JPH04290242A - Inspection method of semiconductor element - Google Patents
Inspection method of semiconductor elementInfo
- Publication number
- JPH04290242A JPH04290242A JP5453491A JP5453491A JPH04290242A JP H04290242 A JPH04290242 A JP H04290242A JP 5453491 A JP5453491 A JP 5453491A JP 5453491 A JP5453491 A JP 5453491A JP H04290242 A JPH04290242 A JP H04290242A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor substrate
- contact chain
- contact
- semiconductor
- wiring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000007689 inspection Methods 0.000 title abstract description 4
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 239000004020 conductor Substances 0.000 claims abstract description 10
- 239000011229 interlayer Substances 0.000 claims abstract description 5
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 4
- 238000012360 testing method Methods 0.000 claims description 17
- 230000000149 penetrating effect Effects 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 238000012916 structural analysis Methods 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 description 7
- 230000001681 protective effect Effects 0.000 description 7
- 238000011161 development Methods 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 5
- 230000005284 excitation Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000005360 phosphosilicate glass Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- -1 aluminum silicon copper Chemical compound 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Microscoopes, Condenser (AREA)
- Electrodes Of Semiconductors (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は半導体製造工程、特にコ
ンタクトホール形成に関する工程を評価するための半導
体素子の検査方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing process, and more particularly to a semiconductor device inspection method for evaluating processes related to contact hole formation.
【0002】0002
【従来の技術】半導体素子の製造または開発においてプ
ロセス評価に使用する評価用デバイスの一つに数100
0個のコンタクトホールを形成し、そのコンタクトホー
ルの上下を導体で接続して数1000個のコンタクトを
直列に接続したデバイス(以下コンタクトチェーンと称
する)がある。このデバイスはコンタクトホールの形成
が確実に行われているかどうかを検証するものであり、
製造または開発に適用したプロセスの良否は、コンタク
トチェーンに導通があるかどうか、コンタクトチェーン
の抵抗が設計した電気抵抗値以下であるかによって判定
されている。[Prior Art] One of the evaluation devices used for process evaluation in the manufacture or development of semiconductor devices is several hundred.
There is a device (hereinafter referred to as a contact chain) in which several thousand contacts are connected in series by forming zero contact holes and connecting the top and bottom of the contact holes with conductors. This device verifies whether contact holes are being formed reliably.
The quality of the process applied to manufacturing or development is determined by whether there is continuity in the contact chain and whether the resistance of the contact chain is less than or equal to the designed electrical resistance value.
【0003】以下に従来の半導体素子の検査方法につい
て説明する。図4(a)は従来の半導体素子の検査方法
に用いられるコンタクトチェーンの概略構成図、図4(
b)は図4(a)をA−B線で切断した概略断面図であ
る。これらの図において、1cと1dは電気測定用のパ
ッド、2は第2の配線、3は第2の配線と第1の配線4
との間の層間絶縁膜、5は半導体基板6の上の絶縁膜、
7は表面保護膜である。電気測定による検査方法の場合
、電気測定用のパッド1cと1dに金属針(プローブ)
をそれぞれ1本ずつ接触させ、この2本の金属針の間に
電圧を印加して流れる電流を測ることによってコンタク
トチェーンの抵抗値(電圧値/電流値)を算出し、その
抵抗値からコンタクトの良否を判定し、プロセスの評価
を行っている。A conventional semiconductor device testing method will be explained below. FIG. 4(a) is a schematic diagram of a contact chain used in a conventional semiconductor device testing method.
b) is a schematic cross-sectional view taken along line AB in FIG. 4(a). In these figures, 1c and 1d are pads for electrical measurement, 2 is a second wiring, and 3 is a second wiring and a first wiring 4.
5 is an insulating film on the semiconductor substrate 6;
7 is a surface protective film. In the case of an inspection method using electrical measurement, metal needles (probes) are attached to pads 1c and 1d for electrical measurement.
The resistance value (voltage value/current value) of the contact chain is calculated by applying a voltage between these two metal needles and measuring the flowing current, and from that resistance value, the contact chain's resistance value is calculated. We determine pass/fail and evaluate the process.
