[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH042903B2 - - Google Patents

Info

Publication number
JPH042903B2
JPH042903B2 JP60146685A JP14668585A JPH042903B2 JP H042903 B2 JPH042903 B2 JP H042903B2 JP 60146685 A JP60146685 A JP 60146685A JP 14668585 A JP14668585 A JP 14668585A JP H042903 B2 JPH042903 B2 JP H042903B2
Authority
JP
Japan
Prior art keywords
electrode
measurement
positive electrode
rod
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60146685A
Other languages
Japanese (ja)
Other versions
JPS628050A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60146685A priority Critical patent/JPS628050A/en
Publication of JPS628050A publication Critical patent/JPS628050A/en
Publication of JPH042903B2 publication Critical patent/JPH042903B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、被検液中の酸化性物質の濃度を測定
する方法と、この方法を実施するための装置に関
し、特に被検液中に正極と負極を浸漬してガルバ
ニ電池を構成しその間に流れる電流が酸化性物質
の濃度に比例することを利用して濃度を求める測
定方法とその方法の実施に用いる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for measuring the concentration of oxidizing substances in a test liquid and an apparatus for carrying out this method, and in particular to a method for measuring the concentration of an oxidizing substance in a test liquid. The present invention relates to a measuring method for determining the concentration of an oxidizing substance by immersing a negative electrode to form a galvanic cell and utilizing the fact that the current flowing between the galvanic cells is proportional to the concentration of an oxidizing substance, and an apparatus used to carry out the method.

従来の技術 被検液中の次亜塩素酸等の酸化性物質の濃度を
測定する従来の方法は、被検液中に正極と負極を
浸漬してガルバニ電池を構成し、溶液中の酸化性
物質の濃度に比例して変化する電流値を測定する
方法である。
Conventional technology The conventional method for measuring the concentration of oxidizing substances such as hypochlorous acid in a test solution consists of immersing a positive electrode and a negative electrode in the test solution to form a galvanic cell. This method measures the current value, which changes in proportion to the concentration of a substance.

発明が解決しようとする問題点 このガルバニ電池として、正極に白金電極、負
極に銀電極を用いると、汚れにより白金電極側に
被膜ができて出力が低下する。この低下を回復さ
せる手段としては電極を布等で研磨するしかなか
つた。このような洗浄方法では完全な回復は望め
ず、すぐに又出力低下が起る。従つて、測定誤差
が大きくなり、長時間の自動測定は困難である。
Problems to be Solved by the Invention When a platinum electrode is used as the positive electrode and a silver electrode is used as the negative electrode in this galvanic cell, a film is formed on the platinum electrode side due to contamination, resulting in a decrease in output. The only way to recover from this decrease was to polish the electrode with a cloth or the like. With such a cleaning method, complete recovery cannot be expected, and the output will soon drop again. Therefore, measurement errors become large and automatic measurement over a long period of time is difficult.

本発明は、上述の問題点を解決した濃度測定方
法と装置を提供することを目的とする。
An object of the present invention is to provide a concentration measuring method and apparatus that solve the above-mentioned problems.

