[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04304433A - Optical switching element and its manufacture - Google Patents

Optical switching element and its manufacture

Info

Publication number
JPH04304433A
JPH04304433A JP9266291A JP9266291A JPH04304433A JP H04304433 A JPH04304433 A JP H04304433A JP 9266291 A JP9266291 A JP 9266291A JP 9266291 A JP9266291 A JP 9266291A JP H04304433 A JPH04304433 A JP H04304433A
Authority
JP
Japan
Prior art keywords
optical
light
switching element
refractive index
optical switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9266291A
Other languages
Japanese (ja)
Other versions
JP2796902B2 (en
Inventor
Takuji Yoshida
卓史 吉田
Akira Morinaka
森中 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3092662A priority Critical patent/JP2796902B2/en
Publication of JPH04304433A publication Critical patent/JPH04304433A/en
Application granted granted Critical
Publication of JP2796902B2 publication Critical patent/JP2796902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain the fast-response optical switch element which uses not heat effect, but light reaction for the operation principle of an optical switch. CONSTITUTION:In the manufacturing process of the optical switching element which is provided with a layer, varying in refractive index with control light, between optical waveguides of a coupler composed of the optical waveguides, the layer is formed by vapor-deposition or light-irradiating vapor-deposition. A photochromic compound is used preferably for the layer. The internal strain stress of the formed noncrystalline vapor-deposited film itself is 1-3 digits less than that of a conventional optical switch which requires a substrate heating process and postbaking and variation and a noise due to stress between the couplers are made small.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は導波路内を信号として通
過する光を、カプラ上に照射した別の光で制御する光ス
イッチング素子及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical switching element in which light passing through a waveguide as a signal is controlled by another light irradiated onto a coupler, and a method for manufacturing the same.

【0002】0002

【従来の技術】光スイッチは光通信分野の光交換機や無
瞬断光回線切り替え器への応用、延いては光コンピュー
ターの主要部品として開発が待ち望まれている。しかし
ながら、従来の光スイッチには問題点があった。それを
図2に基づいて説明する。すなわち、図2は従来の光ス
イッチング素子を説明する図であって、従来の光スイッ
チング素子を上方からみた図である。図2中の1、2は
石英製の光導波路、3は第1の光カプラ、4は第2の光
カプラ、5は薄膜ヒーター、6はシリコン基板である。 図2に示すようにカプラとカプラの間の石英系光導波路
部にヒーター5を付設し、熱光学効果を利用し熱膨張に
よって、図2中のカプラ3とカプラ4の間の光路の長さ
を変えてクロス状態とバー状態を切り替えていた。
2. Description of the Related Art Optical switches are eagerly awaited for application to optical exchanges and uninterrupted optical line switching devices in the field of optical communications, and even as key components of optical computers. However, conventional optical switches have problems. This will be explained based on FIG. That is, FIG. 2 is a diagram illustrating a conventional optical switching element, and is a diagram of the conventional optical switching element viewed from above. In FIG. 2, 1 and 2 are optical waveguides made of quartz, 3 is a first optical coupler, 4 is a second optical coupler, 5 is a thin film heater, and 6 is a silicon substrate. As shown in FIG. 2, a heater 5 is attached to the silica-based optical waveguide between the couplers, and the length of the optical path between the couplers 3 and 4 in FIG. was used to switch between the cross state and the bar state by changing the .

【0003】0003

【発明が解決しようとする課題】したがって、動作原理
が加熱、及び自然冷却による熱効果であるため、応答速
度が遅く、光コンピューターとして使用した場合、現存
する通常のコンピューターの計算速度に比較して劣るな
どの欠点があった。また、狭い面積中に多数の光スイッ
チを集積すると、隣接するスイッチの熱によるクロスト
ークも避けられなかった。また、従来のカプラや光導波
路は、例えばシリコン基板上に堆積させた石英層から、
エッチング法加工でパターン化して作製し、これとは別
にヒーター部をシリコン基板上に設けねばならないなど
製作過程が複雑であり、歩留りやコストの面で問題が多
かった。本発明の目的は、これら問題点を解決した光ス
イッチング素子及びその製造方法を提供することにある
[Problems to be Solved by the Invention] Therefore, since the operating principle is thermal effects due to heating and natural cooling, the response speed is slow, and when used as an optical computer, compared to the calculation speed of existing ordinary computers. There were disadvantages such as inferiority. Furthermore, when a large number of optical switches are integrated in a small area, crosstalk due to heat between adjacent switches is unavoidable. In addition, conventional couplers and optical waveguides are made from, for example, a quartz layer deposited on a silicon substrate.
The manufacturing process was complicated, as it was patterned using an etching process, and a heater section had to be separately provided on the silicon substrate, resulting in many problems in terms of yield and cost. An object of the present invention is to provide an optical switching element that solves these problems and a method for manufacturing the same.