【0004】0004
【発明が解決しようとする課題】しかしながら上記の従
来の構成では、コンタクトチェーン全体の評価は可能で
あるが、数1000個のコンタクトホールを有するコン
タクトチェーンの断線箇所を特定することができないと
いう課題を有していた。[Problems to be Solved by the Invention] However, with the above-mentioned conventional configuration, although it is possible to evaluate the entire contact chain, there is a problem in that it is not possible to identify a disconnection point in a contact chain that has several thousand contact holes. had.
【0005】本発明は上記従来の課題を解決するもので
、コンタクトホールにおける断線の原因解明を容易にし
、その結果を素早くフイードバックすることによって半
導体素子製造工程の歩留まり安定または半導体素子開発
期間の短縮を可能にする半導体素子の検査方法を提供す
ることを目的とする。The present invention solves the above-mentioned conventional problems, and by making it easy to clarify the cause of disconnection in contact holes and quickly feeding back the results, it is possible to stabilize the yield of the semiconductor device manufacturing process or shorten the semiconductor device development period. An object of the present invention is to provide a semiconductor device testing method that enables the testing of semiconductor devices.
【0006】[0006]
【課題を解決するための手段】この目的を達成するため
に本発明の半導体素子の検査方法は、半導体基板の絶縁
膜の上に設けられた、層間絶縁膜に形成された多数個の
貫通孔を導体配線が直列に貫いて形成したコンタクトチ
ェーンの導体配線の1箇所または複数箇所を半導体基板
に電気的に接続した後、集束イオンビーム(FIB)装
置または走査型電子顕微鏡(SEM)を用いてコンタク
トチェーンの二次電子像を観察する構成を有している。[Means for Solving the Problems] In order to achieve this object, the semiconductor device testing method of the present invention includes a method for inspecting a semiconductor device that includes a plurality of through holes formed in an interlayer insulating film provided on an insulating film of a semiconductor substrate. After electrically connecting one or more places of the conductor wiring of the contact chain formed by passing through the conductor wiring in series to the semiconductor substrate, using a focused ion beam (FIB) device or a scanning electron microscope (SEM), It has a configuration for observing secondary electron images of contact chains.
【0007】[0007]
【作用】この構成によって、コンタクトチェーンの断線
箇所を容易に見つけだすことができる。その結果、断線
箇所の構造解析による原因究明が迅速にでき、素早く半
導体素子製造工程または半導体素子開発工程へフイード
バックできる。[Operation] With this configuration, it is possible to easily find the breakage point of the contact chain. As a result, the cause of the disconnection can be quickly investigated through structural analysis, and feedback can be quickly provided to the semiconductor element manufacturing process or semiconductor element development process.
【0008】[0008]
【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。図1(a)〜(d)は本発明の一実
施例における半導体素子の検査方法を説明するための断
面図である。図1において図4に示す従来例と同一箇所
には同一符号を付して詳細説明を省略した。また本実施
例で使用したコンタクトチェーンの平面図、断面図は一
部を除いて図4(a),(b)と同じである。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIGS. 1A to 1D are cross-sectional views for explaining a method for testing a semiconductor device according to an embodiment of the present invention. In FIG. 1, the same parts as in the conventional example shown in FIG. 4 are given the same reference numerals, and detailed explanations are omitted. Further, the plan view and cross-sectional view of the contact chain used in this example are the same as those in FIGS. 4(a) and 4(b), except for some parts.