問題点を解決するための手段 即ち、本発明は、 (1) 「被検液中に測定用正極と測定用負極と電解
研磨用の電極とを浸漬し、正極と負極と被検液
とによりガルバニ電池を構成し、正極と負極を
電流計に接続することにより電流計に流れる電
流値を測定し、該電流値が被検液中の酸化性物
質の濃度に比例することを利用して該濃度を測
定し、所定時間の測定の後、正極と電流計との
接続を切り、正極を直流電源を介して電解研磨
用の電極に接続し、電解研磨用電極をプラス極
として所定時間通電することにより、測定中に
正極表面に形成された被膜を除去する電解研磨
を行ない、ついで正極と直流電源との接続を切
り、再び正極と電流計とを接続して測定を行な
うことを特徴とする被検液中の酸化性物質の濃
度測定方法。」を提供することにより上記問題
点を解決した。更に本発明は、上記測定方法を
実施するための装置をも提供する。即ち、本発
明は、 (2) 「合成樹脂製の細長い中空の棒状体と、該棒
状体の軸線方向に間隔を置いて該棒状体の表面
に露出するように該棒状体により夫々保持され
た測定用負極と測定用正極と電解研磨用電極
と、前記中空部を通り、一端を測定用負極に接
続し他端を電流計の第1端子に接続する第1導
線と、一端を測定用正極に接続し他端を切替え
器を介して電流計の第2端子に接続する第2導
線と、一端を電解研磨用電極に接続し直流電源
を介して他端に切替え用端子を設けた第3導線
とからなる被検液中の酸化性物質の濃度測定装
置。」を提供する。
Means for Solving the Problems That is, the present invention has the following features: (1) ``A positive electrode for measurement, a negative electrode for measurement, and an electrode for electrolytic polishing are immersed in a test liquid, and the positive electrode, the negative electrode, and the test liquid are immersed. By configuring a galvanic cell and connecting the positive and negative electrodes to an ammeter, the current value flowing through the ammeter is measured. Measure the concentration, and after measuring for a predetermined time, disconnect the positive electrode from the ammeter, connect the positive electrode to the electrolytic polishing electrode via a DC power supply, and turn on the electrolytic polishing electrode as the positive electrode for a predetermined period of time. The method is characterized in that electrolytic polishing is performed to remove a film formed on the surface of the positive electrode during measurement, and then the connection between the positive electrode and the DC power source is cut off, and the measurement is performed by connecting the positive electrode and the ammeter again. The above problems were solved by providing a method for measuring the concentration of oxidizing substances in a test liquid. Furthermore, the present invention also provides an apparatus for carrying out the above measurement method. That is, the present invention provides: (2) an elongated hollow rod-shaped body made of synthetic resin; A negative electrode for measurement, a positive electrode for measurement, an electrode for electrolytic polishing, a first conducting wire that passes through the hollow part and connects one end to the negative electrode for measurement and the other end to the first terminal of the ammeter, and a positive electrode for measurement at one end. A second conductor wire is connected to the terminal and the other end is connected to the second terminal of the ammeter via a switching device, and a third conductor wire is connected to the electrode for electrolytic polishing at one end and has a switching terminal provided at the other end via a DC power source. "A device for measuring the concentration of oxidizing substances in a test liquid consisting of a conducting wire."

好ましい実施態様の説明 次に、本発明の好ましい実施態様について添付
図面を参照して説明する。第1図は、本発明の測
定方法と装置の原理を示す概略図である。第1図
において、次亜塩素酸等の酸化性物質を含んだ被
検液4が槽7の中に入つており、この被検液4の
中に測定用正極2(好ましくは白金製)と測定用
負極1(好ましくは銀製)と電解研磨用電極3
(好ましくは白金製)とを浸漬する。そうすると、
正極2と負極1と被検液4とによりガルバニ電池
が形成されるので、正極2と負極1を電流計5に
接続すると電流が流れ、電流計に表われた電流値
は被検液中の酸化性物質の濃度に比例するので電
流値から濃度を求めることができる。測定中の電
流は矢印(→)で示すように、正極2→A→B→
端子E2→電流計5→端子E1→負極1である。
DESCRIPTION OF PREFERRED EMBODIMENTS Next, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram showing the principle of the measuring method and apparatus of the present invention. In FIG. 1, a test liquid 4 containing an oxidizing substance such as hypochlorous acid is placed in a tank 7, and a measuring positive electrode 2 (preferably made of platinum) is contained in the test liquid 4. Negative electrode 1 for measurement (preferably made of silver) and electrode 3 for electrolytic polishing
(preferably made of platinum). Then,
A galvanic cell is formed by the positive electrode 2, the negative electrode 1, and the test liquid 4, so when the positive electrode 2 and the negative electrode 1 are connected to the ammeter 5, a current flows, and the current value displayed on the ammeter is the value of the current in the test liquid. Since it is proportional to the concentration of the oxidizing substance, the concentration can be determined from the current value. The current during measurement is as shown by the arrow (→), positive electrode 2 → A → B →
Terminal E2 → ammeter 5 → terminal E1 → negative electrode 1.

