記蒸発源として、カルコパイライト化合物
の粉体以外に、カルコゲナイト元素を除くカルコパイラ
イト化合物の成分元素の1つ、あるいは複数の元素を蒸
発源とする、多元蒸着法で作製することを特徴とする請
求項1〜6のいずれかのカルコパイライト薄膜の作製方
法。7. In the step of depositing a chalcopyrite thin film, the evaporation source is one or more constituent elements of the chalcopyrite compound other than the chalcogenite element, in addition to the powder of the chalcopyrite compound. The method for producing a chalcopyrite thin film according to any one of claims 1 to 6, characterized in that it is produced by a multi-component vapor deposition method.
e2、CuInS2あるいは、それらの固溶体であるこ
とを特徴とする請求項1〜7のいずれかのカルコパイラ
イト薄膜の作製方法。[Claim 8] The chalcopyrite thin film is CuInS
8. The method for producing a chalcopyrite thin film according to claim 1, wherein the material is e2, CuInS2, or a solid solution thereof.
よって得られたカルコパイライト薄膜が光吸収層として
用いられたことを特徴とする薄膜太陽電池。9. A thin film solar cell characterized in that a chalcopyrite thin film obtained by the production method according to claim 1 is used as a light absorption layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3075380A JPH04309237A (en) | 1991-04-08 | 1991-04-08 | Manufacturing method of chalcopyrite thin film and solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3075380A JPH04309237A (en) | 1991-04-08 | 1991-04-08 | Manufacturing method of chalcopyrite thin film and solar cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04309237A true JPH04309237A (en) | 1992-10-30 |
Family
ID=13574534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3075380A Pending JPH04309237A (en) | 1991-04-08 | 1991-04-08 | Manufacturing method of chalcopyrite thin film and solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04309237A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011109052A (en) * | 2009-11-20 | 2011-06-02 | Korea Electronics Telecommun | Method for manufacturing thin film light absorbing layer, method for manufacturing thin film solar cell employing the light absorbing layer, and thin film solar cell |
WO2013002605A2 (en) * | 2011-06-30 | 2013-01-03 | 한국화학연구원 | Composite particles for a photoactive layer of a solar cell and method for manufacturing same |
WO2014136921A1 (en) * | 2013-03-07 | 2014-09-12 | 国立大学法人大阪大学 | Compound-semiconductor thin-film manufacturing method and manufacturing device |
-
1991
- 1991-04-08 JP JP3075380A patent/JPH04309237A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011109052A (en) * | 2009-11-20 | 2011-06-02 | Korea Electronics Telecommun | Method for manufacturing thin film light absorbing layer, method for manufacturing thin film solar cell employing the light absorbing layer, and thin film solar cell |
WO2013002605A2 (en) * | 2011-06-30 | 2013-01-03 | 한국화학연구원 | Composite particles for a photoactive layer of a solar cell and method for manufacturing same |
KR101232671B1 (en) * | 2011-06-30 | 2013-02-13 | 한국화학연구원 | Method for manufacturing absorber film of solar cell and absorber film thereof, solar cell and solar cell module by using the same |
WO2013002605A3 (en) * | 2011-06-30 | 2013-04-04 | 한국화학연구원 | Composite particles for a photoactive layer of a solar cell and method for manufacturing same |
WO2014136921A1 (en) * | 2013-03-07 | 2014-09-12 | 国立大学法人大阪大学 | Compound-semiconductor thin-film manufacturing method and manufacturing device |
JPWO2014136921A1 (en) * | 2013-03-07 | 2017-02-16 | 国立大学法人大阪大学 | Method and apparatus for producing compound semiconductor thin film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5441897A (en) | Method of fabricating high-efficiency Cu(In,Ga)(SeS)2 thin films for solar cells | |
EP2260506B1 (en) | Method for forming a compound semi-conductor thin-film | |
Romeo et al. | Low substrate temperature CdTe solar cells: A review | |
JP3258667B2 (en) | Manufacturing method of high efficiency Cu (In, Ga) (Se, S) 2 thin film for solar cell | |
US8410004B2 (en) | Chalcogenide absorber layers for photovoltaic applications and methods of manufacturing the same | |
KR100922890B1 (en) | CIGS absorber layer fabrication method and solar cell including CIGS absorber layer | |
JPH0982992A (en) | Thin film solar cell and manufacture thereof | |
JPH06151930A (en) | Manufacture of chalcopyrite-type compound film | |
JP3897622B2 (en) | Method for producing compound semiconductor thin film | |
US9859450B2 (en) | CIGS/silicon thin-film tandem solar cell | |
JPH11274534A (en) | I-iii-vi compound semiconductor and thin film solar cell using the same | |
US5389572A (en) | Process of making chalcopyrite structure semiconductor film | |
JPH1074966A (en) | Method for manufacturing thin-film solar cell | |
JP3091599B2 (en) | Method for producing chalcopyrite type compound | |
KR100347106B1 (en) | The manufacturing method of CuInSe2 thin film using vacuum evaporation of binary selenides | |
JPH04309237A (en) | Manufacturing method of chalcopyrite thin film and solar cell | |
JP2000087234A (en) | Device for producing compound film and production of compound film | |
Zweigart et al. | CuInSe 2 film growth using precursors deposited at low temperature | |
JPH07216533A (en) | Production of chalcopyrite-structure semiconductor thin film | |
JP3181074B2 (en) | Method for producing Cu-based chalcopyrite film | |
JPH08111425A (en) | Production of semiconductor thin film having chalcopyrite structure | |
JP3431318B2 (en) | Method for producing chalcopyrite structure semiconductor thin film | |
KR101521450B1 (en) | Method for manufacturing CIGS Thin Film Using Non-selenization Sputtering Process with CuSe2 Target | |
Alberts et al. | Material properties of Cu (In, Ga) Se2 thin films prepared by the reaction of thermally evaporated compound materials in H2Se/Ar | |
JPH11274526A (en) | Semiconductor thin film with cis-based chalcopyrite, structure, solar battery, with the thin film and their manufacture |