【0004】0004

【課題を解決するための手段】本発明を概説すれば、本
発明の第1の発明は光スイッチング素子に関する発明で
あって、光導波路で出来たカプラの光導波路間に制御光
によって屈折率の変化する層を設けたことを特徴とする
。そして、本発明の第2の発明は光スイッチング素子の
製造方法に関する発明であって、上記第1の発明の光ス
イッチング素子を製造する方法において、該制御光によ
って屈折率の変化する層を蒸着法又は光照射蒸着法で形
成することを特徴とする。
[Means for Solving the Problems] To summarize the present invention, the first invention relates to an optical switching element, in which a refractive index is changed by control light between optical waveguides of a coupler made of optical waveguides. It is characterized by having a layer that changes. A second invention of the present invention relates to a method of manufacturing an optical switching element, and in the method of manufacturing an optical switching element of the first invention, a layer whose refractive index is changed by the control light is formed by vapor deposition. Alternatively, it is characterized in that it is formed by a light irradiation vapor deposition method.

【0005】本発明は光カプラ内に制御光によって屈折
率の変化する層を設けることにより、光スイッチの動作
原理が熱効果ではなく、光反応を用いた高応答速度の光
スイッチング素子を提供し、更に屈折率の変化する層を
蒸着法や光照射蒸着法という簡便な方法で作製する、光
スイッチング素子の製造方法を提供することにある。
The present invention provides a high-response-speed optical switching element in which the operating principle of the optical switch is not a thermal effect but a photoreaction by providing a layer in the optical coupler whose refractive index is changed by control light. Another object of the present invention is to provide a method for manufacturing an optical switching element in which a layer having a changing refractive index is manufactured by a simple method such as a vapor deposition method or a light irradiation vapor deposition method.

【0006】従来の光スイッチング素子とはスイッチ原
理が熱効果ではなくカプラ内の屈折率を直接制御光によ
って変化させることが異なり、また作製方法が、従来の
光スイッチング素子ではヒーター部を設けなければなら
なかったが、簡便な蒸着法又は光照射蒸着法を使用して
作製できることが異なる。
[0006] The switching principle differs from conventional optical switching elements in that the refractive index within the coupler is directly changed by control light rather than a thermal effect, and the manufacturing method is different from conventional optical switching elements in that a heater section must be provided. However, the difference is that it can be produced using a simple vapor deposition method or a light irradiation vapor deposition method.