【0009】本実施例において使用したコンタクトチェ
ーンは図1(a)に示すように、5000個のコンタク
トホールを有するもので、第1の配線4、第2の配線2
はアルミニウムシリコン銅(AlSiCu)配線、層間
絶縁膜3はボロンホスホシリケイトガラス(BPSG)
膜、絶縁膜5は熱酸化膜、半導体基板6はP型(100
)のシリコン(Si)基板、電気測定用のパッド1aは
100μm×100μmの大きさの第2の配線、表面保
護膜7はSiN/PSGの2層膜で形成した。次に図1
(b)に示すように、表面保護膜7をCF4+10%O
2のガスを用いたプラズマエッチングにより除去する。
次に図1(c)に示すように、電気測定用のパッド1a
にYAGレーザー付光学顕微鏡で基板6まで達するパッ
ド1aの面積よりも小さい孔9を1箇所形成する。
次に図1(d)示すように、孔9の位置に導電性樹脂材
料10aを塗布し、パッド1aを半導体基板6と接続す
る。その後、コンタクトチェーン全面を集束イオンビー
ム(以下、FIBと記す)装置または走査型電子顕微鏡
(以下、SEMと記す)で観察する。The contact chain used in this example has 5000 contact holes as shown in FIG. 1(a), and has a first wiring 4, a second wiring 2
is aluminum silicon copper (AlSiCu) wiring, and interlayer insulating film 3 is boron phosphosilicate glass (BPSG).
The insulating film 5 is a thermal oxide film, and the semiconductor substrate 6 is a P-type (100
), a pad 1a for electrical measurement was formed with a second wiring having a size of 100 μm×100 μm, and a surface protection film 7 was formed of a two-layer film of SiN/PSG. Next, Figure 1
As shown in (b), the surface protective film 7 is coated with CF4+10%O
It is removed by plasma etching using gas No. 2. Next, as shown in FIG. 1(c), a pad 1a for electrical measurement is
A hole 9 smaller than the area of the pad 1a reaching the substrate 6 is formed at one location using an optical microscope equipped with a YAG laser. Next, as shown in FIG. 1(d), a conductive resin material 10a is applied to the position of the hole 9, and the pad 1a is connected to the semiconductor substrate 6. Thereafter, the entire surface of the contact chain is observed using a focused ion beam (hereinafter referred to as FIB) device or a scanning electron microscope (hereinafter referred to as SEM).
【0010】図2(a)〜(c)は本発明の第2の実施
例における半導体素子の検査方法を説明するための断面
図である。図2(a)の構成は図1(a)と同じであり
、説明を省略する。次に図2(b)に示すように、表面
保護膜7をCF4+10%O2ガスを用いたプラズマエ
ッチングで除去する。次に図2(c)に示すように、電
気測定用のパッド1bと半導体基板6が露出している分
割領域または半導体基板1の破断面とを導電性樹脂材料
10bで接続する。この後、コンタクトチェーン全面を
FIB装置またはSEMで観察する。FIGS. 2(a) to 2(c) are cross-sectional views for explaining a semiconductor device testing method in a second embodiment of the present invention. The configuration of FIG. 2(a) is the same as that of FIG. 1(a), and a description thereof will be omitted. Next, as shown in FIG. 2(b), the surface protective film 7 is removed by plasma etching using CF4+10% O2 gas. Next, as shown in FIG. 2C, the pad 1b for electrical measurement and the divided area where the semiconductor substrate 6 is exposed or the fractured surface of the semiconductor substrate 1 are connected with a conductive resin material 10b. After this, the entire surface of the contact chain is observed using an FIB device or SEM.
【0011】図3は本実施例における半導体素子の検査
方法を用いてコンタクトチェーンを検査した結果を説明
する図である。まず上記の方法で試料を加工した後、F
IB装置を用いてイオン励起2次電子像(以下、SIM
像と記す)を観察した場合、基板と接続したパッド1f
と電気的導通のあるコンタクトホール群21は周辺部と
較べて輝度が高く、断線しているコンタクトホール22
から加工していないパッド1eまでのコンタクトホール
群は(周辺と同じ程度の輝度で)輝度が低くSIM像で
観察される。これは、SIM像の場合Ga+イオンを試
料(コンタクトチェーン)の励起に用いているため、絶
縁物や半導体基板6と接続していない金属はSIM像観
察時に正の電位に帯電し、エネルギーの低い2次電子は
試料から放出されにくくなる。したがって、半導体基板
6と接続されている第2の配線2はイオン励起による2
次電子の発生が多くSIM像で輝度が高く観察され、絶
縁物または半導体基板6と接続されていない第2の配線
2はイオン励起による2次電子の発生が少ないことから
SIM像で輝度が低く観察されることになる。上記のS
IM像で観察したコンタクトホールのコントラスト境界
部をFIB装置で断面解析したところ、SIM像のコン
トラストが黒く変化したコンタクトホール22の第1の
配線4と第2の配線2の界面23にアルミ配線のない部
分があり、断線していることがわかった。FIG. 3 is a diagram illustrating the results of testing a contact chain using the semiconductor device testing method of this embodiment. First, after processing the sample using the above method, F
An ion-excited secondary electron image (hereinafter referred to as SIM
When observing the pad 1f connected to the board
The contact hole group 21 that is electrically conductive has higher brightness than the surrounding area, and the contact hole group 22 that is electrically connected has higher brightness than the surrounding area.
