JPH04289803A - Multiple branch optical circuit - Google Patents
Multiple branch optical circuitInfo
- Publication number
- JPH04289803A JPH04289803A JP7864291A JP7864291A JPH04289803A JP H04289803 A JPH04289803 A JP H04289803A JP 7864291 A JP7864291 A JP 7864291A JP 7864291 A JP7864291 A JP 7864291A JP H04289803 A JPH04289803 A JP H04289803A
- Authority
- JP
- Japan
- Prior art keywords
- branch
- stage
- optical circuit
- final stage
- reference line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 38
- 239000000758 substrate Substances 0.000 claims description 16
- 238000005452 bending Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 238000005342 ion exchange Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910003327 LiNbO3 Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、Y分岐部を2段以上有
するツリー構造の多分岐光回路に関し、特に素子を小型
化し、損失を低減した単一モードの多分岐光回路に関す
る。
【0002】
【従来の技術】従来のツリー構造の多分岐光回路を、8
分岐光回路の場合について図6、図7に示す。図6のも
のは、第一段Y分岐部1、第二段Y分岐部2,3、第三
段Y分岐部4,5,6,7の3段階のY分岐部を有する
光回路を基板31に形成したものであり、これら分岐部
は接続部8,9,10,11,12,13でツリー状に
多段に接続され、第三段つまり最終段のY分岐部4,5
,6,7と基板31側面の法線に平行な最終段出射路2
3,24,25,26,27,28,29,30は展開
部14,15,16,17,18,19,20,21で
なめらかに接続されている。
【0003】上記従来の多分岐光回路は、第一段入射路
22の中心軸延長線CLを基準線として、すべてのY分
岐部1,2,3,4,5,6,7の分岐中心線が前記基
準線CLと平行で、かつ、第一段入射路22から最終段
出射路23,24,25,26,27,28,29,3
0までの導波経路長が等しくなるような回路パターンで
製作されていた。
【0004】図7に示す別の従来例は、基板31に形成
した第一段Y分岐部1、第二段Y分岐部2,3、第三段
Y分岐部4,5,6,7を接続部8,9,10,11,
12,13でツリー状に多段に接続し、第三段Y分岐部
4,5,6,7と基板31側面の法線に平行な最終段出
射路23,24,25,26,27,28,29,30
を展開部14,15,16,17,18,19,20,
21でなめらかに接続し、Y分岐部1,2,3,4,5
,6,7の分岐中心線を前記基準線CLと平行とした点
は図6のものと同じである。
【0005】図6のものと異なる点は、図6の場合より
もY分岐部の配置が高密度化され、また、展開部14,
15,16,17,18,19,20,21では、最終
段出射路よりも小さな間隔で前記基準線CLに平行に展
開された後、最終段出射路の間隔まで再展開されるパタ
ーンとなっている。
【0006】
【発明が解決しようとする課題】上記従来の多分岐光回
路のうち、図6のものは、第一段入射路22から最終段
出射路23,24,25,26,27,28,29,3
0までの導波経路が対称的で等しく、設計が非常に簡単
であるという利点はあるものの、最終段出射路の間隔か
らY分岐部の位置が決まり特に第一段Y分部1の分岐中
心線と第二段Y分岐部2,3の分岐中心線の間隔が大き
くなるため、接続部8,9に大きな曲げ角度の曲線導波
路を用いる必要があった。このため光回路の素子長が長
くなり、伝搬損失が増大し、挿入損失が大きくなる問題
があった。一方、素子長が短くなるように設計すると接
続部8,9の曲線導波路の曲率半径を小さくする必要が
あるため、曲がり損失が増大し、やはり挿入損失が大き
くなる問題があった。
【0007】図7のものは、第一段入射路22から最終
段出射路23,24,25,26,27,28,29,
30までの導波経路を等しくしない構成としてY分岐部
の配置を高密度化することにより、小型化していた。し
かし、図6の場合ほどではないが、接続部8,9の曲線
導波路の曲げ角度が大きくなり素子長が長くなる問題が
あった。また、展開部では、最終段出射路よりも小さな
間隔で前記基準線CLに平行に展開した後、最終段出射
路の間隔まで再展開しているため、展開部が長くなる問
題があった。
【0008】光回路における展開部の長さは、展開する
間隔が最大である最外側展開部14,21が最も長くな
る。したがって展開部を最短に設計した場合、最終段(
図示例で第三段)のY分岐部4の接続点における展開部
14の接線と前記基準線CLのなす角度β、および、最
外側展開部14,21で展開する間隔で決まる。
【0009】図7の場合、βは常に最終段Y分岐部の分
岐角の1/2になるため最外側展開部14,21で展開
する間隔によって展開部の長さが決ってしまい、最短に