【0007】該制御光によって屈折率の変化する層とし
てフォトクロミック化合物を用いることが好ましい。こ
のフォトクロミズムは自己保持型であるため、従来の光
スイッチのようにヒーター部に通電し続けて熱を加え続
ける必要がなく、消費電力を少なく出来ることが異なる
。光照射で屈折率の変化する物質としては無機材料であ
る強誘電体結晶のフォトリフラクティブ材料が有名であ
る。その他にもフォトクロミズム材料は分子構造の変化
を伴うために、屈折率が変化することで知られており、
これらの材料を使うことによって制御光により屈折率を
変化させることが出来る。また、これら有機フォトクロ
ミック材料は簡便な蒸着法又は光照射蒸着法(特願昭6
1−117406号)で作成が可能である。以上のこと
から本発明の目的である光スイッチングを可能にする。 光カプラ内に蒸着法又は光照射蒸着法で屈折率の変化す
る層を作製する利点としては、例えば屈折率の変化する
物質として有機物を用いた場合、ポリマー膜などに分散
させると、実質的に濃度が減少して屈折率変化が小さく
なり、スイッチング効率が減少するが、蒸着法又は光照
射蒸着法で作製すると濃度は100%であり、これ以上
のスイッチング効率の上昇が望めない点まで飛躍的に上
昇することである。
[0007] It is preferable to use a photochromic compound as the layer whose refractive index changes according to the control light. Since this photochromism is self-retaining, there is no need to continuously apply electricity to the heater section to continuously apply heat, unlike conventional optical switches, and the difference is that power consumption can be reduced. Photorefractive materials such as ferroelectric crystals, which are inorganic materials, are well-known as materials whose refractive index changes when irradiated with light. In addition, photochromic materials are known to change their refractive index due to changes in their molecular structure.
By using these materials, the refractive index can be changed using control light. In addition, these organic photochromic materials can be produced using a simple vapor deposition method or a light irradiation vapor deposition method (patent application filed in 1983).
1-117406). From the above, optical switching, which is the object of the present invention, is made possible. An advantage of creating a layer with a variable refractive index in an optical coupler using a vapor deposition method or a light irradiation vapor deposition method is that, for example, when an organic substance is used as a material with a variable refractive index, when dispersed in a polymer film, etc. The concentration decreases, the refractive index change becomes smaller, and the switching efficiency decreases, but when fabricated using the vapor deposition method or the light irradiation vapor deposition method, the concentration is 100%, which dramatically increases the switching efficiency to the point where no further increase can be expected. It is to rise to.

【0008】[0008]

【実施例】以下、本発明を実施例によって詳細に説明す
るが、本発明はこれら実施例に限定されない。
[Examples] The present invention will be explained in detail with reference to Examples below, but the present invention is not limited to these Examples.

【0009】実施例1 光カプラ内に制御光によって屈折率の変化する層を製造
する方法について説明する。シリコン基板上にSiO2
 をスパッタ法により作製し、通常の方法で導波路構造
を持つ光カプラを作製した。このカプラ上に、フォトク
ロミック化合物であるアダマンチリデン・フルギド(略
号;AF)を、真空度1×10−5Torr、蒸着速度
2〜50Å/秒で蒸着した。以下に、AFの分子構造式
を示す。
Example 1 A method for manufacturing a layer whose refractive index is changed by control light in an optical coupler will be described. SiO2 on silicon substrate
was fabricated by sputtering, and an optical coupler with a waveguide structure was fabricated using a conventional method. On this coupler, adamantylidene fulgide (abbreviation: AF), which is a photochromic compound, was deposited at a vacuum degree of 1×10 −5 Torr and a deposition rate of 2 to 50 Å/sec. The molecular structural formula of AF is shown below.

【0010】0010

【化1】[Chemical formula 1]

【0011】作製した光スイッチング素子の概要を図1
に示す。すなわち、図1は、本発明による光スイッチン
グ素子の概要を示す図であって、21、22は石英製の
光導波路、23は制御光によって屈折率の変化するAF
層、24はシリコン基板である。この様にして、カプラ
内に制御光で屈折率の変化するAF層を持つ光スイッチ
ング素子を製造した。
An overview of the fabricated optical switching device is shown in FIG.
Shown below. That is, FIG. 1 is a diagram showing an outline of an optical switching element according to the present invention, in which 21 and 22 are optical waveguides made of quartz, and 23 is an AF whose refractive index is changed by control light.
Layer 24 is a silicon substrate. In this way, an optical switching element having an AF layer whose refractive index changes with control light inside the coupler was manufactured.

【0012】実施例2 実施例1で作製した方法と同じ方法で導波路構造を持つ
光カプラを作製し、このカプラ上にフォトクロミック化
合物、1′,3′,3′−トリメチル−6−ニトロスピ
ロ−〔2H−1−ベンゾピラン−2,2′−インドリン
〕(略号NBPS)を光照射蒸着法で作製した。以下に
NBPSの分子構造式を示す。
Example 2 An optical coupler having a waveguide structure was fabricated using the same method as in Example 1, and a photochromic compound, 1',3',3'-trimethyl-6-nitrospiro- [2H-1-benzopyran-2,2'-indoline] (abbreviation: NBPS) was produced by a light irradiation vapor deposition method. The molecular structural formula of NBPS is shown below.

