JPH04284204A - Manufacture of starting material pellet for molding electromagnetic shielding casing - Google Patents
Manufacture of starting material pellet for molding electromagnetic shielding casingInfo
- Publication number
- JPH04284204A JPH04284204A JP4944991A JP4944991A JPH04284204A JP H04284204 A JPH04284204 A JP H04284204A JP 4944991 A JP4944991 A JP 4944991A JP 4944991 A JP4944991 A JP 4944991A JP H04284204 A JPH04284204 A JP H04284204A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- pellets
- electromagnetic shielding
- fibers
- metal fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000008188 pellet Substances 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000000465 moulding Methods 0.000 title abstract description 4
- 239000007858 starting material Substances 0.000 title abstract 2
- 238000005520 cutting process Methods 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 21
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 13
- 238000001746 injection moulding Methods 0.000 claims abstract description 7
- 239000000835 fiber Substances 0.000 claims description 63
- 229920005989 resin Polymers 0.000 claims description 47
- 239000011347 resin Substances 0.000 claims description 47
- 239000002184 metal Substances 0.000 claims description 42
- 229910052751 metal Inorganic materials 0.000 claims description 42
- 238000005452 bending Methods 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 229920000914 Metallic fiber Polymers 0.000 abstract 2
- 229910001369 Brass Inorganic materials 0.000 description 17
- 239000010951 brass Substances 0.000 description 17
- 239000004793 Polystyrene Substances 0.000 description 5
- -1 polyethylene Polymers 0.000 description 5
- 229920002223 polystyrene Polymers 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005336 cracking Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 229920006132 styrene block copolymer Polymers 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 208000004221 Multiple Trauma Diseases 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、電磁シールド筐体の射
出成形に適した電磁シ−ルド筐体成形用原料ペレットの
製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing raw material pellets for molding electromagnetic shield housings, which are suitable for injection molding of electromagnetic shield housings.
【0002】0002
【従来の技術】近年における電子機器類の発達および普
及は目覚しいものがあり、益々高度化かつ精密化される
傾向にある。それに伴い、これらの電子機器類に使用さ
れている素子群などから発生する電磁波が周辺機器に影
響を及ぼし、誤動作などの電磁波障害を生じさせる例が
みられるようになり、最近にわかに問題視されるように
なった。BACKGROUND OF THE INVENTION The development and spread of electronic equipment in recent years has been remarkable, and they are becoming increasingly sophisticated and precise. Along with this, electromagnetic waves generated from the elements used in these electronic devices are affecting peripheral devices, causing electromagnetic interference such as malfunctions, and these devices are suddenly becoming seen as a problem. It became so.
【0003】特に、各種電子機器類の筐体に従来の金属
に代ってプラスチック成形品が使用されるようになり、
上記電磁波に対していわば無防備の状態になっている。
このため、プラスチック製筐体に導電性を保有させるべ
く、金属性のリボン,フレーク(細片)或いはパウダ、
メタライズドガラス、カーボンブラック、カーボンファ
イバ等の導電体をプラスチック材料に混合する方法が注
目され実施されるようになった。中でも最近、金属繊維
の束に熱可塑性樹脂を押出被覆した後これをペレット状
に切断したものを射出材に用いて筐体を射出成形する方
法が有力視されている。上述の金属繊維としては引抜加
工した極細ステンレスや円形断面の銅線が普及している
。In particular, plastic molded products have come to be used instead of conventional metal for the housings of various electronic devices.
It is, so to speak, defenseless against the electromagnetic waves mentioned above. Therefore, in order to make the plastic housing conductive, metal ribbons, flakes, powder, etc.
A method of mixing a conductor such as metallized glass, carbon black, or carbon fiber into a plastic material has attracted attention and has been put into practice. Among these, recently, a method of injection molding a housing using a bundle of metal fibers extruded and coated with a thermoplastic resin and then cut into pellets as an injection material has been considered promising. As the above-mentioned metal fibers, drawn ultrafine stainless steel and circular cross-section copper wire are widely used.
【0004】一方、日本工業大学の柳沢,鈴木らが開発
したコイル切削法(例えば、平成元年度精密工学会春季
大会学術講演論文集に記載)によって得た金属繊維につ
いて鋭意検討した結果、電磁シールド材として優れた性
能を有することが確認された。コイル切削法は、図2に
示すように金属薄板1をマンドレル2に多重に巻付けて
回転させ、この多重巻きした金属薄板1を切削工具4を
用いて一方の端面から切削していくことにより断面長方
形の金属繊維3を製造する方法である。On the other hand, as a result of intensive study on metal fibers obtained by the coil cutting method developed by Yanagisawa, Suzuki et al. of the Nippon Institute of Technology (for example, described in the Proceedings of the 1989 Society for Precision Engineering Spring Conference), it was found that electromagnetic shielding It was confirmed that it has excellent performance as a material. As shown in FIG. 2, the coil cutting method involves winding a metal thin plate 1 multiple times around a mandrel 2 and rotating it, and cutting this multiple-wound metal thin plate 1 from one end surface using a cutting tool 4. This is a method for manufacturing metal fibers 3 having a rectangular cross section.
【0005】[0005]
【発明が解決しようとする課題】しかし、コイル切削法
によって得られる金属繊維3の束5は金属薄板1の巻付
け長さを最大とする長さの金属繊維3の集合であり、こ
れまでの引抜加工によって得られた金属繊維の束に比べ
長さ方向の連続性が極めて乏しい。そのためわずかの張
力で束5のほつれや切断が発生し、コイル切削法によっ
て得られた金属繊維3の束5に熱可塑性樹脂を被覆する
ことは極めて難しい。具体的には、金属繊維3相互間及
び金属繊維3と被覆樹脂層との間に大きな空隙ができて
しまいこれをペレット状に切断すると金属繊維3が抜け
落ちてしまう、逆に、空隙の形成を防止するために高い
樹脂圧を加えて押出被覆しようとすると金属繊維3に張
力が加わりすぐに切断してしまう等の欠点がある。[Problems to be Solved by the Invention] However, the bundle 5 of metal fibers 3 obtained by the coil cutting method is a collection of metal fibers 3 with a length that maximizes the winding length of the thin metal plate 1. Compared to a bundle of metal fibers obtained by drawing, the continuity in the length direction is extremely poor. Therefore, even a slight tension causes the bundle 5 to fray or break, and it is extremely difficult to coat the bundle 5 of metal fibers 3 obtained by the coil cutting method with a thermoplastic resin. Specifically, large gaps are formed between the metal fibers 3 and between the metal fibers 3 and the coating resin layer, and when these are cut into pellets, the metal fibers 3 fall out. If an attempt is made to apply extrusion coating by applying high resin pressure to prevent this, there is a drawback that tension is applied to the metal fibers 3 and the metal fibers 3 are easily cut.
【0006】さらに、金属繊維3に被覆した樹脂が非充
実のパイプ形となるため、ペレット状に切断する際に被
覆樹脂が割れてしまい、樹脂並びに繊維がばらばらにな
って飛散してしまう。Furthermore, since the resin coated on the metal fibers 3 has a non-solid pipe shape, the coated resin cracks when it is cut into pellets, causing the resin and fibers to scatter.
【0007】本発明の目的は、上記課題を解消し、コイ
ル切削法によって得られた金属繊維を含有した射出成形
用樹脂ペレットを容易に製造することができる電磁シ−
ルド筐体成形用原料ペレットの製造方法を提供すること
にある。An object of the present invention is to solve the above-mentioned problems and to provide an electromagnetic seal that can easily produce resin pellets for injection molding containing metal fibers obtained by a coil cutting method.
An object of the present invention is to provide a method for producing raw material pellets for molding a molded housing.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
本発明に係る原料ペレットの製造方法は、コイル切削法
により製造した金属繊維の束に、曲げ弾性率が1.8G
Pa以下、硬さがJIS A硬度で80以上の熱可塑
性樹脂を被覆した後これを所定の長さに切断するように
したものである。[Means for Solving the Problems] In order to achieve the above object, the method for producing raw material pellets according to the present invention is such that a bundle of metal fibers produced by a coil cutting method has a flexural modulus of elasticity of 1.8G.
After coating with a thermoplastic resin having a hardness of JIS A hardness of 80 or less, the resin is cut into a predetermined length.
【0009】[0009]
【作用】熱可塑性樹脂の曲げ弾性率が1.8GPaより
も大きいと樹脂被覆した金属繊維束をペレット状に切断
する場合に樹脂が割れて金属繊維が飛散してしまう。こ
の樹脂割れは、コイル切削法により製造した金属繊維束
に樹脂被覆した場合に発生する特有の現象であり、コイ
ル切削法によらない従来の方法で製造した金属繊維を用
いた場合に比べてどうしても空隙率が高くなるためであ
ると考えられる。また、樹脂の硬さがJIS A硬度
で80よりも小さいと、切断して得られたペレット状態
において金属繊維を拘束するに充分な機械的強度が得ら
れない。本発明の方法によればこれらの問題は解消され
る。[Operation] If the flexural modulus of the thermoplastic resin is greater than 1.8 GPa, when cutting the resin-coated metal fiber bundle into pellets, the resin will crack and the metal fibers will scatter. This resin cracking is a unique phenomenon that occurs when a metal fiber bundle manufactured by the coil cutting method is coated with resin, and is more likely to occur than when using metal fibers manufactured by a conventional method that does not involve the coil cutting method. This is thought to be due to the increased porosity. Further, if the hardness of the resin is less than 80 in terms of JIS A hardness, sufficient mechanical strength to restrain the metal fibers will not be obtained in the pellet state obtained by cutting. The method of the invention eliminates these problems.
【0010】なお、樹脂被覆金属繊維をペレット状に切
断する際の切断長さは4〜10mmの範囲内から選ばれ
る。その理由は、4mm以下では樹脂ペレット内の金属
繊維が細かく刻まれることになって充分な電磁シ−ルド
効果が期待できないからであり、10mm以上では射出
成形時に樹脂ペレットが射出成形機のスクリュ−に食込
みにくい、金属繊維を含有していない一般の樹脂ペレッ
トと混合したときに混ざり具合が偏るなどの問題を生ず
るからである。また、樹脂ペレット中の金属繊維の含有
量は40〜85重量%の範囲内から選ばれる。これは、
含有量が40重量%よりも少ない場合は充分な電磁シ−
ルド効果が期待できず、85重量%よりも多いと射出成
形物品中の繊維分散性が大きく低下するからである。熱
可塑性樹脂には、その曲げ弾性率(JIS K−72
03により測定する)が1.8GPa以下のものであれ
ば、ポリスチレン、ABS、ポリエチレン、ポリアミド
、ポリプロピレン、PPO、等いずれを用いてもよく、
さらにはこれらの樹脂に可とう性成分、例えばゴム状ポ
リマを混和して曲げ弾性率を1.8GPa以下にたもの
を用いてもよい。[0010] The cutting length when cutting the resin-coated metal fiber into pellets is selected from within the range of 4 to 10 mm. The reason for this is that if the thickness is less than 4 mm, the metal fibers in the resin pellet will be finely chopped, and a sufficient electromagnetic shielding effect cannot be expected. This is because problems such as the resin pellets being difficult to penetrate into the resin pellets and uneven mixing when mixed with general resin pellets that do not contain metal fibers arise. Further, the content of metal fibers in the resin pellets is selected within the range of 40 to 85% by weight. this is,
If the content is less than 40% by weight, sufficient electromagnetic shielding is required.
This is because no rudo effect can be expected, and if the amount exceeds 85% by weight, the fiber dispersibility in the injection molded article will be greatly reduced. Thermoplastic resin has its flexural modulus (JIS K-72
Polystyrene, ABS, polyethylene, polyamide, polypropylene, PPO, etc. may be used as long as the
Furthermore, a flexible component such as a rubber-like polymer may be mixed with these resins so that the flexural modulus is 1.8 GPa or less.
【0011】[0011]
【実施例】次に、本発明の実施例について説明する。[Example] Next, an example of the present invention will be described.
【0012】[実施例1]ペレットに含有させる金属繊
維は、図2の装置を用いてコイル切削法で製造すること
ができる。金属繊維としては電磁シ−ルド性、加工性の
両面で銅又は黄銅繊維が適している。本実施例では、厚
さ50μmの黄銅薄板1をマンドレル2に巻付けて切削
し、50μm×20μmの長方形断面を有する黄銅繊維
3を製造した。個々の繊維の最長長さは2.5mであっ
たが、繊維3が相互にゆるく絡み合っているため、繊維
約500本を束ねた長い黄銅の繊維束5を得ることがで
きた。[Example 1] Metal fibers to be contained in pellets can be manufactured by a coil cutting method using the apparatus shown in FIG. Copper or brass fibers are suitable as the metal fibers in terms of both electromagnetic shielding properties and workability. In this example, a brass thin plate 1 having a thickness of 50 μm was wound around a mandrel 2 and cut to produce a brass fiber 3 having a rectangular cross section of 50 μm×20 μm. The maximum length of each individual fiber was 2.5 m, but since the fibers 3 were loosely intertwined with each other, a long brass fiber bundle 5 made up of approximately 500 fibers could be obtained.
【0013】この繊維3の束5に、図1に示すように押
出被覆機6を用いて熱可塑性樹脂11を溶融被覆した。
樹脂11にはポリスチレン(昭和電工社製,「エスブラ
イトGP8」:メルトフロ−レ−ト 3.0 g/10
min)70部にスチレンエチレンブチレンスチレンブ
ロックコポリマ(旭化成社製,「タフテックスH105
1」:メルトフロ−レ−ト 1.0 g/10min)
30部を260℃の30m/m2軸混成押出機で均一に
混和したものを用いた。この混和樹脂の曲げ弾性率は1
.4GPaであり、硬さはJISA硬度で98以上であ
った。被覆処理によって最終的に樹脂被覆黄銅繊維10
の外径が3.5mm、黄銅繊維含有量が70重量%とな
るようにし、これをペレタイザ8で長さ6mmに切断し
たところ繊維の抜け、樹脂11の割れはほとんど生ぜず
、黄銅繊維3を含有した樹脂ペレット9を得ることがで
きた。得られた金属繊維含有樹脂ペレット9を金属繊維
を含有していない一般の樹脂ペレットと機械的に混合し
ても、黄銅繊維3は金属繊維含有樹脂ペレット9中に保
持されていた。したがってこの樹脂ペレット9は金属繊
維含有マスタペレットとして用いることができる。The bundle 5 of fibers 3 was melt coated with a thermoplastic resin 11 using an extrusion coater 6 as shown in FIG. Resin 11 is polystyrene (manufactured by Showa Denko, "S-Bright GP8": melt flow rate 3.0 g/10
min) 70 parts of styrene ethylene butylene styrene block copolymer (manufactured by Asahi Kasei Co., Ltd., "Tuftex H105")
1": Melt flow rate 1.0 g/10min)
30 parts were uniformly mixed in a 30 m/m twin-screw extruder at 260°C. The flexural modulus of this mixed resin is 1
.. 4 GPa, and the hardness was 98 or higher on the JISA hardness scale. Resin-coated brass fiber 10 is finally formed by coating treatment.
The outer diameter of the fiber was 3.5 mm, and the content of the brass fiber was 70% by weight.When this was cut into lengths of 6 mm using the pelletizer 8, there were almost no fibers coming out or cracking of the resin 11, and the brass fiber 3 was cut into pieces with a length of 6 mm. It was possible to obtain resin pellets 9 containing the following. Even when the obtained metal fiber-containing resin pellets 9 were mechanically mixed with general resin pellets not containing metal fibers, the brass fibers 3 were retained in the metal fiber-containing resin pellets 9. Therefore, this resin pellet 9 can be used as a master pellet containing metal fibers.
【0014】[実施例2]ポリスチレンとスチレンエチ
レンブチレンスチレンブロックコポリマとの比率が50
:50の混和樹脂を用い、実施例1と同様にして黄銅繊
維3を含有した樹脂ペレット9の製造を行った。この混
和樹脂の曲げ弾性率は1.5GPa、硬度は98以上で
あり、実施例1と同様に良好な樹脂ペレット9を得るこ
とができた。[Example 2] The ratio of polystyrene to styrene ethylene butylene styrene block copolymer is 50
Resin pellets 9 containing brass fibers 3 were produced in the same manner as in Example 1 using a mixed resin of: 50%. The resin mixture had a flexural modulus of 1.5 GPa and a hardness of 98 or more, and as in Example 1, good resin pellets 9 could be obtained.
【0015】このように、黄銅繊維束5に被覆する熱可
塑性樹脂11としてその曲げ弾性率が1.8GPa以下
、硬さがJIS A硬度で80以上のものを用いるこ
とにより、コイル切削法によって製造した黄銅繊維3を
含有した射出成形用樹脂ペレット9を容易に製造するこ
とができる。上述したようにコイル切削法によって製造
した金属繊維は電磁シールド材として優れた性能を有す
ることが確認されており、この金属繊維を含んだ樹脂ペ
レット9が容易に製造することができることの工業的価
値は極めて大なるものである。[0015] As described above, by using a thermoplastic resin 11 that has a bending modulus of elasticity of 1.8 GPa or less and a hardness of JIS A hardness of 80 or more as the thermoplastic resin 11 that coats the brass fiber bundle 5, it can be manufactured by the coil cutting method. The resin pellets 9 for injection molding containing the brass fibers 3 can be easily produced. As mentioned above, it has been confirmed that metal fibers manufactured by the coil cutting method have excellent performance as electromagnetic shielding materials, and the industrial value of being able to easily manufacture resin pellets 9 containing these metal fibers. is extremely large.
【0016】なお、上述のペレット製造方法がいかに有
効であるかの理解を助けるため比較例を開示しておく。[0016] A comparative example will be disclosed to help understand how effective the above pellet manufacturing method is.
【0017】[比較例1]熱可塑性樹脂11にポリスチ
レンを単独で用いたこと以外は上記実施例1と同様にし
て黄銅繊維入りペレットの製作を試みた。樹脂11の曲
げ弾性率は2.9GPaであり、硬度は98以上であっ
た。しかし、ペレット切断時に樹脂11が割れて黄銅繊
維3が飛散してしまった。これは樹脂11の曲げ弾性率
が大き過ぎたためである。[Comparative Example 1] An attempt was made to produce brass fiber-containing pellets in the same manner as in Example 1 except that polystyrene was used alone as the thermoplastic resin 11. The flexural modulus of resin 11 was 2.9 GPa, and the hardness was 98 or higher. However, when the pellets were cut, the resin 11 cracked and the brass fibers 3 were scattered. This is because the bending elastic modulus of the resin 11 was too large.
【0018】[比較例2]ポリスチレンとスチレンエチ
レンブチレンスチレンブロックコポリマとの混和比を9
0:10としたこと以外は上記実施例1と同様にしてペ
レットの製作を試みた。樹脂11の曲げ弾性率は2.0
GPa、硬度は98以上であった。この場合も樹脂11
の曲げ弾性率が大き過ぎたためペレット切断時に樹脂1
1が割れて黄銅繊維3が飛散してしまった。[Comparative Example 2] The mixing ratio of polystyrene and styrene ethylene butylene styrene block copolymer was 9
An attempt was made to produce pellets in the same manner as in Example 1 above, except that the ratio was 0:10. The bending modulus of resin 11 is 2.0
GPa and hardness were 98 or higher. In this case as well, resin 11
Resin 1 was used when cutting the pellets because the bending modulus of
1 broke and the brass fibers 3 were scattered.
【0019】[比較例3]熱可塑性樹脂11にエチレン
αオレフィンコポリマ(三井石油化学社製,「タフマP
0280」:メルトフロ−ト 5.4 g/10min
)を用いたこと以外は上記実施例1と同様にしてペレッ
トの製作を試みた。樹脂11の曲げ弾性率は1.0GP
a以下、硬度は60であった。ペレット切断時に樹脂割
れは生じなかったが、樹脂11の硬度が不足しているた
め黄銅繊維3の保持力が弱く、樹脂11と繊維3とを一
体で切断することができなかった。すなわち、樹脂被覆
黄銅繊維10をペレタイザ8で長さ6mmに切断しよう
としたところ、繊維11が切断されずに長く伸び出して
しまった。[Comparative Example 3] Ethylene α-olefin copolymer (manufactured by Mitsui Petrochemical Co., Ltd., “Tafuma P”) was used as the thermoplastic resin 11.
0280": Melt float 5.4 g/10min
) Pellet production was attempted in the same manner as in Example 1 above, except that the pellets were used. The bending modulus of resin 11 is 1.0GP
Below a, the hardness was 60. Although resin cracking did not occur when cutting the pellets, the holding force of the brass fibers 3 was weak due to the insufficient hardness of the resin 11, and it was not possible to cut the resin 11 and the fibers 3 together. That is, when an attempt was made to cut the resin-coated brass fibers 10 into lengths of 6 mm using the pelletizer 8, the fibers 11 were not cut and began to elongate.
【0020】[0020]
【発明の効果】以上要するに、本発明によれば電磁シー
ルドに好適なコイル切削金属繊維を含有した射出成形用
樹脂ペレットを容易に製造することができるという優れ
た効果が発揮できる。[Effects of the Invention] In summary, according to the present invention, an excellent effect can be exhibited in that injection molding resin pellets containing coil-cut metal fibers suitable for electromagnetic shielding can be easily produced.
【図1】本発明に係るペレットの製造方法を実施するた
めの装置構成例を示す図である。FIG. 1 is a diagram showing an example of an apparatus configuration for carrying out a pellet manufacturing method according to the present invention.
【図2】コイル切削法により金属繊維を製造するための
装置構成例を示す図である。FIG. 2 is a diagram showing an example of an apparatus configuration for manufacturing metal fibers by a coil cutting method.
3 金属繊維(黄銅繊維) 5 束 9 ペレット 11 熱可塑性樹脂 3 Metal fiber (brass fiber) 5 bundles 9 Pellets 11 Thermoplastic resin
Claims (1)
原料ペレットを製造する方法において、コイル切削法に
より製造した金属繊維の束に曲げ弾性率が1.8GPa
以下、硬さがJIS A硬度で80以上の熱可塑性樹
脂を被覆した後これを所定の長さに切断するようにした
ことを特徴とする電磁シ−ルド筐体成形用原料ペレット
の製造方法。Claim 1: In a method for producing raw material pellets suitable for injection molding of an electromagnetic shielding case, a bundle of metal fibers produced by a coil cutting method has a bending elastic modulus of 1.8 GPa.
Hereinafter, a method for producing raw material pellets for forming an electromagnetic shield casing is provided, which comprises coating a thermoplastic resin with a JIS A hardness of 80 or higher and then cutting the coated resin into predetermined lengths.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4944991A JPH04284204A (en) | 1991-03-14 | 1991-03-14 | Manufacture of starting material pellet for molding electromagnetic shielding casing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4944991A JPH04284204A (en) | 1991-03-14 | 1991-03-14 | Manufacture of starting material pellet for molding electromagnetic shielding casing |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04284204A true JPH04284204A (en) | 1992-10-08 |
Family
ID=12831450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4944991A Pending JPH04284204A (en) | 1991-03-14 | 1991-03-14 | Manufacture of starting material pellet for molding electromagnetic shielding casing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04284204A (en) |
-
1991
- 1991-03-14 JP JP4944991A patent/JPH04284204A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4500595A (en) | Stainless steel fiber-thermosplastic granules and molded articles therefrom | |
JPS6326783B2 (en) | ||
JPS59158016A (en) | Electromagnetically shielding material | |
US4530779A (en) | Conductive synthetic resin molding material | |
JPS5814457B2 (en) | Conductive plastic composition for shielding electromagnetic waves | |
EP1511044A2 (en) | Method of making a conductive fire-retardant thermoplastic mixture | |
JPH04284204A (en) | Manufacture of starting material pellet for molding electromagnetic shielding casing | |
JPH05318467A (en) | Preparation of raw material pellet for molding of box for electromagnetic shielding | |
JP2004059673A (en) | Partition made of resin and its manufacturing method | |
JPH10204305A (en) | Electromagnetic-wave-shielding resin composition and molding made therefrom | |
JPS6286055A (en) | Electromagnetic wave shielding material | |
US5746956A (en) | Process and apparatus for manufacturing aluminum laminally filled plastic pellets for shielding electromagnetic interference | |
JPS5922710A (en) | Manufacture of electroconductive molding material | |
JPS60134500A (en) | Electromagnetic wave shielding material | |
JPS61296066A (en) | Electrically-conductive molding material | |
JPH04284203A (en) | Manufacture of starting material pellet for molding electromagnetic shielding casing | |
KR20200083687A (en) | Long fiber reinforced thermoplastic resin composition having excellent thermal conductivity and EMI shielding property and molded article comprising the same | |
JPH03268398A (en) | Pellet for electromagnetic shield molding and manufacture of enclosure of electromagnetic shield type | |
JPH04284205A (en) | Manufacture of starting material pellet for molding electromagnetic shielding casing | |
JPH05267881A (en) | Material for molding electromagnetic shielding casing | |
JPS60179204A (en) | Manufacture of chip for shielding electromagnetic wave composition | |
JPH0647254B2 (en) | Conductive resin composition | |
JPH03145006A (en) | Conductive resin composition | |
JPH0545406B2 (en) | ||
JPS58140907A (en) | Method of producing conductive molding material |