設計しても小型化が不十分であった。また、展開部の長
さを短くするためには、最終段Y分岐部の分岐角を大き
くしなければならず、分岐損失が増大する問題があった
。
【0010】
【課題を解決するための手段】前記従来の問題点を解決
するため本発明では、端部が基板の一方の側面に臨む第
一段入射路22から、端部が基板の対向側面に臨む最終
段出射路23・・・に至るまでの間にY分岐部を2段以
上有し、前記入、出射路の光軸を基板の前記側面の法線
に平行としたツリー構造の多分岐光回路において、第一
段入射路22の中心軸延長線CLを基準線として、第二
段から最終段までの最外側Y分岐部について、その分岐
中心線と前記基準線とのなす角θが、後段にいくに従い
、順次拡大する如くY分岐部を外向きに傾斜させて配置
する全く新しい導波回路レイアウトパターンとした。
【0011】
【作用】最終段のY分岐部4の接続点における最外側展
開部14の接線と第一段入射路22の中心軸延長線CL
のなす角度βを、このY分岐部の分岐角α3の1/2よ
りも大きくすることができるため、Y分岐部の分岐角を
大きくせずに展開部を短くできる。
【0012】また、Y分岐部1,2,3,4,5,6,
7の分岐中心線と第一段入射路22の中心軸延長線とを
平行に配列しないので、接続部8,9に大きな曲げ角度
の曲線導波路を用いる必要がなく、接続部を短くできる
。これらにより素子長が短くなり伝搬損失を低減できる
。
【0013】さらに、素子長を従来のものと同一に設計
すると、従来よりも曲率半径の大きな曲線導波路を用い
ることが可能になり、曲がり損失を低減できる。
【0014】
【実施例】以下、本発明を図面に示した実施例について
詳細に説明する。図1は本発明による8分岐光回路の第
一の実施例を示す平面図、図2は図1のうち要部を拡大
して示す平面図である。
【0015】基板31に形成した第一段Y分岐部1、第
二段Y分岐部2,3、第三段(最終段)Y分岐部4,5
,6,7は、直線導波路のみで構成された接続部8,9
,10,11,12,13でツリー状に多段に接続され
、第三段Y分岐部4,5,6,7と、基板31側面の法
線に平行な最終段出射路23,24,25,26,27
,28,29,30は、展開部14,15,16,17
,18,19,20,21でなめらかに接続されている
。
【0016】一例として、第一段Y分岐部の分岐角α1
=1゜、第二段Y分岐部の分岐角α2=1゜、第三段Y
分岐部の分岐角α3 =1゜とし、第一段入射路22の
中心軸延長線CLを基準線として、最外側Y分岐部の中
心線と前記基準線CLとのなす角θは、第二段Y分岐部
2,3でθ2=α2 /2、第三段Y分岐部4,7でθ
3=(α1+α2)/2であり、後段にいくに従い順次
拡大している。
【0017】上記構成では、Y分岐部1,2,3,4,
5,6,7の分岐中心線と前記基準線CLとを平行に配
列しないので、接続部8,9に大きな曲げ角度の曲線導
波路を用いることなく、接続部を短くできる。また、最
終段である第三段Y分岐部4の接続点における最外側展
開部14の接線と第一段入射路22の中心軸延長線CL
とのなす角度β=(α1+α2+α3)/2>α3 /
2であり、α3を大きくせずに展開部を短くできる。こ
れらの作用により素子を小型化し、損失を低減できる。
この例では、第一段入射路長=5mm、最終段出射路長
=5mm、最終段出射路間隔=250μm、素子長=4
2mm、曲線導波路の曲率半径=150mmとした。
【0018】本発明で各段のY分岐部の分岐角α1、α
2、α3 ・・・は、分岐損失が増加しないように1゜
以下であることが望ましい。また、第一段入射路22を
中心として最内側に位置する展開部17と18の最小間
隔は、導波路間でモード結合が生じない間隔であること
が望ましい。第一段から最終段までのY分岐部の分岐角
がすべて同一である必要はないが、前記基準線CLに対
して線対称の位置にあるY分岐部の分岐角は少なくとも
同一であることが望ましい。
【0019】上述した本発明の第一実施例の単一モード
8分岐光回路と、比較例として図6の単一モード8分岐
光回路を2段自然イオン交換法で作製した。この比較例
の8分岐光回路の第一段入射路長、最終段出射路長、最
終段出射路間隔、素子長は第一実施例と同一とした。曲
線導波路は、この条件で使用できる最大の曲率半径80
mmを用いた。
【0020】なお、2段自然イオン交換法の詳細につい
ては、菅原らが昭和62年の電子情報通信学会半導体・
材料部門全国大会で報告した論文(論文番号369)等
に述べられているが、簡単に説明すると、ガラス基板表
面をイオン透過防止マスク膜で被覆し、このマスク膜に
は所定の導波路パターンで開口を形成しておき、このマ
スク膜被覆ガラス基板を、ガラスの屈折率を増大させる
一価陽イオンを含む溶融塩と接触させて塩中のイオンと
ガラス中のイオンとを交換させ、これにより、屈折率が
マスク開口部から内部に向けて次第に減少する分布を持
つ断面が略半円形の高屈折率領域を形成する。ついで、
マスク膜を除去した後、ガラスの屈折率減少に効果のあ
る一価陽イオンを含む溶融塩にガラス基板を接触させる
。この第二段イオン交換処理により、前記高屈折率領域
の最大屈折率中心が基板表面から深部へ移動するととも
に、高屈折率領域全体の断面形状がほぼ円形になる。
【0021】第一実施例の8分岐光回路の過剰損失を測
定した結果を下記の表に示す。
【0022】本発明によりいずれの測定波長でも従来法
に対して大幅に低損失化できた。損失低減効果は、曲が
り損失が長波長側で増大するので、導波路の屈折率差が
小さく曲がり損失が発生し易い単一モード導波路の場合
、あるいは、長波長側(1.55μm)で効果が大きく
なる。
【0023】以上に述べた第一の実施例では分岐部間の
接続部を直線導波路のみで構成したが、曲線導波路のみ
、または、直線導波路と曲線導波路を組み合わせて構成
することもできる。図3は本発明による8分岐導波路の
第二の実施例を示す要部平面図である。接続部8,9は
直線導波路と曲げ角度θR の曲線導波路を組み合わせ
て構成し、他の接続部は直線導波路のみで構成している
。
【0024】この例ではβ=(α1+α2+α3+2θ
R)/2であり、第一実施例よりも展開部をさらに短く
でき、小型化、低損失化を実現できる。θRは最内側展
開部17と18の間隔がモード結合が生じない間隔にな
るように設定することが望ましい。また、θRは曲がり
損失が増大しないように10゜以下であることが望まし
い。
【0025】この例では、第一段Y分岐部の分岐角α1
=0.5゜、第二段Y分岐部の分岐角α2=1゜、第三
段Y分岐部の分岐角α3 =1゜、θR=0.25゜と
した。また、第一段入射路長=5mm、最終段出射路長
=5mm、最終段出射路間隔=250μm、曲線導波路
の曲率半径=150mmとした。
【0026】接続部に曲線導波路を用いる場合、第一段
Y分岐部と第二段Y分岐部の接続部を構成する2本の曲
線導波路は、第二実施例で示したように基準線CLから
みて互いに離れるような凸状である必要がある。しかし
、第二段Y分岐部以降の接続部を構成する曲線導波路に
ついては、一般にその必要はない。16分岐以上で必要
となる第四段Y分岐部以降の接続部については、むしろ
接続部の曲線導波路が前記基準線CLに対して全て凸状
である方が望ましい。
【0027】次に、本発明の第一、第二実施例の各8分
岐光回路と、従来構造による8分岐光回路(図6、図7
に示したもの)について素子長の計算を行った結果の一
例を図4及び図5に示す。
【0028】計算条件として、Y分岐部は、長さ=2m
m、終端の導波路間隔=20μm、分岐角=1゜ですべ
て同一とし、第一段入射路長=0μm、最終段出射路長
=0μmとした。また、本発明の両実施例と図7の従来
構成については、接続部終端の導波路間隔=40μm、
展開部の最小導波路間隔≧40μmとした。さらに、本
発明の第二実施例の構成では曲線導波路の曲げ角度θR
=0.5゜とした。最終段出射路の間隔、曲線導波路の
曲率半径はすべて同一とし、これらを振って素子長を計
算した。
【0029】図4と図5に示された結果から、本発明に
より8分岐光回路が大幅に小型化できることが明らかで
ある。第一実施例では曲率半径=150mm、最終段出
射路の間隔=500μmの時、素子長が36.1mmと
なり、図6に示す従来構造に対して19.8mm短くな
る。図7の8分岐光回路は、図6のものに対して最終段
出射路の間隔が大きければ素子長を短くする効果が大き
いが、本発明の8分岐光回路と比較すれば小型化が不十
分であることがわかる。また、第二実施例では、第一実
施例に対して素子長が約2mm短くなる程度であるが、
第一段入射路から最終段出射路までのY分岐部の段数が
多くなるにしたがって効果が大きくなり、Y分岐部が4
段以上になる16分岐以上の多分岐光回路では、大きな
効果がある。以上の作用により素子を小型化し、損失を
低減した多分岐光回路を実現できる。
【0030】
【発明の効果】本発明によれば、多分岐光回路において
、展開部や接続部の長さを短くできるため、素子を小型
化でき、過剰損失を低減できる。また、素子長を従来構
造と同一にすると、従来構造よりも曲率半径の大きな曲
線導波路を用いることが可能であり、曲がり損失を低減
できる。以上の効果により、素子を小型化し、損失を低
減した多分岐導波路を実現できる。また本発明は、ガラ
ス導波路の他に、石英系導波路,Ti拡散LiNbO3
導波路、化合物半導体導波路、プラスチック導波路等を
用いた光分岐回路にも適用出来る。Detailed Description of the Invention [0001] [Industrial Application Field] The present invention relates to a tree-structured multi-branch optical circuit having two or more stages of Y-branch sections, and in particular to a single optical circuit with miniaturized elements and reduced loss. The present invention relates to multi-mode multi-branch optical circuits. [0002] A conventional tree-structured multi-branch optical circuit has 8
The case of a branch optical circuit is shown in FIGS. 6 and 7. The one in FIG. 6 includes an optical circuit having three stages of Y-branching parts: a first-stage Y-branching part 1, a second-stage Y-branching part 2, 3, and a third-stage Y-branching part 4, 5, 6, 7. 31, and these branch parts are connected in multiple stages in a tree shape at connection parts 8, 9, 10, 11, 12, and 13, and the third stage, that is, the final stage, Y branch parts 4, 5.
, 6, 7 and the final stage output path 2 parallel to the normal line of the side surface of the substrate 31.
3, 24, 25, 26, 27, 28, 29, and 30 are smoothly connected by expanded portions 14, 15, 16, 17, 18, 19, 20, and 21. [0003] The conventional multi-branch optical circuit described above uses the central axis extension line CL of the first stage input path 22 as a reference line, and the branch centers of all the Y branch parts 1, 2, 3, 4, 5, 6, and 7. The line is parallel to the reference line CL and extends from the first stage entrance path 22 to the final stage exit path 23, 24, 25, 26, 27, 28, 29, 3.
The circuit pattern was made so that the waveguide path lengths up to 0 were equal. In another conventional example shown in FIG. Connection parts 8, 9, 10, 11,
12 and 13 are connected in multiple stages like a tree, and the third stage Y branch parts 4, 5, 6, 7 and the final stage output paths 23, 24, 25, 26, 27, 28 are parallel to the normal line of the side surface of the substrate 31. ,29,30
Expanding parts 14, 15, 16, 17, 18, 19, 20,
Connect smoothly at 21, Y branch part 1, 2, 3, 4, 5
, 6, and 7 are made parallel to the reference line CL, which is the same as in FIG. The difference from the one in FIG. 6 is that the arrangement of the Y branch parts is more dense than in the case of FIG.
15, 16, 17, 18, 19, 20, and 21, the patterns are developed parallel to the reference line CL at intervals smaller than the final stage exit path, and then redeployed to the interval of the final stage exit path. ing. [0006] Among the conventional multi-branch optical circuits described above, the one shown in FIG. ,29,3
Although it has the advantage that the waveguide paths to 0 are symmetrical and equal, and the design is very simple, the position of the Y branch part is determined by the interval between the final stage output paths, especially the branch center of the first stage Y part 1. Since the distance between the line and the branch center line of the second-stage Y branch parts 2 and 3 becomes large, it is necessary to use curved waveguides with large bending angles in the connecting parts 8 and 9. As a result, the element length of the optical circuit increases, propagation loss increases, and insertion loss increases. On the other hand, if the element length is designed to be short, it is necessary to reduce the radius of curvature of the curved waveguides of the connecting portions 8 and 9, resulting in an increase in bending loss and, as a result, a problem in that insertion loss also increases. The one in FIG. 7 includes a first stage entrance path 22, a final stage exit path 23, 24, 25, 26, 27, 28, 29,
The size of the device has been reduced by arranging the Y-branch portions at a higher density with a configuration in which up to 30 waveguide paths are unequal. However, although not as severe as in the case of FIG. 6, there was a problem in that the bending angle of the curved waveguides of the connecting portions 8 and 9 became large and the element length became long. In addition, in the deployment section, after being deployed parallel to the reference line CL at intervals smaller than the final stage exit path, the deployment section is redeployed to the interval of the final stage exit path, resulting in a problem that the deployment section becomes long. [0008] Regarding the length of the expanded portions in the optical circuit, the outermost expanded portions 14 and 21, where the interval between expansions is the largest, are the longest. Therefore, if the expansion section is designed to be as short as possible, the final stage (
It is determined by the angle β between the tangent of the expanded portion 14 at the connection point of the Y-branch portion 4 (in the illustrated example, the third stage) and the reference line CL, and the interval between the outermost expanded portions 14 and 21. In the case of FIG. 7, β is always 1/2 of the branching angle of the final Y-branch, so the length of the developed part is determined by the interval between the outermost developed parts 14 and 21, and the shortest Even with the design, miniaturization was insufficient. Furthermore, in order to shorten the length of the expanded portion, the branching angle of the final stage Y-branching portion must be increased, resulting in the problem of increased branching loss. Means for Solving the Problems In order to solve the above-mentioned conventional problems, in the present invention, from the first stage entrance path 22 whose end faces one side of the substrate, to the end which faces the opposite side of the substrate. It has a tree-structured multilayer structure having two or more Y-branch sections up to the final stage output path 23 facing the substrate, and the optical axes of the input and output paths are parallel to the normal line of the side surface of the substrate. In the branch optical circuit, the angle θ between the branch center line and the reference line for the outermost Y branch from the second stage to the final stage, with the central axis extension line CL of the first stage input path 22 as the reference line. However, a completely new waveguide circuit layout pattern was adopted in which the Y-branch portions are arranged so as to be inclined outward so as to gradually expand as one goes to the later stages. [Operation] The tangent line of the outermost expanded section 14 at the connection point of the Y-branch section 4 of the final stage and the central axis extension line CL of the first stage entrance path 22