この測定を続けると、正極2の表面に金属イオ
ンが析出し、正極にスケールが付着する。従つて
正極の白金による触媒作用が経時的に阻害されて
くる。
If this measurement is continued, metal ions will precipitate on the surface of the positive electrode 2, and scale will adhere to the positive electrode. Therefore, the catalytic action of platinum at the positive electrode is inhibited over time.

一方負極1では銀がイオン化し常に活性状態に
ある為、正極のようにスケールの付着はない。
On the other hand, in the negative electrode 1, silver is ionized and always in an active state, so unlike the positive electrode, there is no scale adhesion.

この測定を続けると、正極2の表面に金属イオ
ンが析出して酸化状態になり、負極1は環元状態
になる。従つて、正極側にスケールが付き易く汚
れてくるので、この正極の性能を回復するには汚
れを除去する必要がある。このために、本発明で
は次のような電解研磨法を用いる。即ち、所定時
間の濃度測定の後、第1図の切替えスイツチSW
の位置をABの位置からACの位置へ切替える。
すると、正極2と電流計5との接続が遮断され、
正極2が直流電源6(好ましくは電池)を介して
電解研磨用電極3に接続されて矢印(〓)で示す
ように電流が電極3→直流電源6→C→A→正極
2へ流れ、正極表面の電解研磨が行なわれ、スケ
ールが除去され、測定性能が100%回復する。こ
の場合、電解研磨用電極3をプラス極とする。所
定の時間の電解研磨の後、スイツチSWをACの
位置からABの位置を切替えると、電解研磨は終
り、再び測定が続行される。
When this measurement is continued, metal ions are deposited on the surface of the positive electrode 2 and become in an oxidized state, and the negative electrode 1 becomes in a cyclic state. Therefore, the positive electrode side tends to accumulate scale and become dirty, so it is necessary to remove the dirt in order to restore the performance of the positive electrode. For this purpose, the following electropolishing method is used in the present invention. That is, after measuring the concentration for a predetermined time, the changeover switch SW shown in FIG.
Switch the position from AB to AC.
Then, the connection between the positive electrode 2 and the ammeter 5 is cut off,
The positive electrode 2 is connected to the electrolytic polishing electrode 3 via a DC power source 6 (preferably a battery), and current flows from the electrode 3 → DC power source 6 → C → A → positive electrode 2 as shown by the arrow (ⓓ), and the positive electrode The surface is electrolytically polished to remove scale and restore 100% measurement performance. In this case, the electrolytic polishing electrode 3 is used as a positive electrode. After electrolytic polishing for a predetermined period of time, when the switch SW is switched from the AC position to the AB position, the electrolytic polishing ends and measurement is continued again.

スイツチSWの位置をABからACへ、及びAC
からABへ切替えるには、自動的に行なうことが
でき、特に24時間タイマーを用いて行なうのが好
ましい。例えば、直流電源として4ボルトの電池
を用い、1日1回30分間電解研磨を行なうことに
より、連続的に濃度の測定を人手をかけることな
く続行することができる。
Change the switch SW position from AB to AC, and AC
The switching from to AB can be done automatically, and is preferably done using a 24-hour timer. For example, by using a 4-volt battery as a DC power source and performing electrolytic polishing once a day for 30 minutes, concentration measurements can be continued continuously without manual intervention.