【0013】[0013]

【化2】[Case 2]

【0014】NBPSは、通常の蒸着法では微結晶性の
不透明な膜となりフォトクロミズムを示さないが、光照
射蒸着法(特願昭61−117406号明細書参照)で
製膜すると安定な透明膜となりフォトクロミズムを示す
。蒸着中に照射した光は紫外光で、その他の蒸着条件は
実施例1と同じである。作製した光スイッチング素子の
概要を図3に示す。すなわち図3は本発明による光スイ
ッチング素子の概要を示す図であって、31、32は石
英製の光導波路、33は制御光によって屈折率の変化す
るNBPS層、34はシリコン基板である。この様にし
て、カプラ内に制御光で屈折率の変化するNBPS層を
持つ光スイッチング素子を製造した。
[0014] NBPS becomes a microcrystalline opaque film that does not exhibit photochromism when used with a normal vapor deposition method, but it becomes a stable transparent film when formed using a light irradiation vapor deposition method (see the specification of Japanese Patent Application No. 117406/1986). Shows photochromism. The light irradiated during vapor deposition was ultraviolet light, and the other vapor deposition conditions were the same as in Example 1. FIG. 3 shows an outline of the optical switching device produced. That is, FIG. 3 is a diagram showing an outline of an optical switching element according to the present invention, in which 31 and 32 are optical waveguides made of quartz, 33 is an NBPS layer whose refractive index changes depending on the control light, and 34 is a silicon substrate. In this way, an optical switching element having an NBPS layer whose refractive index changes with control light inside the coupler was manufactured.

【0015】実施例3 実施例1で作製した光スイッチング素子に、信号光(波
長1.55μm)を、図1の導波路21の右側から通し
た。制御光を照射する前は、光カプラを通過してきた信
号光は導波路21の左側で観測され、導波路22には信
号光はスイッチされていなかった。制御光として紫外光
を図1の23に照射すると信号光は直ちにスイッチされ
、導波路22の左側で観測され、スイッチングが出来た
ことが分かった。スイッチング速度を検討した結果、ナ
ノ秒(1×10−9秒)以内にスイッチされていること
が分かった。制御光として、更に可視光を照射すると、
直ちに信号光はスイッチされ導波路21の左側で観測さ
れた。このスイッチング現象は、制御光を照射する度に
繰返し行うことが出来た。
Example 3 A signal light (wavelength: 1.55 μm) was passed through the optical switching element manufactured in Example 1 from the right side of the waveguide 21 in FIG. Before the control light was irradiated, the signal light that had passed through the optical coupler was observed on the left side of the waveguide 21, and the signal light was not switched to the waveguide 22. When ultraviolet light was irradiated to 23 in FIG. 1 as control light, the signal light was immediately switched and observed on the left side of the waveguide 22, indicating that switching was successful. As a result of examining the switching speed, it was found that switching occurs within nanoseconds (1×10 −9 seconds). If visible light is further irradiated as control light,
The signal light was immediately switched and observed on the left side of the waveguide 21. This switching phenomenon could be repeated every time the control light was irradiated.

【0016】実施例4 実施例2で作製した光スイッチング素子に、信号光(波
長1.55μm)を、図3の導波路31の右側から通し
た。制御光を照射する前は、光カプラを通過してきた信
号光は導波路31の左側で観測され、導波路32には信
号光はスイッチされていなかった。制御光として可視光
を図3の33に照射すると信号光は直ちにスイッチされ
、導波路32の左側で観測され、スイッチングが出来た
ことが分かった。制御光として、更に紫外光を照射する
と、直ちに信号光はスイッチされ導波路31の左側で観
測された。このスイッチング現象は、制御光を照射する
度に繰返し行うことが出来た。
Example 4 Signal light (wavelength: 1.55 μm) was passed through the optical switching element manufactured in Example 2 from the right side of the waveguide 31 in FIG. Before the control light was irradiated, the signal light that had passed through the optical coupler was observed on the left side of the waveguide 31, and the signal light was not switched to the waveguide 32. When visible light was irradiated to 33 in FIG. 3 as control light, the signal light was immediately switched and observed on the left side of the waveguide 32, indicating that switching was successful. When ultraviolet light was further irradiated as control light, the signal light was immediately switched and observed on the left side of the waveguide 31. This switching phenomenon could be repeated every time the control light was irradiated.