The contact hole group from the contact hole to the unprocessed pad 1e has low brightness (at about the same brightness as the surrounding area) and is observed in the SIM image. This is because Ga+ ions are used to excite the sample (contact chain) in the SIM image, so metals that are not connected to the insulator or semiconductor substrate 6 are charged to a positive potential when observing the SIM image, and have low energy. Secondary electrons are less likely to be emitted from the sample. Therefore, the second wiring 2 connected to the semiconductor substrate 6 is exposed to ion excitation.
The second wiring 2, which is not connected to the insulator or semiconductor substrate 6, is observed to have low brightness in the SIM image because it generates fewer secondary electrons due to ion excitation. It will be observed. S above
When the contrast boundary of the contact hole observed in the IM image was analyzed cross-sectionally using an FIB device, it was found that there was an aluminum wiring at the interface 23 between the first wiring 4 and the second wiring 2 of the contact hole 22 where the contrast in the SIM image changed to black. It turned out that there was a disconnection in some parts.
【0012】また、以上説明したFIB装置の代わりに
SEMを用いて2次電子像を観察することによっても断
線箇所を特定することができる。すなわち電気測定で完
全に断線しているコンタクトチェーンに図1または図2
で説明した加工を施した後、SEMを用いて電子励起の
2次電子像(以下、SEIと記す)を観察した場合、F
IB装置のSIM像とのコントラストとは逆に、半導体
基板6に接続したパッドと電気的導通のある部分は輝度
が低く、半導体基板6と電気的導通のない部分は輝度が
高く観察される。このSEIにおける輝度の低いコンタ
クトチェーン部と輝度の高いコンタクトチェーン部の境
界部に最も近い輝度の高いコンタクトチェーン部のコン
タクトホールが断線箇所である。これは、電子励起の場
合、絶縁物または半導体基板6と接続されていない第2
の配線2のような帯電し易い物質の方が半導体基板6と
接続している第2の配線2よりも2次電子発生が多いた
めである。なお、SEMを観察に用いる場合は、図1(
a)と図2(a)の表面保護膜7を除去する工程を省略
しても同様の効果が期待できる。これは、Ga+イオン
の原子半径に比べて表面保護膜7を構成している原子の
電子半径が数桁小さいため、電子が物質中へ深く浸入す
ることに起因する。すなわち、Ga+イオンは表面保護
膜7を透過することができないが、電子は表面保護膜7
を透過し、第2の配線2まで到達する。その到達した電
子により、半導体基板6に接続されている第2の配線2
と半導体基板6に接続されていない第2の配線2で電荷
の蓄積量(電位)が異なることとなり、2次電子の放出
量も変わり、SEIでコントラスト(輝度)の違いとな
って現れる。[0012]Furthermore, the location of the disconnection can also be identified by observing a secondary electron image using a SEM instead of the FIB device described above. In other words, the contact chain shown in Figure 1 or Figure 2 is completely disconnected when electrically measured.