本発明の上述の測定方法を実施するための装置
は、第1図に示す装置でもよいが、第1図の正極
2、導線9、端子E2と、負極1、導線8、端子
E1と、電極3、導線10とを1つの組立体に組
込んだ電極組立体を用いるのが好都合である。第
2図は、このような組立体を示している。即ち、
合成樹脂製の細長い中空の棒状体11と、該棒状
体の軸線方向に間隔を置いて該棒状体の表面に露
出するように該棒状体により夫々保持された測定
用負極1′と測定用正極2′と電解研磨用電極3′
とを有する。第3図は、第2図の電極組立体の縦
断面図を示す。測定用負極1′は、合成樹脂棒状
体11の外周に銀製の板を巻き付けて固定したも
のでもよいが、好ましくは、合成樹脂棒状体の中
空部12と連通する中空部13を有する銀製棒状
体1′とし、該銀製棒状体1′の軸線方向両端に雄
ねじ14と15を形成したものがよい。この雄ね
じ14,15に対応する雌ねじを合成樹脂棒状体
に形成し、この雌ねじと雄ねじ14,15とを係
合させることにより銀製棒状体1′を合成樹脂棒
状体11に固定するのがよい。このように構成す
ることにより、負極1′の溶け出しにより寿命に
至るまでの時間を長くすることができる。
The apparatus for carrying out the above-mentioned measuring method of the present invention may be the apparatus shown in FIG. 3. It is advantageous to use an electrode assembly that incorporates the conductor 10 into one assembly. FIG. 2 shows such an assembly. That is,
An elongated hollow rod-shaped body 11 made of synthetic resin; a negative electrode for measurement 1' and a positive electrode for measurement held by the rod-shaped body so as to be exposed on the surface of the rod-shaped body at intervals in the axial direction of the rod-shaped body; 2' and electrolytic polishing electrode 3'
and has. 3 shows a longitudinal cross-sectional view of the electrode assembly of FIG. 2; FIG. The measurement negative electrode 1' may be a synthetic resin rod-shaped body 11 with a silver plate wrapped around the outer periphery and fixed thereto, but is preferably a silver rod-shaped body having a hollow part 13 that communicates with the hollow part 12 of the synthetic resin rod-shaped body. 1', and male threads 14 and 15 are preferably formed at both ends in the axial direction of the silver rod-shaped body 1'. It is preferable to form female screws corresponding to the male screws 14 and 15 in the synthetic resin rod-like body, and to fix the silver rod-like body 1' to the synthetic resin rod-like body 11 by engaging the female screws and the male screws 14 and 15. With this configuration, it is possible to lengthen the time until the negative electrode 1' reaches the end of its life due to melting.

測定用正極2′と電解研磨用電極3′とは、白金
製とするのがよく、白金は高価であるので、同一
表面積を最少体積でうるため細い白金線を用い
て、これを合成樹脂棒状体11の表面に巻きつけ
るのがよい。
The positive electrode 2' for measurement and the electrode 3' for electrolytic polishing are preferably made of platinum.Since platinum is expensive, in order to obtain the same surface area with a minimum volume, a thin platinum wire is used, and this is made into a synthetic resin rod shape. It is preferable to wrap it around the surface of the body 11.

第2図と第3図に示すように、棒状体の軸線方
向に見て、正極2′を負極1′と電極3′との中間
に位置決めするのが好ましい。その理由は、測定
中に正極2′と負極1′との間で被検液中を通れる
電流の径路に電極3′が存在しないこと、及び電
解研磨中に正極2′と電極3′との間で被検液中を
流れる電流の径路に負極1′が存在せず、夫々邪
魔にならないためである。
As shown in FIGS. 2 and 3, the positive electrode 2' is preferably positioned intermediate the negative electrode 1' and the electrode 3' when viewed in the axial direction of the rod-shaped body. The reason for this is that electrode 3' is not present in the path of the current that can pass through the test liquid between positive electrode 2' and negative electrode 1' during measurement, and that electrode 3' This is because the negative electrode 1' does not exist in the path of the current flowing in the test liquid between them and does not get in the way.

作用例 (イ) 測定時の電気流れ 正極(白金電極): 2HOcl+4c-→2Hcl+2(O) M++e-→M…金属が析出し正極に付着する。Example of action (a) Electric flow positive electrode (platinum electrode) during measurement: 2HOcl+4c - →2Hcl+2(O) M + +e - →M...Metal precipitates and adheres to the positive electrode.

溶液中の金属イオン負極(銀電極): 4Ag→4Ag++4e-…銀がイオン化し活性状態
にある (ロ) 洗浄(電解研磨)時の電気の流れ 正極(白金電極): M→M++e-…付着したMが溶解して極が洗
浄される。
Metal ions in solution Negative electrode (silver electrode): 4Ag→4Ag + +4e - ...Silver is ionized and in an active state (b) Electricity flow during cleaning (electrolytic polishing) Positive electrode (platinum electrode): M→M + +e - ...The attached M is dissolved and the electrode is cleaned.

| 金属イオン 電極(白金電極): M++e-→M 実施例 水泳プールにおいて、プール循環過装置のポ
ンプの吸入側と吐出側との間にバイパス回路を設
け、そのバイパス回路内に本発明の装置を投入
し、残留塩素濃度を測定した。
| Metal ion electrode (platinum electrode): M + +e - →M Example In a swimming pool, a bypass circuit is provided between the suction side and the discharge side of the pump of the pool circulation device, and the present invention is applied in the bypass circuit. The equipment was put in and the residual chlorine concentration was measured.

第4図はその測定結果を示すグラフである。横
軸は時刻(24時制)で、縦軸は残留塩素濃度
(ppm)を表わす。
FIG. 4 is a graph showing the measurement results. The horizontal axis represents time (24-hour clock), and the vertical axis represents residual chlorine concentration (ppm).

残留塩素濃度は、正極と負極との間を流れる電
流の値を電流計で読み、その電流値に比例する濃
度を計算で求めてもよいが、電流計に濃度の目盛
を付けておくのが便利である。
The residual chlorine concentration can be determined by reading the value of the current flowing between the positive and negative electrodes with an ammeter and calculating the concentration proportional to the current value, but it is better to have a concentration scale on the ammeter. It's convenient.

本発明の電極を用いて記録計に表われた濃度の
値を“指示値”と言い、被測定液中の残留塩素を
オルトトリジン比色測定器にて測定した値を“測
定値”と言うことにする。
The concentration value displayed on a recorder using the electrode of the present invention is referred to as an "indicated value", and the value of residual chlorine in the liquid to be measured measured using an orthotolidine colorimeter is referred to as a "measured value". Make it.

第4図において、実線A→Bの間は指示値=測
定値である。24時から30分間4ボルトの直流電圧
を正極と電極との間に加えて電解研磨を行なう
と、指示値が急上昇してC(濃度1.0付近)に達
し、その後約2時間30分の間指示値が降下し、実
線C→Dに沿つて推移する。一点鎖線B→Dは測
定値を示し、従つてC→Dの指示値とB→Dの測
定値とは一致しない。然し、この電解研磨を水質
変動の少ない夜中の24時頃行なうことにより、こ
の間はある程度無視できる範囲にある。実線D→
Eは、指示値=測定値である。電解研磨を行なわ
ない場合は、指示値が破線のようなカーブB−F
−Gとなり、測定値と指示値との間に差即ち誤差
が表われる。
In FIG. 4, between the solid line A and B is the indicated value=measured value. When electrolytic polishing is performed by applying 4 volts DC voltage between the positive electrode and the electrode for 30 minutes from 24:00, the indicated value suddenly rises to C (concentration around 1.0), and then the indicated value remains unchanged for about 2 hours and 30 minutes. The value decreases and changes along the solid line C→D. The dashed line B→D indicates the measured value, and therefore the indicated value of C→D does not match the measured value of B→D. However, by performing this electrolytic polishing around 24:00 in the middle of the night, when there is little variation in water quality, this period can be ignored to some extent. Solid line D→
E is indicated value=measured value. If electrolytic polishing is not performed, the indicated value will follow the curve B-F as shown by the broken line.
-G, and a difference or error appears between the measured value and the indicated value.

発明の効果 本発明は、上述のような構成と作用を有するの
で、測定中に測定用正極の表面に付着した汚れ
が、正極と電極との間に直流電圧を印加すること
により効果的に除去され、測定用電極間の測定性
能を100%回復することができ、従来技術に見ら
れるような誤差がない。
Effects of the Invention Since the present invention has the above-described configuration and operation, dirt adhering to the surface of the positive electrode for measurement during measurement can be effectively removed by applying a DC voltage between the positive electrode and the electrode. The measurement performance between the measurement electrodes can be restored to 100%, and there is no error seen in conventional technology.

また、この電解研磨と測定とのサイクルをタイ
マーを用いて自動的に切替えることにより、長時
間の連続運転が可能である。
Further, by automatically switching the cycle between electrolytic polishing and measurement using a timer, continuous operation for a long time is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の測定方法の原理を示す概略
図である。第2図は、本発明の電極組立体の一実
施態様を示す立面側面図である。第3図は、第2
図の縦断面図である。第4図は、本発明の方法を
用いて測定した結果を示すグラフである。 2,2′……測定用正極、1,1′……測定用負
極、3,3′……電解研磨用電極、8,9,10
……導線、E1,E2……端子、6……直流電源、
5……電流計、4……被検液、SW……切替えス
イツチ、11……合成樹脂製棒状体。
FIG. 1 is a schematic diagram showing the principle of the measuring method of the present invention. FIG. 2 is an elevational side view of one embodiment of the electrode assembly of the present invention. Figure 3 shows the second
FIG. FIG. 4 is a graph showing the results measured using the method of the present invention. 2, 2'... Positive electrode for measurement, 1, 1'... Negative electrode for measurement, 3, 3'... Electrode for electrolytic polishing, 8, 9, 10
... Conductor, E 1 , E 2 ... Terminal, 6 ... DC power supply,
5... Ammeter, 4... Test liquid, SW... Changeover switch, 11... Synthetic resin rod-shaped body.

Claims (1)

【特許請求の範囲】 1 被検液中に測定用正極と測定用負極と電解研
磨用の電極とを浸漬し、正極と負極と被検液とに
よりガルバニ電池を構成し、正極と負極を電流計
に接続することにより電流計に流れる電流値を測
定し、該電流値が被検液中の酸化性物質の濃度に
比例することを利用して該濃度を測定し、所定時
間の測定の後、正極と電流計との接続を切り、正
極を直流電源を介して電解研磨用の電極に接続
し、電解研磨用電極をプラス極として所定時間通
電することにより、測定中に正極表面に形成され
た被膜を除去する電解研磨を行ない、ついで正極
と直流電源との接続を切り、再び正極と電流計と
を接続して測定を行なうことを特徴とする被検液
中の酸化性物質の濃度測定方法。 2 濃度測定と電解研磨との切替えをタイマーを
用いて行なうことを特徴とする特許請求の範囲第
1項に記載の酸化性物質の濃度測定方法。 3 前記直流電源が電池である、特許請求の範囲
第1項又は第2項に記載の濃度測定方法。 4 前記酸化性物質が次亜塩素酸である特許請求
の範囲第1項に記載の方法。 5 合成樹脂製の細長い中空の棒状体と、該棒状
体の軸線方向に間隔を置いて該棒状体の表面に露
出するように該棒状体により夫々保持された測定
用負極と測定用正極と電解研磨用電極と、前記中
空部を通り、一端を測定用負極に接続し他端を電
流計の第1端子に接続する第1導線と、一端を測
定用正極に接続し他端を切替え器を介して電流計
の第2端子に接続する第2導線と、一端を電解研
磨用電極に接続し直流電源を介して他端に切替え
用端子を設けた第3導線とからなる被検液中の酸
化性物質の濃度測定装置。 6 測定用負極が、合成樹脂棒状体の中空部と連
通する中空部を有する銀製の棒状体であり、該銀
製棒状体の軸線方向両端に雄ねじを有し、該雄ね
じに対応する雌ねじを合成樹脂棒状体に形成し、
雄ねじと雌ねじとを係合させることにより銀製棒
状体を合成樹脂棒状体に固定したことを特徴とす
る特許請求の範囲第5項に記載の濃度測定装置。 7 測定用正極と電解研磨用電極とが、合成樹脂
製棒状体の外周に巻きつけられた白金線からなる
特許請求の範囲第5項又は第6項に記載の濃度測
定装置。 8 測定用正極が、合成樹脂製棒状体の軸線方向
にみて、測定用負極と電解研磨用電極との中間に
位置決めされている特許請求の範囲第5項に記載
の濃度測定装置。 9 前記合成樹脂製棒状体が、塩化ビニール樹脂
製である特許請求の範囲第5項に記載の濃度測定
装置。
[Scope of Claims] 1. A positive electrode for measurement, a negative electrode for measurement, and an electrode for electrolytic polishing are immersed in a test liquid, a galvanic cell is constituted by the positive electrode, a negative electrode, and the test liquid, and the positive and negative electrodes are connected with a current. The current value flowing through the ammeter is measured by connecting the meter to the ammeter, and the concentration is measured using the fact that the current value is proportional to the concentration of the oxidizing substance in the test liquid.After measurement for a predetermined time, , the positive electrode is disconnected from the ammeter, the positive electrode is connected to the electrolytic polishing electrode via a DC power supply, and the electrolytic polishing electrode is used as the positive electrode and current is applied for a predetermined period of time. A method for measuring the concentration of oxidizing substances in a test liquid, which is characterized by performing electrolytic polishing to remove the coating film, then disconnecting the positive electrode from the DC power source, and then connecting the positive electrode to the ammeter again and performing the measurement. Method. 2. The method for measuring the concentration of an oxidizing substance according to claim 1, characterized in that switching between concentration measurement and electrolytic polishing is performed using a timer. 3. The concentration measuring method according to claim 1 or 2, wherein the DC power source is a battery. 4. The method according to claim 1, wherein the oxidizing substance is hypochlorous acid. 5 An elongated hollow rod-shaped body made of synthetic resin, a negative electrode for measurement, a positive electrode for measurement, and an electrolytic electrode held by the rod-shaped body so as to be exposed on the surface of the rod-shaped body at intervals in the axial direction of the rod-shaped body. A polishing electrode, a first conductor that passes through the hollow part and connects one end to the negative electrode for measurement and the other end to the first terminal of the ammeter, and one end to the positive electrode for measurement and the other end to the switching device. A second conductor wire is connected to the second terminal of the ammeter through the conductor, and a third conductor wire is connected to the electrolytic polishing electrode at one end and has a switching terminal at the other end via a DC power supply. Oxidizing substance concentration measuring device. 6. The negative electrode for measurement is a silver rod-shaped body having a hollow part communicating with the hollow part of the synthetic resin rod-shaped body, and the silver rod-shaped body has a male screw at both ends in the axial direction, and the female screw corresponding to the male screw is made of synthetic resin. Form into a rod shape,
6. The concentration measuring device according to claim 5, wherein the silver rod-like body is fixed to the synthetic resin rod-like body by engaging a male thread and a female thread. 7. The concentration measuring device according to claim 5 or 6, wherein the measuring positive electrode and the electrolytic polishing electrode are made of a platinum wire wound around the outer periphery of a synthetic resin rod. 8. The concentration measuring device according to claim 5, wherein the measuring positive electrode is positioned between the measuring negative electrode and the electrolytic polishing electrode when viewed in the axial direction of the synthetic resin rod-shaped body. 9. The concentration measuring device according to claim 5, wherein the synthetic resin rod-shaped body is made of vinyl chloride resin.
JP60146685A 1985-07-05 1985-07-05 Method and apparatus for measuring concentration of oxidizable substance in liquid to be inspected Granted JPS628050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60146685A JPS628050A (en) 1985-07-05 1985-07-05 Method and apparatus for measuring concentration of oxidizable substance in liquid to be inspected

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60146685A JPS628050A (en) 1985-07-05 1985-07-05 Method and apparatus for measuring concentration of oxidizable substance in liquid to be inspected

Publications (2)

Publication Number Publication Date
JPS628050A JPS628050A (en) 1987-01-16
JPH042903B2 true JPH042903B2 (en) 1992-01-21

Family

ID=15413265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60146685A Granted JPS628050A (en) 1985-07-05 1985-07-05 Method and apparatus for measuring concentration of oxidizable substance in liquid to be inspected

Country Status (1)

Country Link
JP (1) JPS628050A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07108500B2 (en) * 1989-09-14 1995-11-22 第一精機株式会社 Exchange arm drive controller
FR2678734B1 (en) * 1991-07-05 1993-09-10 Ponselle Mesure Sarl IMPROVEMENT IN THE CONTINUOUS MEASUREMENT OF OXIDO-REDUCTION POTENTIAL OF WASTEWATER.
JP3447158B2 (en) * 1995-09-05 2003-09-16 株式会社クボタ Electrode type sensor
JP2008058025A (en) * 2006-08-29 2008-03-13 Omega:Kk Residual chlorine concentration meter
JP5416501B2 (en) * 2009-07-27 2014-02-12 株式会社 堀場アドバンスドテクノ Water quality measuring device
JP7227714B2 (en) * 2018-08-29 2023-02-22 株式会社 堀場アドバンスドテクノ Electrochemical measurement device and its cleaning method

Also Published As

Publication number Publication date
JPS628050A (en) 1987-01-16

Similar Documents

Publication Publication Date Title
JPH042903B2 (en)
JP3284350B2 (en) Electrolytic ionic water generator
JP7313026B2 (en) Residual chlorine meter and residual chlorine concentration measurement method
US5416406A (en) Electric charge metering device and method
EP0552208B1 (en) Electrokinetic potential measurement
CS202651B1 (en) Method for the automatic regeneration of electrodes surface at electrochemical measurement and device for making the method
JP3917297B2 (en) Residual chlorine meter and liquid sterilizer using this residual chlorine meter
CA2087801C (en) Method and apparatus for on-line monitoring the quality of a purified metal sulphate solution
JP3447158B2 (en) Electrode type sensor
JP2783725B2 (en) Moisture measurement method
US4612094A (en) Electrical conditioning of a platinum electrode useful in measurement in hypochlorite
JP3328215B2 (en) Residual chlorine measuring device
JP2528025Y2 (en) Electrode for conductivity measurement
JPS5934964B2 (en) Electrode type sludge interface meter
JPS6130175Y2 (en)
JP3672290B2 (en) Method and apparatus for measuring redox potential
JP5181352B2 (en) Method and apparatus for measuring residual free chlorine concentration
JPH11337184A (en) Bus adaptor
JP3222984B2 (en) Ion water generator
Head Jr et al. An inexpensive coulometer for titrations with externally generated reagents
JPH0330851Y2 (en)
JPH0742553Y2 (en) Ionized water generator with flow sensor
JPH0827297B2 (en) Cleaning solution for probe for probe card and cleaning apparatus using the same
JPH05119014A (en) Method for washing operation electrode of electrode for measuring oxygen
JP3428621B2 (en) Copper electrorefining method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term