[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0429992B2 - - Google Patents

Info

Publication number
JPH0429992B2
JPH0429992B2 JP57168843A JP16884382A JPH0429992B2 JP H0429992 B2 JPH0429992 B2 JP H0429992B2 JP 57168843 A JP57168843 A JP 57168843A JP 16884382 A JP16884382 A JP 16884382A JP H0429992 B2 JPH0429992 B2 JP H0429992B2
Authority
JP
Japan
Prior art keywords
signal
radar
pulse repetition
repetition period
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57168843A
Other languages
Japanese (ja)
Other versions
JPS5958375A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57168843A priority Critical patent/JPS5958375A/en
Publication of JPS5958375A publication Critical patent/JPS5958375A/en
Publication of JPH0429992B2 publication Critical patent/JPH0429992B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • G01S13/53Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi performing filtering on a single spectral line and associated with one or more range gates with a phase detector or a frequency mixer to extract the Doppler information, e.g. pulse Doppler radar

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は例えば航空機等の飛翔体に搭載さ
れ、地表面あるいは海上の地形、地勢等を観測す
る合成開口アンテナ方式のレーダ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a synthetic aperture antenna type radar device which is mounted on a flying object such as an aircraft and which observes topography, landforms, etc. on the ground or sea surface.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

航空機等の飛翔体にレーダを搭載し、このレー
ダによつて空中より地表面の地形、地勢等を観測
する方式としては第1図乃至第3図に示すものが
ある。第1図a,bは飛翔体PLの前方方向に電
波FBを発射し、進行方向前方の観測を行うもの
であり、第2図a,bは飛翔体PLの側方方向に
電波FBを発射し、側方方向の観測を行うもので
ある。また、第3図a,bは飛翔体PLの直下に
電波FBを発射し、直下方向の観測を行うもので
ある。ここでは第2図a,bに示す側方方向を観
測するレーダについて説明する。
2. Description of the Related Art There are methods shown in FIGS. 1 to 3, in which a radar is mounted on a flying object such as an aircraft, and the topography, terrain, etc. of the ground surface are observed from the air using this radar. Figures 1a and b are for emitting radio waves F B in the forward direction of the projectile P L to perform observation in the forward direction of movement, and Figures 2 a and b are for emitting radio waves in the lateral direction of the projectile P L. It fires F B and performs lateral observation. In addition, FIGS. 3a and 3b show that a radio wave F B is emitted directly below the flying object P L to perform observation in the direct downward direction. Here, a radar for observing in the lateral direction shown in FIGS. 2a and 2b will be explained.

一般に、この種のレーダでは合成開口アンテナ
が使用される。これは小型のアンテナを飛翔体に
搭載し、このアンテナによつて受信される反射信
号を飛翔体上で逐次受信するとともに、これらの
信号をコヒーレントに合成することにより、飛翔
体の進行と連動して等価的に大きな開口を有する
アンテナと同様の指向性をつくるものである。こ
のアンテナおよびコヒーレント信号処理装置を用
いることにより高分解能測地が可能であり、フオ
ーカスド・ケース(Focused Case)の方位方向
分解能δAZは、次の(1)式で示される δAZFpcused=La/2 ……(1) (但し、Laはアンテナの方位方向有効長) さて、この種のレーダにおいて、第4図に示す
如く有効長La、有効幅WrのアンテナAtが高度H、
速度Vでx方向に移動し、且つビームの偏角(オ
フメデイア角)をθ0、方位方向ビーム幅をθaとし
て電波を発射した場合、観測域からのレーダ反射
信号は正対方向P0ではドツプラ周波数Dが0、
進行方向先端P1および進行方向後端P2ではそれ
ぞれ2V/La、−2V/Laだけドツプラ周波数偏位
を受けて受信される。即ち、送信スペクトラム…
f-1,f0,f1…の周波数系列上では第5図に示す如
く展開されるが、一方、アンテナのサイドローブ
より送受信される信号のうち距離R±ΔR内と等
価な距離にある目標からの信号は、目標とする観
測域よりの反射信号と同時に受信され、原理的に
そのドツプラ周波数偏移量は最高±2V/λまで
分布して、隣接する主スペクトラム内に混入する
ことになる。したがつて、所謂ドツプラ・アンビ
ギユイテイ(Doppler Ambiguity)信号となつ
て、レーダの方位分解能を低下させる原因とな
る。このドツプラ・アンビギユイテイを軽減する
には当然ながらレーダのパルス繰返し周波数
(PRF)を大きくすることによりある程度対処可
能である。また、PRFを大きくすれば飛翔体通
過時の被観測域への送受信サンプル数が増加する
ため、所要のS/N比を保持する上からも得策で
ある。
Generally, synthetic aperture antennas are used in this type of radar. This is achieved by installing a small antenna on a flying object, sequentially receiving reflected signals received by this antenna on the flying object, and coherently combining these signals to synchronize with the movement of the flying object. This creates directivity similar to that of an antenna with an equivalently large aperture. By using this antenna and coherent signal processing device, high-resolution geodesy is possible, and the azimuth resolution δ AZ in the focused case is expressed by the following equation (1): δ AZ | Fpcused = L a /2 ...(1) (However, L a is the effective length of the antenna in the azimuth direction.) Now, in this type of radar, as shown in Fig. 4, the antenna A t with the effective length L a and the effective width W r is at the altitude H ,
When moving in the x direction at a speed V and emitting radio waves with the beam declination (off-media angle) as θ 0 and the beam width in the azimuth direction as θ a , the radar reflected signal from the observation area will be reflected in the opposite direction P 0 Then, Doppler frequency D is 0,
At the forward end P1 and the rear end P2 in the forward direction, the signal is received with a Doppler frequency deviation of 2V/L a and -2V/L a , respectively. In other words, the transmission spectrum...
The frequency sequence of f -1 , f 0 , f 1 ... is developed as shown in Figure 5, but on the other hand, among the signals transmitted and received from the side lobe of the antenna, there is a signal at a distance equivalent to within the distance R±ΔR. The signal from the target is received at the same time as the reflected signal from the target observation area, and in principle, the Doppler frequency deviation is distributed up to ±2V/λ and mixed into the adjacent main spectrum. Become. Therefore, it becomes a so-called Doppler Ambiguity signal, which causes a decrease in the azimuth resolution of the radar. Naturally, this Doppler ambiguity can be alleviated to some extent by increasing the pulse repetition frequency (PRF) of the radar. Furthermore, increasing the PRF increases the number of samples sent and received to the observed area when a flying object passes, which is also a good idea from the standpoint of maintaining the required S/N ratio.

即ち、第6図に示す如く、反射信号を周波数ス
ペクトラムとして考えた場合、1/T(Hz)毎に
PRFに対応したバン(Bang)を中心にドツプラ
周波数の高次モードに対応した信号が配列される
ことになる。受信機では同図に示すBTなる通過
帯域幅(必要受信帯域)を有するフイルタによつ
て不要な高次モードの信号が除去され、BTに対
応する信号のみが抽出される。ここで、同図にお
ける隣接するスペクトラム群からの高次モード・
ドツプラ信号はアンテナのサイドローブより同一
レンヂ内の信号がある場合、A,B,A′,B′の
ようにフイルタの通過帯域内に混入し、ドツプ
ラ・アンビギユイテイとなり、方位方向のイメー
ジとなる。このイメージを除去するためには前述
した如くPRF(1/T)を大きくすることにより
隣接スペクトラムの重なり具合を軽減することが
できる。
In other words, as shown in Figure 6, if the reflected signal is considered as a frequency spectrum, then every 1/T (Hz)
Signals corresponding to higher-order modes of the Doppler frequency are arranged around a Bang corresponding to PRF. In the receiver, unnecessary higher-order mode signals are removed by a filter having a passband width (required reception band) of B T shown in the figure, and only signals corresponding to B T are extracted. Here, the higher-order modes from adjacent spectrum groups in the same figure
When a Doppler signal has a signal within the same range from the side lobe of the antenna, it mixes within the passband of the filter like A, B, A', B', resulting in Doppler ambiguity and an image in the azimuth direction. In order to remove this image, the extent to which adjacent spectra overlap can be reduced by increasing PRF (1/T) as described above.

しかるに、レーダの送受信信号を時系列上で考
えた場合、第7図に示す如く送信時T0より飛翔
体直下信号T1を得るまでの無受信期間を経て逐
次サイドローブよりの反射信号を受信しながら主
ローブよりの反射信号T2を受信することになる。
このレーダ送受信間隙は第8図に示す如くアンテ
ナ・オフメデイア角θ0が大きく、また、飛翔体P2
の高度Hが高い程大きくなる。これはレーダアン
テナのパターンと大地Eとの関係から容易に理解
できる。また、この種のレーダにおいてはパルス
ヒツト数を上げるためにもPRFを大きくするこ
とが望ましい。しかし、第9図からも明らかなよ
うにPRF(1/T)を大きくすると、送信信号t0
t1…のメインビームによる受信号E0,E1…がクラ
ツタ内に埋没することになり、これにも限度があ
ることが理解できる。
However, when considering radar transmission and reception signals in time series, as shown in Figure 7, reflected signals from side lobes are sequentially received after a period of no reception from the time of transmission T 0 until the signal T 1 directly below the flying object is obtained. while receiving the reflected signal T2 from the main lobe.
This radar transmission/reception gap has a large antenna off-media angle θ 0 as shown in Fig. 8, and also has a large antenna off-media angle θ 0 .
The higher the altitude H is, the larger it becomes. This can be easily understood from the relationship between the radar antenna pattern and the earth E. Furthermore, in this type of radar, it is desirable to increase the PRF in order to increase the number of pulse hits. However, as is clear from FIG. 9, if PRF (1/T) is increased, the transmitted signal t 0 ,
The received signals E 0 , E 1 . . . by the main beams of t 1 .

〔発明の目的〕[Purpose of the invention]

この発明は上記事情に基づいてなされたもの
で、その目的とするところはアンテナのサイドロ
ーブによるドツプラ周波数の高調波モードを抑圧
することができ、測距精度を向上し得るレーダ装
置を提供しようとするものである。
This invention was made based on the above circumstances, and its purpose is to provide a radar device that can suppress the harmonic mode of the Doppler frequency caused by the side lobe of the antenna and improve the ranging accuracy. It is something to do.

〔発明の概要〕[Summary of the invention]

この発明はパルス繰返し周期が順次変化された
送信パルス信号を発射することにより、必要受信
帯域と隣接するドツプラ周波数の高調波モードを
必要受信帯域内で分散させ、この分散された信号
をパルス繰返し周期毎にコヒーレント処理するこ
とにより、ドツプラ周波数の高調波モードを抑圧
するものである。
This invention disperses the harmonic mode of the Doppler frequency adjacent to the required reception band within the required reception band by emitting a transmission pulse signal whose pulse repetition period is sequentially changed, and transmits the dispersed signal with the pulse repetition period. By performing coherent processing on each signal, the harmonic mode of the Doppler frequency is suppressed.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例について図面を参照
して説明する。
An embodiment of the present invention will be described below with reference to the drawings.

先ず、この発明の原理について説明する。第6
図に示すレーダ反射信号のスペクトルにおいて、
パルス繰返し周期(1/PRF)をT,T+ΔT,
T−ΔTと変化させたとする。この場合、レーダ
反射信号のスペクトルは第10図に示す如くfd
(ドツプラ周波数)=0を基準として考えると、ド
ツプラ周波数の基本成分はパルス繰返し周期の変
化にかかわらず周波数軸上で変化せず、一方、通
過帯域BT内に隣接するドツプラ周波数の高次モ
ード成分は第6図と比較して通過帯域BT内で分
散することになる(第10図中、破線及び一点鎖
線で示す)。従つて、既知のパルス繰返し周期T
とともに既知のT+ΔT,T−ΔTのパルス繰返
し周期の送信信号を発生し、これらのパルス繰返
し周期毎にコヒーレント処理して得られた受信信
号を積分することにより、通過帯域BT内におい
て、所望のドツプラ周波数成分は強調され、アン
テナサイドローブに対応するドツプラ周波数の高
調波モードは第11図から第12図に示す如く抑
圧される。
First, the principle of this invention will be explained. 6th
In the spectrum of the radar reflected signal shown in the figure,
Pulse repetition period (1/PRF) is T, T+ΔT,
Suppose that it is changed to T - ΔT. In this case, the spectrum of the radar reflected signal is fd
Considering (Doppler frequency) = 0 as a reference, the fundamental component of the Doppler frequency does not change on the frequency axis regardless of changes in the pulse repetition period, while the higher-order mode components of the Doppler frequency adjacent to the passband BT is dispersed within the passband BT compared to FIG. 6 (indicated by a broken line and a dashed-dotted line in FIG. 10). Therefore, the known pulse repetition period T
By generating transmission signals with known pulse repetition periods of T + ΔT and T - ΔT, and integrating the received signals obtained by coherent processing for each of these pulse repetition periods, the desired Doppler signal is generated within the passband BT. The frequency components are emphasized and the harmonic modes of the Doppler frequency corresponding to the antenna side lobes are suppressed as shown in FIGS. 11-12.

次に、上記原理に基づくこの発明の実施例につ
いて説明する。
Next, embodiments of the present invention based on the above principle will be described.

第13図において、コヒーレント発振器
(COHO)31の出力信号は安定化発振器32を
介して送信機33に供給される。この送信機33
にはトリガ発振器34より出力されるパルス繰返
し周期T,T+ΔT,T−ΔTなる信号が順次供
給され、このパルス繰返し周期に対応して送信機
33からは送信パルス信号が出力される。このパ
ルス繰返し周期が変化された送信パルス信号は送
受切換器35を介してアンテナ36に供給され、
観測域に向けて発射される。一方、観測域からの
反射信号は前記アンテナ36によつて受信され、
前記送受切換器35を介して混合器37に供給さ
れる。この混合器37には前記安定化発振器32
の出力信号が供給されており、前記受信された反
射信号が中間周波信号に変換される。この混合器
37の出力信号は分岐され、第1、第2の位相検
波器38,39に供給される。この第1の位相検
波器38には前記COHO31の出力信号が供給
され、第2の位相検波器39には90゜移相器40
によつて移相された前記COHO31の出力信号
が供給される。したがつて、これら第1、第2の
位相検波器38,39からは互いに90゜の位相差
をなす所謂直交ビデオ(I,Q成分)に変換され
たドツプラ周波数成分が出力される。これら第
1、第2の位相検波器38,39の出力信号はコ
ヒーレント信号処理器42に供給され、この処理
器42にはモード制御器43よりパルス繰返し周
期T,T+ΔT,T−ΔTに対応したモード指示
信号が供給される。即ち、このモード制御器43
には前記トリガ発振器34よりパルス繰返し周期
T,T+ΔT,T−ΔTに対応した信号が供給さ
れており、この信号に対応して所定のモード指示
信号が出力される。したがつて、前記コヒーレン
ト信号処理器42においてはパルス繰返し周期
T,T+ΔT,T−ΔTの各グループ毎に所定の
コヒーレント信号処理が行われる。この処理器4
2の出力信号は前記モード制御器43の出力信号
とともに積分器44に供給される。積分器44
は、通過帯域BT内において、パルス繰返し周期
に対応する各グループ毎に得られた処理器42の
出力信号を積分する。しかして、この積分器44
からは隣接する高調波モードが抑圧されたドツプ
ラ信号が出力され、この信号は指示器45に供給
される。
In FIG. 13, the output signal of a coherent oscillator (COHO) 31 is supplied to a transmitter 33 via a stabilizing oscillator 32. This transmitter 33
are sequentially supplied with signals having pulse repetition periods T, T+ΔT, and T−ΔT outputted from the trigger oscillator 34, and a transmission pulse signal is outputted from the transmitter 33 corresponding to the pulse repetition period. The transmission pulse signal whose pulse repetition period has been changed is supplied to the antenna 36 via the transmission/reception switch 35,
It is fired towards the observation area. On the other hand, the reflected signal from the observation area is received by the antenna 36,
It is supplied to the mixer 37 via the transmission/reception switching device 35. This mixer 37 includes the stabilizing oscillator 32.
an output signal is provided, and the received reflected signal is converted to an intermediate frequency signal. The output signal of this mixer 37 is branched and supplied to first and second phase detectors 38 and 39. The first phase detector 38 is supplied with the output signal of the COHO 31, and the second phase detector 39 is supplied with a 90° phase shifter 40.
The output signal of the COHO 31 is supplied with the phase shifted by. Therefore, the first and second phase detectors 38 and 39 output Doppler frequency components converted into so-called orthogonal videos (I, Q components) having a phase difference of 90 degrees from each other. The output signals of these first and second phase detectors 38 and 39 are supplied to a coherent signal processor 42, and this processor 42 is supplied with signals corresponding to pulse repetition periods T, T+ΔT, and T−ΔT from a mode controller 43. A mode indication signal is provided. That is, this mode controller 43
A signal corresponding to the pulse repetition period T, T+ΔT, and T−ΔT is supplied from the trigger oscillator 34, and a predetermined mode instruction signal is output in response to this signal. Therefore, in the coherent signal processor 42, predetermined coherent signal processing is performed for each group of pulse repetition periods T, T+ΔT, and T−ΔT. This processor 4
The output signal of No. 2 is supplied to an integrator 44 together with the output signal of the mode controller 43. Integrator 44
integrates the output signal of the processor 42 obtained for each group corresponding to the pulse repetition period within the passband BT. However, this integrator 44
A Doppler signal in which adjacent harmonic modes have been suppressed is output from the controller 45, and this signal is supplied to the indicator 45.

〔発明の効果〕〔Effect of the invention〕

以上、詳述したようにこの発明によれば、パル
ス繰返し周期が順次変化された送信パルス信号を
発射するとともに、反射信号をパルス繰返し周期
毎にコヒーレント処理することにより、アンテナ
のサイドローブによるドツプラ周波数の高調波モ
ードを抑圧することができ、測距精度を向上し得
るレーダ装置を提供できる。
As detailed above, according to the present invention, by emitting a transmission pulse signal whose pulse repetition period is sequentially changed and coherently processing a reflected signal for each pulse repetition period, the Doppler frequency due to the side lobe of the antenna is It is possible to provide a radar device that can suppress the harmonic modes of , and improve distance measurement accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,b、第2図a,b、第3図a,bは
それぞれ異なる方式の合成開口アンテナ方式のレ
ーダ装置を示す図、第4図乃至第9図はそれぞれ
従来の合成開口アンテナ方式のレーダ装置の受信
信号を説明するために示す図、第10図乃至第1
2図はそれぞれこの発明の原理を説明するために
示す図、第13図はこの発明に係わるレーダ装置
の一実施例を示す構成図である。 31…コヒーレント発振器、32…安定化発振
器、33…送信機、34…トリガ発振器、36…
アンテナ、37…混合器、38,39…第1、第
2の位相検波器、42…コヒーレント信号処理
器、44…積分器。
Figures 1a and b, Figures 2a and b, and Figure 3a and b are diagrams showing different types of synthetic aperture antenna type radar equipment, and Figures 4 to 9 are respectively diagrams showing conventional synthetic aperture antennas. Figures 10 to 1 are diagrams shown to explain the received signals of the radar device of this type.
FIG. 2 is a diagram for explaining the principle of the present invention, and FIG. 13 is a configuration diagram showing an embodiment of the radar device according to the present invention. 31... Coherent oscillator, 32... Stabilizing oscillator, 33... Transmitter, 34... Trigger oscillator, 36...
Antenna, 37... mixer, 38, 39... first and second phase detectors, 42... coherent signal processor, 44... integrator.

Claims (1)

【特許請求の範囲】[Claims] 1 飛翔体にレーダを搭載しこのレーダより発射
される電波により地形、地勢等を観測する合成開
口アンテナ方式のレーダ装置において、パルス繰
返し周期が変化された送信パルス信号を発射する
手段と、受信された反射信号を直交ビデオ信号に
変換する手段と、この直交ビデオ信号を前記変化
されたパルス繰返し周期に対応してコヒーレント
信号処理する手段と、この処理された信号を対応
するパルス繰返し周期毎に積分する手段とを具備
したことを特徴とするレーダ装置。
1. In a radar device using a synthetic aperture antenna system, in which a radar is mounted on a flying object and the topography, topography, etc. are observed using radio waves emitted from the radar, a means for emitting a transmission pulse signal with a changed pulse repetition period, and a means for emitting a transmission pulse signal with a changed pulse repetition period, means for converting the reflected signal into an orthogonal video signal; means for processing the orthogonal video signal into a coherent signal corresponding to the changed pulse repetition period; and integrating the processed signal for each corresponding pulse repetition period. A radar device characterized by comprising means for.
JP57168843A 1982-09-28 1982-09-28 Radar equipment Granted JPS5958375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57168843A JPS5958375A (en) 1982-09-28 1982-09-28 Radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57168843A JPS5958375A (en) 1982-09-28 1982-09-28 Radar equipment

Publications (2)

Publication Number Publication Date
JPS5958375A JPS5958375A (en) 1984-04-04
JPH0429992B2 true JPH0429992B2 (en) 1992-05-20

Family

ID=15875556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57168843A Granted JPS5958375A (en) 1982-09-28 1982-09-28 Radar equipment

Country Status (1)

Country Link
JP (1) JPS5958375A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135382A (en) * 1984-07-28 1986-02-19 Natl Space Dev Agency Japan<Nasda> Synthetic aperture radar
CN101310193B (en) * 2005-11-16 2012-03-14 阿斯特里姆有限公司 Synthetic aperture radar
JP5787805B2 (en) * 2011-03-31 2015-09-30 ミツビシ・エレクトリック・リサーチ・ラボラトリーズ・インコーポレイテッド High resolution SAR imaging using non-uniform pulse timing

Also Published As

Publication number Publication date
JPS5958375A (en) 1984-04-04

Similar Documents

Publication Publication Date Title
US6339396B1 (en) Location of the radio frequency emitting targets
US5059966A (en) Synthetic aperture radar system
JP2930724B2 (en) Area monitoring method and apparatus for implementing the method
CA2264265C (en) Weapon system employing a transponder bomb and guidance method therefor
US7626536B1 (en) Non-scanning radar for detecting and tracking targets
CN104267401A (en) Linear array antenna simultaneous MIMO-SAR imaging system and method
US4121209A (en) Two-axis motion compensation for AMTI
Schoenenberger et al. Principles of independent receivers for use with co-operative radar transmitters
Skolnik et al. An ultrawideband microwave-radar conceptual design
RU2429990C1 (en) Multifunction high-resolution radar with active phase-aerial for manned aircraft and drones
JP2751901B2 (en) Satellite-based synthetic aperture radar
US5289188A (en) High resolution radar system for high speed and satellite vehicles
JPH0429992B2 (en)
CA2831043A1 (en) Interferometric sar system
US11874368B2 (en) Charting and surveillance radar
Berger The design of airborne Doppler velocity measuring systems
Yadav et al. Synthetic aperture radar (SAR) image of small unmanned aerial vehicle (sUAV)
JP2646880B2 (en) Airborne radar equipment
JPS5845582A (en) Synthetic aperture radar device
Jin et al. Multi-constraint PRF selection for airborne squint spotlight SAR
JP2605957B2 (en) Airborne radar equipment
Singh et al. Moving target indication radar
Guo et al. Moving target detection in HRWS mode
Clarke et al. Review of United Kingdom Radar
JPH06186321A (en) Multi-beam radar device