Since the angle β formed by the Y-branch can be made larger than 1/2 of the branch angle α3 of the Y-branch, the expanded portion can be shortened without increasing the branch angle of the Y-branch. [0012] Furthermore, Y branch parts 1, 2, 3, 4, 5, 6,
Since the branch center line of No. 7 and the central axis extension of the first stage entrance path 22 are not arranged in parallel, there is no need to use curved waveguides with large bending angles for the connecting portions 8 and 9, and the connecting portions can be shortened. These shorten the element length and reduce propagation loss. Furthermore, if the element length is designed to be the same as that of the conventional one, it becomes possible to use a curved waveguide with a larger radius of curvature than that of the conventional one, and bending loss can be reduced. [Embodiments] Hereinafter, embodiments of the present invention shown in the drawings will be explained in detail. FIG. 1 is a plan view showing a first embodiment of an eight-branch optical circuit according to the present invention, and FIG. 2 is a plan view showing an enlarged main part of FIG. First stage Y branch part 1, second stage Y branch part 2, 3, and third stage (final stage) Y branch part 4, 5 formed on the substrate 31.
, 6, 7 are connection parts 8, 9 composed of only straight waveguides.
, 10, 11, 12, 13 are connected in multiple stages in a tree shape, with third stage Y branch parts 4, 5, 6, 7 and final stage emission paths 23, 24, 25 parallel to the normal line of the side surface of the substrate 31. ,26,27
, 28, 29, 30 are development parts 14, 15, 16, 17
, 18, 19, 20, and 21 are smoothly connected. As an example, the branch angle α1 of the first stage Y branch part
= 1°, second stage Y branching angle α2 = 1°, third stage Y
Assuming that the branching angle α3 of the branching portion is 1°, and using the central axis extension line CL of the first stage entrance path 22 as a reference line, the angle θ formed between the centerline of the outermost Y branching portion and the reference line CL is the second θ2 = α2 /2 at Y-branches 2 and 3, θ at 3rd Y-branch 4 and 7
3=(α1+α2)/2, and it is gradually expanded toward the later stages. In the above configuration, the Y branch portions 1, 2, 3, 4,
Since the branch center lines 5, 6, and 7 are not arranged in parallel with the reference line CL, the connecting portions 8 and 9 can be shortened without using curved waveguides with large bending angles. In addition, the tangent line of the outermost developed part 14 at the connection point of the third stage Y branch part 4, which is the final stage, and the central axis extension line CL of the first stage entrance path 22
Angle β=(α1+α2+α3)/2>α3/
2, and the expanded portion can be shortened without increasing α3. These effects make it possible to downsize the device and reduce loss. In this example, first stage entrance path length = 5 mm, final stage exit path length = 5 mm, final stage exit path interval = 250 μm, element length = 4
2 mm, and the radius of curvature of the curved waveguide was 150 mm. In the present invention, the branching angles α1 and α of the Y-branching portion of each stage are
2, α3... is desirably 1° or less so as not to increase branching loss. Further, it is desirable that the minimum interval between the developed parts 17 and 18 located at the innermost side with the first stage incidence path 22 at the center is such an interval that mode coupling does not occur between the waveguides. It is not necessary that all the branching angles of the Y branching parts from the first stage to the final stage are the same, but it is preferable that the branching angles of the Y branching parts located in line-symmetrical positions with respect to the reference line CL are at least the same. desirable. The single-mode 8-branch optical circuit of the first embodiment of the present invention described above and the single-mode 8-branch optical circuit of FIG. 6 as a comparative example were fabricated by a two-stage natural ion exchange method. The first stage input path length, final stage output path length, final stage output path interval, and element length of the eight-branch optical circuit of this comparative example were the same as those of the first example. The curved waveguide has a maximum radius of curvature of 80 mm that can be used under these conditions.
mm was used. For details of the two-stage natural ion exchange method, Sugawara et al.