When a secondary electron image of electronic excitation (hereinafter referred to as SEI) is observed using a SEM after the processing described in
Contrary to the contrast with the SIM image of the IB device, parts electrically connected to the pads connected to the semiconductor substrate 6 are observed to have low brightness, while parts not electrically connected to the semiconductor substrate 6 are observed to have high brightness. In this SEI, the contact hole in the high-brightness contact chain portion closest to the boundary between the low-brightness contact chain portion and the high-brightness contact chain portion is the disconnection location. In the case of electronic excitation, the second
This is because a material that is easily charged, such as the wiring 2 , generates more secondary electrons than the second wiring 2 connected to the semiconductor substrate 6 . In addition, when using SEM for observation, Figure 1 (
Similar effects can be expected even if the step of removing the surface protective film 7 in a) and FIG. 2(a) is omitted. This is because the electron radius of the atoms constituting the surface protective film 7 is several orders of magnitude smaller than the atomic radius of the Ga+ ion, and thus the electrons penetrate deeply into the substance. That is, Ga+ ions cannot pass through the surface protective film 7, but electrons cannot pass through the surface protective film 7.
and reaches the second wiring 2. The electrons that have reached the second wiring 2 connected to the semiconductor substrate 6
The amount of accumulated charge (potential) differs between the first wiring 2 and the second wiring 2 that is not connected to the semiconductor substrate 6, and the amount of secondary electrons emitted also changes, which appears as a difference in contrast (brightness) in SEI.
【0013】[0013]
【発明の効果】以上のように本発明の半導体素子の検査
方法では、電気測定だけでは従来不可能であったコンタ
クトチェーンの断線箇所を容易に見つけだすことが可能
であること、断線部の構造解析が可能であることから、
断線の原因を迅速に半導体素子製造工程または半導体素
子開発工程へフイードバックでき、半導体素子の歩留ま
り安定または早期開発への効果が期待できる。[Effects of the Invention] As described above, in the semiconductor device testing method of the present invention, it is possible to easily find a breakage point in a contact chain, which was conventionally impossible by electrical measurement alone, and to analyze the structure of the breakage point. Since it is possible,
The cause of the disconnection can be quickly fed back to the semiconductor element manufacturing process or the semiconductor element development process, and the effect of stabilizing the yield of semiconductor elements or speeding up the development can be expected.
【図1】本発明の一実施例における半導体素子の検査方
法を説明するための各工程の断面図FIG. 1 is a cross-sectional view of each process for explaining a semiconductor device testing method in an embodiment of the present invention.
【図2】本発明の第2の実施例における半導体素子の検
査方法を説明するための各工程の断面図FIG. 2 is a cross-sectional view of each process for explaining the semiconductor device testing method in the second embodiment of the present invention.
【図3】(a)
は本発明の半導体素子の検査方法を用いてコンタクトチ
ェーンを検査した結果を説明する平面図(b)は図3(
a)をA−B線で切断した断面図[Figure 3] (a)
FIG. 3(b) is a plan view illustrating the results of testing a contact chain using the semiconductor device testing method of the present invention.
Cross-sectional view of a) taken along line A-B
【図4】(a)は従来
の半導体素子の検査方法に用いられるコンタクトチェー
ンの概略構成図
(b)は図4(a)をA−B線で切断した断面図FIG. 4(a) is a schematic diagram of a contact chain used in a conventional semiconductor device testing method; FIG. 4(b) is a cross-sectional view taken along line A-B in FIG. 4(a);
2 第2の配線(導体配線) 3 層間絶縁膜 4 第1の配線(導体配線) 5 絶縁膜 6 半導体基板 2 Second wiring (conductor wiring) 3 Interlayer insulation film 4 First wiring (conductor wiring) 5 Insulating film 6 Semiconductor substrate
Claims (3)
間絶縁膜に形成された多数個の貫通孔を導体配線が直列
に貫いて形成したコンタクトチェーンの前記導体配線の
1箇所または複数箇所を前記半導体基板に電気的に接続
した後、集束イオンビーム(FIB)装置または走査型
電子顕微鏡(SEM)を用いて前記コンタクトチェーン
の二次電子像を観察する半導体素子の検査方法。1. One or more locations of the conductor wiring of a contact chain formed by serially penetrating a large number of through holes formed in an interlayer insulating film provided on an insulating film of a semiconductor substrate. A method for inspecting a semiconductor device, which comprises electrically connecting a contact chain to the semiconductor substrate and then observing a secondary electron image of the contact chain using a focused ion beam (FIB) device or a scanning electron microscope (SEM).
基板とが、コンタクトチェーンまたはその近傍に設けた
貫通孔を通して電気的に接続されている請求項1記載の
半導体素子の検査方法。2. The method for testing a semiconductor device according to claim 1, wherein one or more locations of the conductor wiring and the semiconductor substrate are electrically connected through a through hole provided in or near a contact chain.
基板とが、半導体基板の分割領域または半導体基板の破
断面で電気的に接続されている請求項1記載の半導体素
子の検査方法。3. The method for testing a semiconductor device according to claim 1, wherein one or more locations of the conductor wiring and the semiconductor substrate are electrically connected at a divided region of the semiconductor substrate or a fractured surface of the semiconductor substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5453491A JPH04290242A (en) | 1991-03-19 | 1991-03-19 | Inspection method of semiconductor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5453491A JPH04290242A (en) | 1991-03-19 | 1991-03-19 | Inspection method of semiconductor element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04290242A true JPH04290242A (en) | 1992-10-14 |
Family
ID=12973334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5453491A Pending JPH04290242A (en) | 1991-03-19 | 1991-03-19 | Inspection method of semiconductor element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04290242A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10118402A1 (en) * | 2001-04-12 | 2002-10-24 | Promos Technologies Inc | Contact chain total resistance measurement method for testing semiconductor chips, involves measuring voltage and current in probe pads to obtain total resistance, by selectively connecting n-type doped layers to substrate |
US6614049B1 (en) | 1999-04-09 | 2003-09-02 | Mitsubishi Denki Kabushiki Kaisha | System LSI chip having a logic part and a memory part |
-
1991
- 1991-03-19 JP JP5453491A patent/JPH04290242A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6614049B1 (en) | 1999-04-09 | 2003-09-02 | Mitsubishi Denki Kabushiki Kaisha | System LSI chip having a logic part and a memory part |
DE10118402A1 (en) * | 2001-04-12 | 2002-10-24 | Promos Technologies Inc | Contact chain total resistance measurement method for testing semiconductor chips, involves measuring voltage and current in probe pads to obtain total resistance, by selectively connecting n-type doped layers to substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7851793B2 (en) | Test structure with TDDB test pattern | |
US7733099B2 (en) | Monitoring pattern for detecting a defect in a semiconductor device and method for detecting a defect | |
CN110783214B (en) | Wafer level test method and test structure thereof | |
EP0196475A1 (en) | Noncontact testing of integrated circuits | |
US6204075B1 (en) | Method of detecting defects in a wiring process | |
CN107346751B (en) | Test structure, forming method thereof and test method | |
JPH02292838A (en) | Structure for testing semiconduc- -tor integrated circuit on semicon- -ductor wafer | |
JP2002026100A (en) | Semiconductor substrate and inspection method of electric circuit fabricating process and method for fabricating electric circuit | |
JPH04290242A (en) | Inspection method of semiconductor element | |
JP4290316B2 (en) | Inspection method and inspection device for wiring short-circuited portion | |
JP2001305194A (en) | Semiconductor device and detection method for its short defect location | |
JP3219147B2 (en) | Contact failure location identification method | |
CN108831843B (en) | Electric leakage testing method | |
EP0237406A2 (en) | Electron beam testing of semiconductor wafers | |
JP3904418B2 (en) | Electronic device manufacturing method and electronic device wafer | |
JPH04274339A (en) | Semiconductor element inspection method and pattern for inspecting semiconductor element used for the same | |
JP3776068B2 (en) | Semiconductor device and inspection method thereof | |
KR100595137B1 (en) | Method for inspecting electric properties of semiconductor device with fib system | |
JP4727943B2 (en) | Inspection circuit, inspection method using the same, and semiconductor device including the inspection circuit | |
US12031931B2 (en) | Inspection structure and inspection method | |
TW200931429A (en) | Method of searching fault locations | |
JP2008311439A (en) | Semiconductor device, and connection inspection method of conductive wiring of same | |
JP5055871B2 (en) | Wiring failure detection test structure and wiring failure detection method | |
CN116995063A (en) | Test structure convenient for TEM sample preparation | |
Yang et al. | Failure analysis of plastic encapsulated MOS component from chip-section |