【0017】[0017]

【発明の効果】以上説明したように、本発明を用いれば
、制御光で光スイッチングを行うことが可能となり、従
来の光スイッチング素子に比べて原理的にスイッチング
速度が速くなるという利点を持つ。また、フォトクロミ
ズムは自己保持型であるため、従来の光スイッチのよう
にヒーター部に通電し続けて熱を加え続ける必要がなく
、消費電力を少なくする利点がある。フォトクロミズム
を用いた本発明は、光による屈折率変化が大きいため、
光カプラを設計する際、カプラの動作マージンを大きく
取ることが出来、外部からの熱・応力などのノイズに対
して安定な動作をする光スイッチを得ることが出来る。 また、蒸着法や光照射蒸着法で作製することが出来、従
来の光スイッチング素子のような複雑な製造過程を経る
ことがなく、歩留り、コストの面で従来の素子の製造方
法に比べて利点を持っている。蒸着法や光照射蒸着法で
作製した光スイッチは、溶媒を用いる湿式のスピンコー
ト法などに比べ、ほこり、じんあいの汚染による導波路
のロスが少ない。また、作製した非晶質蒸着膜自身の内
部歪応力は、基板加熱過程やポストベークが必要な従来
の光スイッチに比べて1〜3桁も少なくなり、カプラ間
の応力による変化、ノイズを小さくすることが出来る。
As described above, the present invention enables optical switching to be performed using control light, and has the advantage that the switching speed is theoretically faster than that of conventional optical switching elements. Furthermore, since photochromism is self-retaining, there is no need to continuously apply electricity to the heater section to continuously apply heat, unlike conventional optical switches, which has the advantage of reducing power consumption. The present invention using photochromism has a large refractive index change due to light, so
When designing an optical coupler, it is possible to have a large operating margin for the coupler, and it is possible to obtain an optical switch that operates stably against external noise such as heat and stress. In addition, it can be manufactured using vapor deposition method or light irradiation vapor deposition method, and does not require the complicated manufacturing process of conventional optical switching devices, which has advantages over conventional device manufacturing methods in terms of yield and cost. have. Optical switches fabricated by vapor deposition or light irradiation vapor deposition have less loss of waveguides due to contamination by dust and dirt than those produced by wet spin coating using a solvent. In addition, the internal strain stress of the fabricated amorphous vapor-deposited film itself is 1 to 3 orders of magnitude lower than that of conventional optical switches that require a substrate heating process and post-bake, reducing changes due to stress between couplers and noise. You can.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明による光スイッチング素子の概要を示す
図である。
FIG. 1 is a diagram showing an outline of an optical switching element according to the present invention.

【図2】従来の光スイッチング素子を説明する図であっ
て、従来の光スイッチング素子を上方からみた図である
FIG. 2 is a diagram illustrating a conventional optical switching element, and is a diagram of the conventional optical switching element seen from above.

【図3】本発明による光スイッチング素子の概要を示す
図である。
FIG. 3 is a diagram showing an outline of an optical switching element according to the present invention.

【符号の説明】[Explanation of symbols]

1、2、21、22、31及び32:石英製の光導波路
、3:第1の光カプラ、4:第2の光カプラ、5:薄膜
ヒーター、6、24及び34:シリコン基板、23:制
御光によって屈折率の変化するAF層、33:制御光に
よって屈折率の変化するNBPS層
1, 2, 21, 22, 31 and 32: quartz optical waveguide, 3: first optical coupler, 4: second optical coupler, 5: thin film heater, 6, 24 and 34: silicon substrate, 23: AF layer whose refractive index changes according to control light, 33: NBPS layer whose refractive index changes according to control light

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  光導波路で出来たカプラの光導波路間
に制御光によって屈折率の変化する層を設けたことを特
徴とする光スイッチング素子。
1. An optical switching element characterized in that a layer whose refractive index is changed by control light is provided between the optical waveguides of a coupler made of optical waveguides.
【請求項2】  該制御光によって屈折率の変化する層
としてフォトクロミック化合物を用いることを特徴とす
る請求項1に記載の光スイッチング素子。
2. The optical switching element according to claim 1, wherein a photochromic compound is used as the layer whose refractive index is changed by the control light.
【請求項3】  請求項1に記載の光スイッチング素子
を製造する方法において、該制御光によって屈折率の変
化する層を蒸着法又は光照射蒸着法で形成することを特
徴とする光スイッチング素子の製造方法。
3. The method for manufacturing an optical switching element according to claim 1, wherein the layer whose refractive index changes according to the control light is formed by a vapor deposition method or a light irradiation vapor deposition method. Production method.
JP3092662A 1991-04-01 1991-04-01 Optical switching element Expired - Fee Related JP2796902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3092662A JP2796902B2 (en) 1991-04-01 1991-04-01 Optical switching element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3092662A JP2796902B2 (en) 1991-04-01 1991-04-01 Optical switching element

Publications (2)

Publication Number Publication Date
JPH04304433A true JPH04304433A (en) 1992-10-27
JP2796902B2 JP2796902B2 (en) 1998-09-10

Family

ID=14060689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3092662A Expired - Fee Related JP2796902B2 (en) 1991-04-01 1991-04-01 Optical switching element

Country Status (1)

Country Link
JP (1) JP2796902B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274063A (en) * 1986-05-23 1987-11-28 Nippon Telegr & Teleph Corp <Ntt> Formation of thin organic film by radiation of light
JPS642020A (en) * 1987-06-25 1989-01-06 Fuji Electric Co Ltd Waveguide type optical switch element
JPH041613A (en) * 1989-12-20 1992-01-07 Sumitomo Electric Ind Ltd Optical switch

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274063A (en) * 1986-05-23 1987-11-28 Nippon Telegr & Teleph Corp <Ntt> Formation of thin organic film by radiation of light
JPS642020A (en) * 1987-06-25 1989-01-06 Fuji Electric Co Ltd Waveguide type optical switch element
JPH041613A (en) * 1989-12-20 1992-01-07 Sumitomo Electric Ind Ltd Optical switch

Also Published As

Publication number Publication date
JP2796902B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
US6925226B2 (en) Methods of altering the resonance of waveguide micro-resonators
KR100193219B1 (en) Passive polarizer
US8103136B2 (en) Thermo-optic devices providing thermal recirculation
US20060120657A1 (en) Integrated optics polarization beam splitter using form birefringence
US20060165340A1 (en) Thermo-optic waveguide device and manufacturing method thereof
US20040071386A1 (en) Method and apparatus for homogeneous heating in an optical waveguiding structure
JP2000137196A (en) Optical luminance modulator as well as switch and rotatable attenuator using the same
JPH04131805A (en) Quartz optical waveguide and production thereof
US10935722B1 (en) CMOS compatible material platform for photonic integrated circuits
JPH04304433A (en) Optical switching element and its manufacture
JP2932742B2 (en) Waveguide type optical device
JP2004325536A (en) Nonlinear optical device
JPH04304414A (en) Optical element and its material
KR100396678B1 (en) Thermo-Optical Switch
JP2999199B2 (en) Optical waveguide element
JP2000035555A (en) Optical intensity modulator and its manufacture
JPH0566429A (en) Waveguide type optical switching element
JP2000241781A (en) Polymer thermo-optic optical waveguide device
CN117348152A (en) Silicon nitride/polymer-based athermalized AWG and polymer-based VOA array hybrid integrated chip
US20020186948A1 (en) Electro-optic waveguide structure
JP2809112B2 (en) Light control device and manufacturing method thereof
JPH08304749A (en) Optical waveguide type element and its production
JPS63174002A (en) Optical integrated circuit
JPS63184727A (en) Optical device
JPH012020A (en) Waveguide type optical switch device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees