[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0428970A - Multi-room type air conditioner - Google Patents

Multi-room type air conditioner

Info

Publication number
JPH0428970A
JPH0428970A JP13343790A JP13343790A JPH0428970A JP H0428970 A JPH0428970 A JP H0428970A JP 13343790 A JP13343790 A JP 13343790A JP 13343790 A JP13343790 A JP 13343790A JP H0428970 A JPH0428970 A JP H0428970A
Authority
JP
Japan
Prior art keywords
indoor
expansion valve
degree
valve
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13343790A
Other languages
Japanese (ja)
Inventor
Hiroshi Kitayama
浩 北山
Akihiro Kino
章宏 城野
Nobuhiro Nakagawa
信博 中川
Ryuzo Fujimoto
藤本 龍三
Takayuki Takatani
隆幸 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP13343790A priority Critical patent/JPH0428970A/en
Publication of JPH0428970A publication Critical patent/JPH0428970A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To get a complete liquid phase refrigerant before an indoor side expansion valve and prevent a reduction in capability by a method wherein the degree of opening of an indoor expansion valve of an indoor one for an indoor device located at a lower position is set lower than a degree of opening of an indoor side expansion valve of an indoor device mounted at a higher position. CONSTITUTION:Since an indoor device 7a is mounted at a position higher than an indoor device 7b by about 10m, refrigerant before an indoor side expansion valve 14 shows a pressure drop of a height difference of water column of 10m. At a valve degree of opening correction means 20 of the indoor device 7b, a throttling amount (S) of the expansion valve by about a height difference of 10m is calculated and a degree of opening of the indoor side expansion valve 16 is always set to be low by S than a degree of opening of the indoor side expansion valve 14. Accordingly, since the pressure drop of the height difference is accommodated by S, the condition in the indoor side expansion valve 14 and that of the expansion valve 16 are same from each other and an over-cooling degree is controlled in such a way as the refrigerant state becomes a liquid phase. Accordingly, it can be prevented that a flow are of the indoor device mounted at a higher position is extremely throttled and no capability is outputted.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は多室型空気調和機に係わり、特に冷房運転時の
過冷却度制御に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a multi-room air conditioner, and particularly to controlling the degree of subcooling during cooling operation.

従来の技術 従来の複数の室内機を有する多室型空気調和機について
は、既にさまざまな開発がなされており、例えば、冷凍
・第61巻第708号(昭和61年10月号)P103
8〜1045に示されている様な多室型空気調和機につ
いて第8図を用いて説明する。
2. Prior Art Regarding conventional multi-room air conditioners having multiple indoor units, various developments have already been made.
Multi-room air conditioners such as those shown in Figs. 8 to 1045 will be explained with reference to Fig. 8.

1は多室型空気調和機の室外機であり、圧縮機2、四方
弁3、室外側熱交換器4、室外側膨張弁5、室外側ファ
ン6から成っている。
Reference numeral 1 denotes an outdoor unit of a multi-room air conditioner, which includes a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, an outdoor expansion valve 5, and an outdoor fan 6.

7a、7bは室内機であり、それぞれ室内側膨張弁ga
、8b、室内側熱交換器9a、 9b、室内側ファン]
Qa、10bから成っている。
7a and 7b are indoor units, each with an indoor expansion valve ga.
, 8b, indoor heat exchanger 9a, 9b, indoor fan]
It consists of Qa and 10b.

そして室外機1と室内機7a、7bは液管11及びガス
管12によって環状に接続され、冷媒回路13を構成し
ている。
The outdoor unit 1 and the indoor units 7a and 7b are connected in an annular manner by a liquid pipe 11 and a gas pipe 12 to form a refrigerant circuit 13.

次に上記構成の多室型空気調和機の動作について説明す
る。
Next, the operation of the multi-room air conditioner having the above configuration will be explained.

まず冷房運転時は、圧縮機2で圧縮された高温高圧ガス
は四方弁3を介して室外側熱交換器4で凝縮し高圧の液
冷媒となり、室外側膨張弁5を介して室内側膨張弁8a
、 8bで減圧され、室内側熱交換器9a、9bで室内
空気と熱交換して蒸発し低温低圧ガスとなり、圧縮機2
にもどる。この時、室内機のいずれかが停止状態にある
場合(例えば室内機7a)、その室内側膨張弁は閉じら
れ(例えば室内側膨張弁8aは閉)、停止室内機には冷
媒が流れないように運転される。
First, during cooling operation, high-temperature, high-pressure gas compressed by the compressor 2 passes through the four-way valve 3, condenses in the outdoor heat exchanger 4, becomes high-pressure liquid refrigerant, and passes through the outdoor expansion valve 5 to the indoor expansion valve. 8a
, 8b, and exchanges heat with indoor air in the indoor heat exchangers 9a and 9b to evaporate and become a low-temperature, low-pressure gas, which is then transferred to the compressor 2.
Return to At this time, if any of the indoor units is in a stopped state (for example, the indoor unit 7a), its indoor expansion valve is closed (for example, the indoor expansion valve 8a is closed) to prevent refrigerant from flowing into the stopped indoor unit. is driven by.

次に暖房運転時は、圧縮機2で圧縮された高温高圧ガス
は四方弁3を介して室内側熱交換器9 a +9bで室
内空気と熱交換して凝縮し高圧の液冷媒となり、室内側
膨張弁8a、8bを介して室外側膨張弁5で減圧され、
室外側熱交換器4で蒸発し低温低圧ガスとなり、圧縮機
2にもどる。この時、室内機のいずれかが停止状態にあ
る場合(例えば室内機7a)、その室内側膨張弁は微開
となり(例えば室内側膨張弁8aは微開)、停止室内機
にはほとんど冷媒が流れないように運転される。
Next, during heating operation, the high-temperature, high-pressure gas compressed by the compressor 2 passes through the four-way valve 3 and exchanges heat with the indoor air in the indoor heat exchanger 9a + 9b, condenses, and becomes a high-pressure liquid refrigerant. The pressure is reduced at the outdoor expansion valve 5 via the expansion valves 8a and 8b,
It evaporates in the outdoor heat exchanger 4 to become a low-temperature, low-pressure gas and returns to the compressor 2. At this time, if any of the indoor units is in a stopped state (for example, the indoor unit 7a), its indoor expansion valve is slightly opened (for example, the indoor expansion valve 8a is slightly opened), and most of the refrigerant is in the stopped indoor unit. It is operated so that it does not flow.

発明が解決しようとする課題 しかしながら、近年ビル空調において、個別分散空調化
が進展しており、いわゆるペンシルビル等にこの種の多
室型空気調和機が導入されてきているが、この場合複数
の室内機は同じ階に設置されるとは限らず、例えば3階
と6Nというように高低差を有した設置形態になる場合
が生じる。この時、上記構成では冷房運転時に室内側膨
張弁の前の冷媒の状態が二相となる室内機が生じ、能力
のでない室内機がでてくるという課題があった。
Problems to be Solved by the Invention However, in recent years, individual distributed air conditioning has been progressing in building air conditioning, and this type of multi-room air conditioner has been introduced in so-called pencil buildings. Indoor units are not necessarily installed on the same floor, and may be installed at different heights, such as on the 3rd floor and 6N. At this time, with the above configuration, there is a problem in that during cooling operation, the state of the refrigerant in front of the indoor expansion valve becomes two-phase in some indoor units, resulting in inefficient indoor units.

すなわち、例えば10馬力の室外機を地上に設置し、5
馬力の室内機−台を1階に、5馬力の室内機−台を4階
に設置した場合の冷房運転において、4階に設置した室
内機(以降は室内機Aと呼ぶ)と1階に設置した室内機
(以降は室内機Bと呼ぶ)との間には高低差が約10m
生じることになる。
In other words, for example, if a 10 horsepower outdoor unit is installed on the ground,
In cooling operation when a horsepower indoor unit is installed on the 1st floor and a 5 horsepower indoor unit is installed on the 4th floor, the indoor unit installed on the 4th floor (hereinafter referred to as indoor unit A) and the 1st floor There is a height difference of approximately 10 m between the installed indoor unit (hereinafter referred to as indoor unit B).
will occur.

上述したように冷房運転の場合の冷媒の状態は、室外機
出口で高圧の液冷媒であり、室内側膨張弁で減圧されて
二相となるため、室外機と室内機を接続する液管内は液
相となる。従って、室内機AとBの室内側膨張弁前の圧
力は室内機Aの方が高低差10mの液柱分降下すること
になるので、室内機Aの室内側膨張弁前の過冷却度が高
低差10mの圧力降下分とれていなかった場合、室内側
膨張弁前の冷媒の状態は二相となり、室内機Aの室内側
熱交換器には冷媒が流れにくくなって、能力不足を招く
という現象となった。
As mentioned above, the state of the refrigerant during cooling operation is high-pressure liquid refrigerant at the outlet of the outdoor unit, and the pressure is reduced by the indoor expansion valve to become two-phase, so the inside of the liquid pipe connecting the outdoor unit and indoor unit is It becomes a liquid phase. Therefore, the pressure in front of the indoor expansion valves of indoor units A and B will drop by the amount of liquid column with a height difference of 10 m, so the degree of supercooling in front of the indoor expansion valve of indoor unit A will decrease. If the pressure drop due to the height difference of 10 m is not taken care of, the state of the refrigerant in front of the indoor expansion valve will become two-phase, making it difficult for the refrigerant to flow to the indoor heat exchanger of indoor unit A, resulting in insufficient capacity. It became a phenomenon.

本発明は上記従来の課題を解決するもので、室外機が下
で複数の室内機が上に設置され、室内機間に高低差を有
する場合に、冷房運転を行なった時高い位置に設置され
た室内機の室内側膨張弁前の冷媒の状態も完全な液相に
して能力の低下を防いだ多室型空気調和機を提供するこ
とを目的とする。
The present invention solves the above-mentioned conventional problem, and when an outdoor unit is installed at the bottom and multiple indoor units are installed at the top, and there is a difference in height between the indoor units, when cooling operation is performed, the indoor units are installed at a high position. To provide a multi-room air conditioner in which the state of the refrigerant in front of the indoor expansion valve of an indoor unit is completely liquid, thereby preventing a decrease in performance.

課題を解決するための手段 上記課題を解決するために本発明は、圧縮機、四方弁、
室外側熱交換器、室外側膨張弁から成る室外機と、室内
側膨張弁、室内側熱交換器から成る複数の室内機とを接
続して環状の冷媒回路を構成し、前記室外機は前記複数
の室内機より低い位置に設置され、前記複数の室内機が
高低差を有して設置された多室型空気調和機であって、
前記複数の室内機のうち低い位置に設置された室内機の
前記室内側膨張弁の開度を前記複数の室内機のうち高い
位置に設置された室内機の前記室内側膨張弁の開度より
小さくしたものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a compressor, a four-way valve,
An outdoor unit consisting of an outdoor heat exchanger and an outdoor expansion valve is connected to a plurality of indoor units consisting of an indoor expansion valve and an indoor heat exchanger to form a ring-shaped refrigerant circuit, and the outdoor unit A multi-room air conditioner installed at a lower position than a plurality of indoor units, the plurality of indoor units being installed with a difference in height,
The opening degree of the indoor expansion valve of an indoor unit installed at a lower position among the plurality of indoor units is greater than the opening degree of the indoor expansion valve of an indoor unit installed at a higher position among the plurality of indoor units. It is a smaller version.

作用 本発明は上記した構成により、室外機が下で複数の室内
機が上に設置され、室内機間に高低差を有する場合に、
全ての室内機の室内側膨張弁前の冷媒の状態な液相にし
て能力の低下を防止するものである。
Effect The present invention has the above-described configuration, and when an outdoor unit is installed below and a plurality of indoor units are installed above, and there is a height difference between the indoor units,
The refrigerant in front of the indoor expansion valves of all indoor units is turned into a liquid phase to prevent a decrease in performance.

実施例 以下、本発明の一実施例を図面を参照しながら説明する
。尚、従来と同一部分については同一符号を付しその詳
細な説明を省略する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. In addition, the same reference numerals are given to the same parts as in the conventional art, and detailed explanation thereof will be omitted.

第1図は多室型空気調和機の冷凍サイクル図であり、7
aは複数の室内機のうち高い位置に設置された室内機で
、室内側膨張弁14、室内側熱交換器9a、室内側ファ
ン10a、弁開度制御手段15を有している。また7b
は複数の室内機のうち低い位置に設置された室内機で、
室内側膨張弁16、室内側熱交換器9b、室内側ファン
10b。
Figure 1 is a refrigeration cycle diagram of a multi-room air conditioner.
An indoor unit a is installed at a higher position among the plurality of indoor units, and has an indoor expansion valve 14, an indoor heat exchanger 9a, an indoor fan 10a, and a valve opening control means 15. Also 7b
is an indoor unit installed at a lower position among multiple indoor units,
Indoor expansion valve 16, indoor heat exchanger 9b, and indoor fan 10b.

弁開度制御手段15を有している。It has a valve opening control means 15.

また、本説明では多室型空気調和機は以下に示す設置形
態とする。
In addition, in this description, the multi-room air conditioner is installed in the following manner.

室外機1 ・・・10馬力、地上に設置室内機7a・・
・ 5馬力、41に設置室内機7b・・・ 5馬力、1
階に設置第2図は室内側膨張弁14.16の弁開度を調
整する弁開度制御手段15のブロック図である。
Outdoor unit 1...10 horsepower, indoor unit 7a installed on the ground...
・5 horsepower, installed indoor unit 7b on 41... 5 horsepower, 1
Installed on the floor FIG. 2 is a block diagram of the valve opening degree control means 15 that adjusts the valve opening degrees of the indoor expansion valves 14 and 16.

次に上記構成における動作について、まず冷房運転につ
いて説明する。
Next, regarding the operation of the above configuration, first, the cooling operation will be explained.

冷房運転時は、圧縮機2で圧縮された高温高圧ガスは四
方弁3を介して室外側熱交換器4で凝縮し高圧の液冷媒
となり、液管11を通って室内側膨張弁14.16へと
流入し、室内側熱交換器9a、9bで室内空気と熱交換
して蒸発し低温低圧ガスとなり、圧縮機2にもどる。
During cooling operation, high-temperature, high-pressure gas compressed by the compressor 2 passes through the four-way valve 3 and is condensed in the outdoor heat exchanger 4 to become a high-pressure liquid refrigerant, which passes through the liquid pipe 11 to the indoor expansion valve 14.16. The gas flows into the indoor heat exchangers 9a and 9b to exchange heat with indoor air, evaporates, becomes low-temperature, low-pressure gas, and returns to the compressor 2.

また、室内側膨張弁14.16の弁開度は、運転の有無
検知手段17、冷暖房検知手段18、負荷検知手段19
、弁開度補正手段20により決定され、所定の時間、所
定の開度に制御される。
Further, the valve opening degrees of the indoor expansion valves 14 and 16 are determined by the operation detection means 17, the air conditioning/heating detection means 18, the load detection means 19
, is determined by the valve opening correction means 20, and is controlled to a predetermined opening for a predetermined time.

このように動作する冷房運転時において、室内機7aは
室内機7bより約10m高い位置に設置されているため
、室内側膨張弁14前の冷媒は高低差10mの液柱分の
圧力降下が生じることになる。そこで室内機7bの弁開
度補正手段20では高低差10m分の膨張弁の絞り量(
S)が演算され、室内側膨張弁16の弁開度は室内側膨
張弁14の弁開度より常にSだけ小さく設定される(例
えば、室内の負荷が同等であった場合、室内側膨張弁1
4の弁開度は800パルス、室内側膨張弁16の弁開度
は600パルス、但しSは200パルス)。
During cooling operation that operates in this manner, the indoor unit 7a is installed at a position approximately 10 m higher than the indoor unit 7b, so the pressure of the refrigerant in front of the indoor expansion valve 14 is reduced by a liquid column with a height difference of 10 m. It turns out. Therefore, in the valve opening degree correction means 20 of the indoor unit 7b, the expansion valve throttle amount (
S) is calculated, and the valve opening of the indoor expansion valve 16 is always set smaller than the valve opening of the indoor expansion valve 14 by S (for example, if the indoor loads are the same, the indoor expansion valve 1
The valve opening degree of No. 4 is 800 pulses, and the valve opening degree of the indoor expansion valve 16 is 600 pulses, however, S is 200 pulses).

従って常に高低差分の圧力降下がSによって吸収される
ため、室内側膨張弁14と16の前の冷媒の状態は同条
件になり、冷媒状態が液相になるように過冷却度を制御
すれば、従来のように、高い位置に設置された室内機の
流量が極端に絞られ能力が出ないということがなくなる
Therefore, since the pressure drop due to the difference in height is always absorbed by S, the state of the refrigerant in front of the indoor expansion valves 14 and 16 is the same, and if the degree of supercooling is controlled so that the refrigerant state becomes liquid phase. This eliminates the problem of the flow rate of an indoor unit installed in a high position being extremely restricted and the capacity not being achieved as in the past.

次に暖房運転について説明する。Next, heating operation will be explained.

暖房運転時は、圧縮機2で圧縮された高温高圧ガスは四
方弁3を介して室内側熱交換器9a、9bで室内空気と
熱交換して凝縮し高圧の液冷媒となり、室内側膨張弁1
4.16を介して室外側膨張弁5で減圧され、室外側熱
交換器4で蒸発し低温低圧ガスとなり、圧縮機2にもど
る。
During heating operation, the high-temperature, high-pressure gas compressed by the compressor 2 passes through the four-way valve 3, exchanges heat with indoor air in the indoor heat exchangers 9a and 9b, condenses, and becomes a high-pressure liquid refrigerant. 1
4.16, the gas is depressurized by the outdoor expansion valve 5, evaporated by the outdoor heat exchanger 4, becomes a low-temperature, low-pressure gas, and returns to the compressor 2.

また、室内側膨張弁14.16の弁開度は、運転の有無
検知手段17、冷暖房検知手段18、負荷検知手段19
、弁開度補正手段20により決定され、所定の時間、所
定の開度に制御される。
Further, the valve opening degrees of the indoor expansion valves 14 and 16 are determined by the operation detection means 17, the air conditioning/heating detection means 18, the load detection means 19
, is determined by the valve opening correction means 20, and is controlled to a predetermined opening for a predetermined time.

このように動作する暖房運転時において、ガス管12に
は高圧高温のガスが流れるため殆ど圧力損失はなく、ま
た液管11の液冷媒の流れは重力の方向のため圧力降下
はないので、冷房運転時のように弁開度補正手段20で
高低差10m分の膨張弁の絞り量を調整する必要はなく
、各室の負荷に応じた弁開度に設定してやればよい。
During heating operation that operates in this way, there is almost no pressure loss because high-pressure, high-temperature gas flows through the gas pipe 12, and since the liquid refrigerant flows in the liquid pipe 11 in the direction of gravity, there is no pressure drop, so the cooling It is not necessary to use the valve opening correction means 20 to adjust the throttle amount of the expansion valve for the height difference of 10 m as during operation, and it is sufficient to set the valve opening according to the load of each chamber.

以上のように室外機が下で室内機が上段室の場合、低い
位置に設置された室内機の室内側膨張弁の弁開度を高い
位置に設置された室内機の室内側膨張弁の弁開度より小
さくすることにより、冷暖房時とも能力の低下のない運
転を行なうことができる。
As mentioned above, when the outdoor unit is at the bottom and the indoor unit is in the upper room, the valve opening of the indoor expansion valve of the indoor unit installed at a lower position is changed to the valve opening of the indoor expansion valve of the indoor unit installed at a higher position. By making the opening smaller than the opening degree, operation can be performed without deterioration of performance during cooling and heating.

尚、本実施例では室内機は2台としたが、2台以上でも
同様であり、高低差に応じた膨張弁の絞り量(S)を各
室内機の弁開度補正手段で演算させ、膨張弁の弁開度を
設定してやればよい。
In this embodiment, there are two indoor units, but the same applies to two or more indoor units. All you have to do is set the opening degree of the expansion valve.

発明の効果 以上の説明から明らかなように、本発明は、圧縮機、四
方弁、室外側熱交換器、室外側m強弁から成る室外機と
、室内側膨張弁、室内側熱交換器から成る複数の室内機
とを接続して環状の冷媒回¥8を構成し、前記室外機は
前記複数の室内機より低い位置に設置され、前記複数の
室内機が高低差を有して設置された多室型空気調和機で
あって、前記複数の室内機のうち低い位置に設置された
室内機の前記室内側膨張弁の開度を前記複数の室内機の
うち高い位置に設置された室内機の前記室内側膨張弁の
開度より小さくしたので、特に高い位置に設置された室
内機の能力の低下を抑えた運転を可能とする。
Effects of the Invention As is clear from the above description, the present invention comprises an outdoor unit consisting of a compressor, a four-way valve, an outdoor heat exchanger, and an outdoor m-force valve, an indoor expansion valve, and an indoor heat exchanger. A plurality of indoor units are connected to form an annular refrigerant circuit, the outdoor unit is installed at a lower position than the plurality of indoor units, and the plurality of indoor units are installed with a height difference. In the multi-room air conditioner, the opening degree of the indoor expansion valve of the indoor unit installed at a lower position among the plurality of indoor units is set to the indoor unit installed at a higher position among the plurality of indoor units. Since the opening degree is smaller than that of the indoor expansion valve, it is possible to operate an indoor unit installed at a particularly high position without reducing its capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における多室型空気調和機の
冷凍サイクル図、第2図は同制御回路のブロック図、第
8図は従来の多室型空気調和機の冷凍サイクル図である
。 2・・・・・・圧縮機、3・・・・・・四方弁、4・・
・・・・室外側熱交換器、5・・・・・・室外側膨張弁
、7a、7b・・・・・・室内機、9a、9b・・・・
・・室内側熱交換器、14.16・・・・・・室内側膨
張弁、15・・・・・・弁開度制御手段、20・・・・
・・弁開度補正手段。 代理人の氏名 弁理士 粟野 重孝 はか1名2− 圧
 爲擁 3−− at方弁 4 ・−嘗 外 制島交伜 5−m−宣 タし 119  m  朱 弁巴
Fig. 1 is a refrigeration cycle diagram of a multi-room air conditioner according to an embodiment of the present invention, Fig. 2 is a block diagram of the same control circuit, and Fig. 8 is a refrigeration cycle diagram of a conventional multi-room air conditioner. be. 2... Compressor, 3... Four-way valve, 4...
...Outdoor heat exchanger, 5...Outdoor expansion valve, 7a, 7b...Indoor unit, 9a, 9b...
...Indoor heat exchanger, 14.16...Indoor expansion valve, 15...Valve opening control means, 20...
...Valve opening correction means. Name of agent Patent attorney Shigetaka Awano 1 person 2- pressure 3-- at side 4 ・-嘗 外图张伜5-m-正太し 119 m Zhu Benba

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、四方弁、室外側熱交換器、室外側膨張弁から成
る室外機と、室内側膨張弁、室内側熱交換器から成る複
数の室内機とを接続して環状の冷媒回路を構成し、前記
室外機は前記複数の室内機より低い位置に設置され、前
記複数の室内機が高低差を有して設置された多室型空気
調和機であって、前記複数の室内機のうち低い位置に設
置された室内機の前記室内側膨張弁の開度を前記複数の
室内機のうち高い位置に設置された室内機の前記室内側
膨張弁の開度より小さくした多室型空気調和機。
An annular refrigerant circuit is constructed by connecting an outdoor unit consisting of a compressor, a four-way valve, an outdoor heat exchanger, and an outdoor expansion valve to multiple indoor units consisting of an indoor expansion valve and an indoor heat exchanger. , the outdoor unit is installed at a lower position than the plurality of indoor units, and the plurality of indoor units are installed with a difference in height, the indoor unit being lower than the plurality of indoor units. A multi-room air conditioner in which the opening degree of the indoor expansion valve of an indoor unit installed at a higher position is smaller than the opening degree of the indoor expansion valve of an indoor unit installed at a higher position among the plurality of indoor units. .
JP13343790A 1990-05-23 1990-05-23 Multi-room type air conditioner Pending JPH0428970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13343790A JPH0428970A (en) 1990-05-23 1990-05-23 Multi-room type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13343790A JPH0428970A (en) 1990-05-23 1990-05-23 Multi-room type air conditioner

Publications (1)

Publication Number Publication Date
JPH0428970A true JPH0428970A (en) 1992-01-31

Family

ID=15104753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13343790A Pending JPH0428970A (en) 1990-05-23 1990-05-23 Multi-room type air conditioner

Country Status (1)

Country Link
JP (1) JPH0428970A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315102A (en) * 2005-05-10 2006-11-24 Max Co Ltd Gas combustion type driving tool
JP2006320975A (en) * 2005-05-17 2006-11-30 Max Co Ltd Nail feeding operation delay mechanism in gas combustion type nail driving tool
JP2007044799A (en) * 2005-08-09 2007-02-22 Max Co Ltd Fastener feeding mechanism of gas combustion type driving tool
US7938303B2 (en) 2006-09-19 2011-05-10 Max Co., Ltd. Gas combustion-type driving tool
JP2013076531A (en) * 2011-09-30 2013-04-25 Daikin Industries Ltd Air conditioning device
TWI411508B (en) * 2007-07-04 2013-10-11 Max Co Ltd Gas burner percussion tool
US10337769B2 (en) 2016-01-08 2019-07-02 Fujitsu General Limited Air conditioner
EP3764012A4 (en) * 2018-04-09 2021-05-05 Gree Electric Appliances, Inc. of Zhuhai High pressure drop control method for unit, apparatus, and air-conditioning device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315102A (en) * 2005-05-10 2006-11-24 Max Co Ltd Gas combustion type driving tool
JP2006320975A (en) * 2005-05-17 2006-11-30 Max Co Ltd Nail feeding operation delay mechanism in gas combustion type nail driving tool
US7686197B2 (en) 2005-05-17 2010-03-30 Max, Co., Ltd. Gas combustion type striking tool
JP2007044799A (en) * 2005-08-09 2007-02-22 Max Co Ltd Fastener feeding mechanism of gas combustion type driving tool
US7762443B2 (en) 2005-08-09 2010-07-27 Max Co., Ltd. Gas combustion type driving tool
US7938303B2 (en) 2006-09-19 2011-05-10 Max Co., Ltd. Gas combustion-type driving tool
US8602283B2 (en) 2007-07-04 2013-12-10 Max Co., Ltd. Gas combustion type driving tool
TWI411508B (en) * 2007-07-04 2013-10-11 Max Co Ltd Gas burner percussion tool
JP2013076531A (en) * 2011-09-30 2013-04-25 Daikin Industries Ltd Air conditioning device
US10527334B2 (en) 2011-09-30 2020-01-07 Daikin Industries, Ltd. Refrigeration system
EP2767776B1 (en) * 2011-09-30 2020-07-01 Daikin Industries, Ltd. Refrigeration system
US10337769B2 (en) 2016-01-08 2019-07-02 Fujitsu General Limited Air conditioner
EP3764012A4 (en) * 2018-04-09 2021-05-05 Gree Electric Appliances, Inc. of Zhuhai High pressure drop control method for unit, apparatus, and air-conditioning device

Similar Documents

Publication Publication Date Title
EP0747643A1 (en) Two-dimensional refrigerating plant
AU2014387521B2 (en) Heat source side unit and air-conditioning apparatus
JP2968392B2 (en) Air conditioner
JP2000274879A (en) Air conditioner
JPH0428970A (en) Multi-room type air conditioner
GB2533042A (en) Air conditioner
JPH09178284A (en) Air-conditioner
JPH04116347A (en) Multiroom type air conditioner
JP2005283058A (en) Reheating dehumidifying type air conditioner
JP3626517B2 (en) Air conditioner
JP3723824B2 (en) Air conditioner
JPH03271659A (en) Multi-room air conditioner
JPH03217771A (en) Air conditioner
KR100441008B1 (en) Cooling and heating air conditioning system
JP3059886B2 (en) Refrigeration equipment
JPH03230059A (en) Multi-room type air conditioner
JP2003302111A (en) Air conditioner
JP7493126B2 (en) Air conditioners
JP3268967B2 (en) Air conditioner
JP2006194525A (en) Multi-chamber type air conditioner
JPH08128748A (en) Multi-room type air conditioner
WO2023058197A1 (en) Air conditioner
JPH02106668A (en) Air conditioner
JP2594661B2 (en) Multi-room air conditioner with mixed air conditioning
JP2522360B2 (en) Air conditioner