This is stated in a paper (Paper No. 369) presented at the Materials Division National Conference, etc., but to briefly explain, the surface of the glass substrate is coated with a mask film to prevent ion transmission, and this mask film is coated with a predetermined waveguide pattern. An opening is formed in advance, and the mask film-coated glass substrate is brought into contact with a molten salt containing monovalent cations that increase the refractive index of the glass, thereby exchanging ions in the salt with ions in the glass. , forming a high refractive index region having a substantially semicircular cross section with a distribution in which the refractive index gradually decreases from the mask opening toward the inside. Then,
After removing the mask film, the glass substrate is brought into contact with a molten salt containing monovalent cations that are effective in reducing the refractive index of glass. By this second stage ion exchange treatment, the center of the maximum refractive index of the high refractive index region moves from the substrate surface to a deep portion, and the cross-sectional shape of the entire high refractive index region becomes approximately circular. The results of measuring the excess loss of the 8-branch optical circuit of the first embodiment are shown in the table below. [0022] According to the present invention, the loss can be significantly reduced at all measurement wavelengths compared to the conventional method. Since bending loss increases on the long wavelength side, the loss reduction effect is effective in the case of a single mode waveguide where the refractive index difference of the waveguide is small and bending loss is likely to occur, or on the long wavelength side (1.55 μm). becomes larger. [0023] In the first embodiment described above, the connection between the branch parts is constructed of only straight waveguides, but it may also be constructed of only curved waveguides or a combination of straight waveguides and curved waveguides. can. FIG. 3 is a plan view of essential parts showing a second embodiment of the eight-branch waveguide according to the present invention. The connecting parts 8 and 9 are constructed by combining a straight waveguide and a curved waveguide having a bending angle θR, and the other connecting parts are constructed only by straight waveguides. In this example, β=(α1+α2+α3+2θ
R)/2, the expanded portion can be made even shorter than in the first embodiment, and miniaturization and low loss can be achieved. It is desirable to set θR such that the interval between the innermost expanded portions 17 and 18 is such that mode coupling does not occur. Furthermore, it is desirable that θR be 10° or less so as not to increase bending loss. In this example, the branch angle α1 of the first stage Y branch part is
= 0.5°, the branching angle α2 of the second stage Y branch part = 1°, the branching angle α3 of the third stage Y branch part = 1°, and θR = 0.25°. Further, the first stage entrance path length = 5 mm, the final stage exit path length = 5 mm, the final stage exit path interval = 250 μm, and the radius of curvature of the curved waveguide = 150 mm. When curved waveguides are used for the connection part, the two curved waveguides constituting the connection part between the first stage Y branch part and the second stage Y branch part are connected to the standard as shown in the second embodiment. They need to be convex so that they are separated from each other when viewed from the line CL. However, there is generally no need for curved waveguides constituting the connection sections after the second stage Y branch section. Regarding the connection parts after the fourth stage Y-branch part, which are required for 16 branches or more, it is preferable that the curved waveguides of the connection parts are all convex with respect to the reference line CL. Next, we will discuss the 8-branch optical circuits of the first and second embodiments of the present invention and the 8-branch optical circuits of the conventional structure (FIGS. 6 and 7).
FIGS. 4 and 5 show an example of the results of calculating the element length for the device shown in FIG. [0028] As a calculation condition, the length of the Y branch part is 2 m.
m, the waveguide spacing at the end = 20 μm, the branching angle = 1°, the first stage entrance path length = 0 μm, and the final stage exit path length = 0 μm. Furthermore, for both embodiments of the present invention and the conventional configuration shown in FIG. 7, the waveguide interval at the end of the connection portion = 40 μm;
The minimum waveguide spacing in the developed section was set to 40 μm or more. Furthermore, in the configuration of the second embodiment of the present invention, the bending angle θR of the curved waveguide
= 0.5°. The interval between the final stage exit paths and the radius of curvature of the curved waveguide were all the same, and the element length was calculated by varying these. From the results shown in FIGS. 4 and 5, it is clear that the eight-branch optical circuit can be significantly miniaturized by the present invention. In the first embodiment, when the radius of curvature is 150 mm and the interval between the final stage exit paths is 500 μm, the element length is 36.1 mm, which is 19.8 mm shorter than the conventional structure shown in FIG. The 8-branch optical circuit in FIG. 7 has a greater effect of shortening the element length if the interval between the final stage output paths is larger than that in FIG. It turns out that it is enough. Furthermore, in the second embodiment, the element length is approximately 2 mm shorter than that in the first embodiment;
The effect increases as the number of Y-branch sections from the first-stage entrance path to the final-stage exit path increases, and the Y-branch section
A multi-branch optical circuit with 16 or more branches, which has more than 16 stages, has a great effect. Due to the above-described effects, a multi-branch optical circuit with reduced element size and reduced loss can be realized. [0030] According to the present invention, in a multi-branch optical circuit, it is possible to shorten the length of the expanded portion and the connecting portion, so that the element can be miniaturized and excess loss can be reduced. Furthermore, if the element length is the same as that of the conventional structure, it is possible to use a curved waveguide with a larger radius of curvature than that of the conventional structure, and bending loss can be reduced. Due to the above effects, it is possible to realize a multi-branched waveguide with a smaller element and reduced loss. In addition to glass waveguides, the present invention also provides quartz-based waveguides, Ti-diffused LiNbO3
It can also be applied to optical branch circuits using waveguides, compound semiconductor waveguides, plastic waveguides, etc.
【図1】本発明の第一実施例を示す平面図[Fig. 1] A plan view showing a first embodiment of the present invention.
【図2】図1
の光回路の要部を拡大して示す平面図[Figure 2] Figure 1
A plan view showing an enlarged view of the main parts of the optical circuit.
【図3】本発明の
第二実施例を示す要部平面図[Fig. 3] A plan view of main parts showing a second embodiment of the present invention.
【図4】本発明による8分
岐光回路と従来構造による8分岐光回路について素子長
の計算を行った結果の一例を示す図FIG. 4 is a diagram showing an example of the results of element length calculations for an 8-branch optical circuit according to the present invention and an 8-branch optical circuit with a conventional structure.
【図5】本発明による8分岐光回路と従来構造による8
分岐光回路について素子長の計算を行った結果の別の例
を示す図[Fig. 5] 8-branch optical circuit according to the present invention and 8-branch optical circuit according to the conventional structure
Diagram showing another example of the result of calculating the element length for a branch optical circuit
【図6】従来の多分岐光回路の一例を示す平面図[Fig. 6] A plan view showing an example of a conventional multi-branch optical circuit.
【図7
】従来の多分岐光回路の別の例を示す平面図[Figure 7
] A plan view showing another example of a conventional multi-branch optical circuit.
1....第一段Y分岐部
2,3..第二段Y分岐部
4,5,6,7...第三段Y分岐部
8,9,10,11,12,13...接続部14,1
5,16,17,18,19,20,21....展開
部
22...第一段入射路
23,24,25,26,27,28,29,30..
..最終段出射路
31...基板1. .. .. .. First stage Y branch 2, 3. .. Second stage Y branch part 4, 5, 6, 7. .. .. Third stage Y branch part 8, 9, 10, 11, 12, 13. .. .. Connection part 14,1
5, 16, 17, 18, 19, 20, 21. .. .. .. Expanding section 22. .. .. First stage entrance path 23, 24, 25, 26, 27, 28, 29, 30. ..
.. .. Final stage exit path 31. .. .. substrate
Claims (1)
路から、端部が基板の対向側面に臨む最終段出射路に至
るまでの間にY分岐部を2段以上有し、前記入、出射路
の光軸を基板の前記側面の法線に平行としたツリー構造
の多分岐光回路において、第一段入射路の中心軸延長線
を基準線として、第二段から最終段までの最外側Y分岐
部について、その分岐中心線と前記基準線とのなす角θ
が、後段にいくに従い、順次拡大する如くY分岐部を外
向きに傾斜させたパターンとしたことを特徴とする多分
岐光回路。Claim 1: A Y branch part is provided in two or more stages from a first stage entrance path whose end faces one side of the substrate to a final stage exit path whose end faces the opposite side of the substrate. , in a multi-branch optical circuit with a tree structure in which the optical axes of the input and output paths are parallel to the normal line of the side surface of the substrate, from the second stage to the final stage, using the central axis extension of the first stage input path as a reference line. For the outermost Y branch up to the step, the angle θ between the branch center line and the reference line
The multi-branch optical circuit is characterized in that the Y-branch portions are inclined outward in a pattern that gradually expands toward the later stages.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7864291A JP3030108B2 (en) | 1991-03-18 | 1991-03-18 | Multi-branch optical circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7864291A JP3030108B2 (en) | 1991-03-18 | 1991-03-18 | Multi-branch optical circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04289803A true JPH04289803A (en) | 1992-10-14 |
JP3030108B2 JP3030108B2 (en) | 2000-04-10 |
Family
ID=13667523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7864291A Expired - Fee Related JP3030108B2 (en) | 1991-03-18 | 1991-03-18 | Multi-branch optical circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3030108B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0667047A (en) * | 1992-08-18 | 1994-03-11 | Hitachi Cable Ltd | Optical branching-multiplexing waveguide circuit |
JP2002530690A (en) * | 1998-11-17 | 2002-09-17 | サムスン エレクトロニクス カンパニー リミテッド | Optical coupler and method of manufacturing the same |
WO2003009030A1 (en) * | 2001-07-13 | 2003-01-30 | Nhk Spring Co., Ltd. | Multiple split optical waveguide |
JP2003057470A (en) * | 2001-07-30 | 2003-02-26 | Agilent Technol Inc | Compact optical splitter and combiner and its manufacturing method |
JP2005070193A (en) * | 2003-08-21 | 2005-03-17 | Fuji Xerox Co Ltd | Pitch conversion waveguide array |
JP2006323019A (en) * | 2005-05-17 | 2006-11-30 | Matsushita Electric Works Ltd | Multiple branch optical circuit |
JP2008520319A (en) * | 2004-11-23 | 2008-06-19 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Plane angle visualization of bronchial tree |
US7457498B2 (en) | 2004-04-12 | 2008-11-25 | Hitachi Chemical Company, Ltd. | Optical waveguide structure |
-
1991
- 1991-03-18 JP JP7864291A patent/JP3030108B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0667047A (en) * | 1992-08-18 | 1994-03-11 | Hitachi Cable Ltd | Optical branching-multiplexing waveguide circuit |
JP2002530690A (en) * | 1998-11-17 | 2002-09-17 | サムスン エレクトロニクス カンパニー リミテッド | Optical coupler and method of manufacturing the same |
WO2003009030A1 (en) * | 2001-07-13 | 2003-01-30 | Nhk Spring Co., Ltd. | Multiple split optical waveguide |
US7116867B2 (en) | 2001-07-13 | 2006-10-03 | Nhk Spring Co., Ltd. | Multiple split optical waveguide |
JP2003057470A (en) * | 2001-07-30 | 2003-02-26 | Agilent Technol Inc | Compact optical splitter and combiner and its manufacturing method |
JP2005070193A (en) * | 2003-08-21 | 2005-03-17 | Fuji Xerox Co Ltd | Pitch conversion waveguide array |
US7457498B2 (en) | 2004-04-12 | 2008-11-25 | Hitachi Chemical Company, Ltd. | Optical waveguide structure |
JP2008520319A (en) * | 2004-11-23 | 2008-06-19 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Plane angle visualization of bronchial tree |
JP4871292B2 (en) * | 2004-11-23 | 2012-02-08 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | System for visualizing anatomical tree structures |
JP2006323019A (en) * | 2005-05-17 | 2006-11-30 | Matsushita Electric Works Ltd | Multiple branch optical circuit |
Also Published As
Publication number | Publication date |
---|---|
JP3030108B2 (en) | 2000-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7587106B2 (en) | Optical crossover in thin silicon | |
US4535440A (en) | Optical multiplexer | |
JPH05196826A (en) | Optical coupler and manufacture thereof | |
JPH04289803A (en) | Multiple branch optical circuit | |
JP2001318253A (en) | Optical waveguide-type directional coupler and optical waveguide circuit using the optical waveguide type directional coupler | |
RU2215311C2 (en) | Optical connector and process of its manufacture | |
JPH09200187A (en) | Waveguide grating type optical demultiplexer and its method of use | |
JPH08160233A (en) | Integrated optical device | |
JP2003195077A (en) | Optical waveguide circuit | |
KR100509511B1 (en) | Integrated optical power splitter and its manufacturing method | |
JP2538099B2 (en) | Waveguide type optical star coupler | |
JPH04131806A (en) | Optical directional coupler | |
EP0579134B1 (en) | Interconnectable multi-terminal star coupler | |
JP2010085564A (en) | Optical waveguide circuit and optical circuit device | |
JP3152127B2 (en) | Y-branch waveguide type optical tap | |
JP2859375B2 (en) | Waveguide type optical star coupler | |
JP2001235645A (en) | Optical waveguide circuit | |
JP3083015B2 (en) | Waveguide type optical branching coupling device | |
JPS5851244B2 (en) | Shuyuusekihikarihanshiyasouchi | |
JPH01231006A (en) | Optical multiplexer/demultiplexer | |
JPH05224048A (en) | Star coupler | |
JPH08327836A (en) | Y-branching optical waveguide circuit | |
JP2006323019A (en) | Multiple branch optical circuit | |
JP2798308B2 (en) | Crossed star coupler | |
JP2004317949A (en) | Branching optical waveguide device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |