JPH04273956A - Stationary type magnetic refrigerating machine - Google Patents
Stationary type magnetic refrigerating machineInfo
- Publication number
- JPH04273956A JPH04273956A JP5963791A JP5963791A JPH04273956A JP H04273956 A JPH04273956 A JP H04273956A JP 5963791 A JP5963791 A JP 5963791A JP 5963791 A JP5963791 A JP 5963791A JP H04273956 A JPH04273956 A JP H04273956A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- temperature side
- actuating body
- sealed end
- bath
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2321/00—Details of machines, plants or systems, using electric or magnetic effects
- F25B2321/002—Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
- F25B2321/0021—Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet
Landscapes
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【0001】0001
【産業上の利用分野】本発明は、強磁界発生用の超電導
コイルと寒冷を発生する磁性作動体との間に、励磁・消
磁過程の繰り返しを行う円筒状の磁気遮蔽体を設けて、
特に液体ヘリウム温度以下の極低温に適用される静止型
磁気冷凍機に関する。[Industrial Application Field] The present invention provides a cylindrical magnetic shield for repeating excitation and demagnetization processes between a superconducting coil for generating a strong magnetic field and a magnetic actuating body for generating cold.
In particular, the present invention relates to a static magnetic refrigerator that is applied to extremely low temperatures below liquid helium temperature.
【0002】0002
【従来の技術】従来の静止型磁気冷凍機では、超電導コ
イルが発生する強磁界中に磁性作動体が固定して配置し
てあり、その電磁石に電流を流して強磁界を発生させて
磁性作動体を励磁し、次いで、電磁石電流を遮断して、
磁性作動体を断熱消磁する方式のものが広く知られてい
る。[Prior Art] In a conventional stationary magnetic refrigerator, a magnetic actuating body is fixedly placed in a strong magnetic field generated by a superconducting coil, and a current is passed through the electromagnet to generate a strong magnetic field, causing magnetic activation. By energizing the body and then interrupting the electromagnetic current,
A method of adiabatic demagnetization of a magnetic actuating body is widely known.
【0003】0003
【発明が解決しようとする課題】従来の静止型磁気冷凍
機は、励磁・消磁過程を繰り返すために、超電導コイル
に流す大電流の開閉を繰り返す必要があり、外部電源及
びその電源と超電導コイルとの間のリード線には、大電
流による多量のジュール熱が発生し、磁気冷凍機の熱効
率を低下させる大きな原因になっていた。このため、外
部電源やリード線の内部抵抗を極力低下させるには、電
源装置や配線が大掛かりなものとなり実用上解決すべき
問題として残されていた。[Problems to be Solved by the Invention] In conventional static magnetic refrigerators, in order to repeat the excitation/demagnetization process, it is necessary to repeatedly open and close a large current flowing through the superconducting coil. A large amount of Joule heat is generated in the lead wires between the two due to the large current, which is a major cause of reducing the thermal efficiency of magnetic refrigerators. Therefore, in order to reduce the internal resistance of the external power supply and lead wires as much as possible, the power supply device and wiring must be large-scale, which remains a practical problem to be solved.
【0004】本発明者らは、既に、超電導コイルと磁性
作動体との間に、磁性作動体を収容する中空部を有する
超電導性磁気遮蔽体を往復移動可能に配置して、磁気遮
蔽体の往復移動によって磁性作動体が強磁界中に曝露さ
れて励磁される過程と、当該磁気遮蔽体の中空部内に収
容されて消磁される過程とを繰り返す方式の静止型磁気
冷凍機を提案した(特願平2−305586号)。この
方式は、冷凍機運転中においても、超電導コイルへの電
流の開閉を全く要せず、完全に永久電流モードで使用で
き、機械的可動部としては、磁気遮蔽体を往復移動させ
る往復機構だけで足り、したがって、エネルギー効率の
高い、かつ冷凍能力に比して、コクパクトに構成できる
などの利点を有している。The present inventors have already arranged a superconducting magnetic shield having a hollow portion for accommodating the magnetic working body between a superconducting coil and a magnetic working body so as to be able to move back and forth. We have proposed a stationary magnetic refrigerator that repeats the process of exposing a magnetic operating body to a strong magnetic field and excitation through reciprocating movement, and the process of being housed in the hollow part of the magnetic shield and demagnetized. Ganhei 2-305586). This method does not require any switching of current to the superconducting coils even when the refrigerator is operating, and can be used completely in persistent current mode, and the only mechanically moving part is the reciprocating mechanism that moves the magnetic shield back and forth. Therefore, it has the advantage of being highly energy efficient and compact in size compared to its refrigeration capacity.
【0005】しかしながら、上記の磁気遮蔽体による静
止型磁気冷凍機においても、磁気遮蔽体を超電導コイル
の形成する磁束を切って移動させるため、往復移動に大
きな力を必要とし、従って、往復機構が大型化するとい
う難点を有していた。However, even in the stationary magnetic refrigerator using the magnetic shield described above, since the magnetic shield is moved by cutting off the magnetic flux formed by the superconducting coil, a large force is required for reciprocating movement, and therefore the reciprocating mechanism is It had the disadvantage of being large.
【0006】さらに、静止型磁気冷凍機には、固定され
た磁性作動体と、熱浴及び冷浴との間の熱移送を効率よ
く行う熱スイッチ機構が必要であるが、従来から熱スイ
ッチ機構として熱浴である小型のガス冷却機に接続され
た銅製の熱導体の先端部に水晶柱を往復移動可能に取付
け、当該水晶柱の端面と磁性作動体の一端面とを密接可
能に対面させて構成されたものが知られている。また冷
浴側に接続される低温側熱スイッチとしては、磁性作動
体を覆う管が冷浴槽と連通して、磁性作動体の表面と当
該被覆管の内面との間を、作動気体が対流し得ない程度
の挾隙とするように構成されており、磁性作動体の寒冷
により生じた当該作動ガスの液滴を冷浴槽に収容する方
式のものがある。Furthermore, a static magnetic refrigerator requires a thermal switch mechanism that efficiently transfers heat between a fixed magnetic operating body and a hot bath and a cold bath. A crystal column is reciprocatably attached to the tip of a copper thermal conductor connected to a small gas cooler, which is a heat bath, and the end surface of the crystal column and one end surface of the magnetic actuating body are made to closely face each other. It is known that the structure is In addition, as a low-temperature side heat switch connected to the cold bath side, a tube covering the magnetic actuating body communicates with the cold bath, and the working gas is convected between the surface of the magnetic actuating body and the inner surface of the cladding tube. There is a system in which droplets of the working gas generated by cooling of the magnetic working body are stored in a cold bath.
【0007】水晶柱と磁性作動体との密着離脱による上
記熱スイッチは、別途水晶柱の往復機構を必要とし、ま
た磁性作動体を被覆する管による上記ヒートポンプ方式
は冷媒として気体を必要とし、作動が遅く、効率が低い
という難点があった。[0007] The above-mentioned heat switch, which uses a crystal column and a magnetic actuating body in close contact and separation, requires a separate reciprocating mechanism for the crystal column, and the above-mentioned heat pump method, which uses a tube covering the magnetic actuator, requires gas as a refrigerant and is not operated properly. The problem was that it was slow and had low efficiency.
【0008】本発明は、上記諸問題に鑑み、超電導コイ
ルと磁性作動体との間に、超電導性磁気遮蔽体を介在さ
せて成る静止型磁気冷凍機において、当該磁気遮蔽体の
往復移動に要する駆動力を極力低減し、さらに当該磁気
遮蔽体の往復移動に連動して作動する熱スイッチ機構を
提供して、機械的可動部分が少なく、冷凍機の熱効率が
高く、その冷凍能力に比して、小型でかつコンパクトな
静止型磁気冷凍機を提供しようとするものである。In view of the above-mentioned problems, the present invention provides a stationary magnetic refrigerator in which a superconducting magnetic shield is interposed between a superconducting coil and a magnetic operating body, in which the reciprocating movement of the magnetic shield is By reducing the driving force as much as possible, and further providing a thermal switch mechanism that operates in conjunction with the reciprocating movement of the magnetic shield, there are fewer mechanically moving parts, and the thermal efficiency of the refrigerator is high, compared to its refrigerating capacity. The present invention aims to provide a small and compact stationary magnetic refrigerator.
【0009】[0009]
【課題を解決するための手段】本発明の磁気冷凍機は、
強磁界を発生させる超電導コイルと当該超電導コイ
ルの中空部に配置された磁性作動体とから成る静止型磁
気冷凍機であるが、当該超電導コイルの中空部内には、
筒状の超電導性磁気遮蔽体が当該超電導コイルの当該中
空部の両開口面から内側の範囲内において往復移動可能
に且つ当該磁気遮蔽体の中空部に当該磁性作動体を収容
することができるように配置されており、当該磁気遮蔽
体を往復機構により往復移動することによって、当該磁
性作動体が当該磁気遮蔽体の当該中空部に収容されて消
磁される過程と当該中空部より抜き出されて励磁される
過程とを繰り返すようにしたことを特徴とするものであ
る。[Means for Solving the Problems] The magnetic refrigerator of the present invention has the following features:
This is a stationary magnetic refrigerator consisting of a superconducting coil that generates a strong magnetic field and a magnetic operating body placed in the hollow part of the superconducting coil.
The cylindrical superconducting magnetic shield is capable of reciprocating within a range inside from both opening surfaces of the hollow portion of the superconducting coil, and the magnetic operating body is housed in the hollow portion of the magnetic shield. By reciprocating the magnetic shield by a reciprocating mechanism, the magnetic operating body is accommodated in the hollow part of the magnetic shield and demagnetized, and the magnetic actuating body is extracted from the hollow part. The feature is that the process of being excited is repeated.
【0010】即ち、本発明の磁気冷凍機は、強磁界を発
生させる超電導ソレノイドコイルと、筒状の超電導性磁
気遮蔽体と、磁性作動体と、当該磁気遮蔽体を往復移動
させる往復機構とから成るものであって、当該磁気遮蔽
体は、当該ソレノイドコイルの中空部内において、当該
中空部の中心軸方向に往復移動可能に配置されており、
同時に当該磁性作動体は、当該ソレノイドの中空部であ
って、かつ当該磁気遮蔽体の中空部に収納可能に固定さ
れて構成されている。そして、当該往復機構によって、
当該磁性作動体が当該磁気遮蔽体の中空部から離脱して
当該強磁界中において励磁されて発熱する過程と、当該
磁性作動体が当該磁気遮蔽体の中空部に収容されて消磁
されて寒冷を発生する過程と、を繰り返して、その寒冷
を利用しようとする静止型の磁気冷凍機である。That is, the magnetic refrigerator of the present invention includes a superconducting solenoid coil that generates a strong magnetic field, a cylindrical superconducting magnetic shield, a magnetic operating body, and a reciprocating mechanism that reciprocates the magnetic shield. The magnetic shield is disposed within the hollow part of the solenoid coil so as to be able to reciprocate in the direction of the central axis of the hollow part,
At the same time, the magnetic actuating body is configured to be housed in the hollow part of the solenoid and fixed to the hollow part of the magnetic shield. And, by the reciprocating mechanism,
A process in which the magnetic actuating body separates from the hollow part of the magnetic shield and is excited in the strong magnetic field and generates heat, and a process in which the magnetic actuating body is housed in the hollow part of the magnetic shield and is demagnetized to cool the body. This is a stationary magnetic refrigerator that attempts to utilize the cold by repeating the process that occurs.
【0011】当該磁気作動体には、その一端面が高温側
熱スイッチ機構を介在させて、高温側液体浴槽と熱伝送
可能に接続され、当該磁性作動体の他端面が低温側熱ス
イッチ機構を介在させて、低温側浴槽と熱伝送可能に接
続されている。高温側熱スイッチには、上述のように熱
浴に接続された銅製の先端部に水晶柱を往復移動可能に
取付け、水晶柱の端面と磁性作動体の端面との密着・離
脱により構成される熱スイッチが利用できる。また低温
側熱スイッチには、同様に、前記のヒートポンプ方式の
ものが利用できる。[0011] One end surface of the magnetic actuating body is connected to the high temperature liquid bath via a high temperature side heat switch mechanism for heat transfer, and the other end surface of the magnetic actuating body is connected to a low temperature side heat switch mechanism. It is interposed and connected to the low-temperature side bathtub for heat transfer. The high-temperature side heat switch has a crystal column movably attached to the copper tip connected to the heat bath as described above, and is configured by the close contact and separation of the end surface of the crystal column and the end surface of the magnetic actuating body. A heat switch is available. Similarly, the heat pump type described above can be used as the low temperature side heat switch.
【0012】特に本発明においては、当該高温側熱スイ
ッチ機構は、磁性体で形成された封端部が、高温側液体
浴槽に、弾性付勢を有するベローズを介して、その封端
部の内側に高温側液体が循環するように、接続されて、
且つ当該封端部の外面と当該磁性作動体の当該一端面と
が密接可能に対面するように配置されて成るものである
。In particular, in the present invention, the high-temperature side heat switch mechanism has a sealed end formed of a magnetic material that is connected to the high-temperature side liquid bath via an elastically biased bellows inside the sealed end. connected so that the hot side liquid circulates,
Further, the outer surface of the sealed end portion and the one end surface of the magnetic actuating body are arranged so as to face each other in close contact with each other.
【0013】また、当該低温側熱スイッチ機構は、超電
導体、特に超電導積層体で形成された封端部が低温側浴
槽に、弾性付勢を有するベローズを介して、その封端部
の内側に低温側液体が循環するように、接続されて、且
つ当該封端部の外面と当該磁性作動体の当該他端面とが
密接可能に対面するように配置されて成るものである。
当該ベローズは、消磁過程で、当該封端部を磁性作動体
に密接させるように、当該封端部に弾性力を付与するよ
うに調整される。超電導体板の背後には、即ち、当該磁
性作動体とは反対方向の当該超電導体板の近傍には、当
該超電導体板の周辺の磁界を僅かに低減させる環状の磁
気遮蔽体を配置することが好ましい。[0013] Also, in the low temperature side heat switch mechanism, a sealed end formed of a superconductor, particularly a superconducting laminate, is connected to the low temperature side bath via a bellows having an elastic bias to the inside of the sealed end. They are connected so that the low-temperature side liquid circulates, and are arranged so that the outer surface of the sealed end and the other end surface of the magnetic actuating body face each other in close contact with each other. The bellows is adjusted to apply elastic force to the sealed end so as to bring the sealed end into close contact with the magnetic actuating body during the demagnetization process. Behind the superconductor plate, that is, in the vicinity of the superconductor plate in the opposite direction to the magnetic actuator, an annular magnetic shield is arranged to slightly reduce the magnetic field around the superconductor plate. is preferred.
【0014】本発明の他の熱スイッチ機構については、
当該高温側熱スイッチ機構は、高温側熱浴が流体浴槽で
形成され、当該高温側の流体浴槽が磁性体で封止されて
、高温側封端部となし、当該高温側封端部の外面が当該
磁性作動体の表面と密接可能に対面するように当該高温
側封端部が当該磁性作動体に近接して配置されて構成さ
れ、また当該低温側熱スイッチ機構は、低温側熱浴が流
体浴槽で形成され、当該低温側の流体浴槽が非磁性体の
熱伝導体で封止されて、低温側封端部となし、当該低温
側封端部の外面が当該磁性作動体の他の表面と密接可能
に対面するように当該低温側封端部が当該磁性作動体に
近接して配置されて構成されている。更に、当該磁性作
動体は、固定部材に固定された断熱性ベアリングを介し
て往復移動自在に配置され、且つ、当該固定部材もしく
は当該ベアリングの固定側基部に一端を固定した断熱性
弾性体に接続されて、消磁過程では、当該低温封端部の
外面と密接するように当該弾性体により弾性付勢されて
成るものである。この熱スイッチ機構において、磁性作
動体の往復移動量は僅か1mm乃至1cm程度で充分で
あるから、この熱スイッチ機構を利用する磁気冷凍機は
なお静止型と称して差し支えない。Regarding other thermal switch mechanisms of the present invention,
The high-temperature side heat switch mechanism has a high-temperature side heat bath formed of a fluid bath, the high-temperature side fluid bath being sealed with a magnetic material to form a high-temperature side sealed end, and an outer surface of the high-temperature side sealed end. The high-temperature side sealed end is disposed close to the magnetic actuating body so that it can closely face the surface of the magnetic actuating body, and the low-temperature side heat switch mechanism is configured such that the low-temperature side heat bath is The fluid bath on the low temperature side is sealed with a non-magnetic thermal conductor to form a low temperature side sealed end, and the outer surface of the low temperature side sealed end is connected to the other side of the magnetic actuating body. The low-temperature side sealed end is arranged close to the magnetic actuating body so as to face the surface in close contact with the magnetic actuating body. Further, the magnetic actuating body is arranged to be movable back and forth via a heat insulating bearing fixed to a fixed member, and is connected to a heat insulating elastic body having one end fixed to the fixed member or the fixed side base of the bearing. In the degaussing process, the elastic member is elastically biased so as to come into close contact with the outer surface of the low-temperature sealed end. In this thermal switch mechanism, it is sufficient for the reciprocating amount of the magnetic operating body to be only about 1 mm to 1 cm, so a magnetic refrigerator using this thermal switch mechanism can still be called a stationary type.
【0015】さらに、当該磁性作動体には、磁性体の薄
膜と熱伝導体の薄膜とから成るの積層体もしくは巻回体
が好ましく使用される。Furthermore, a laminate or a wound body consisting of a thin film of magnetic material and a thin film of thermal conductor is preferably used as the magnetic actuating body.
【0016】[0016]
【作用】超電導ソレノイドコイルの中空部内は、強磁界
が発生しており、当該ソレノイドコイル中に固定された
磁性作動体は励磁される。超電導体で形成された筒体は
、強磁界中にあっても、その中空部内は完全零磁界であ
るから、磁気遮蔽体として利用して、当該ソレノイドコ
イルの中空部内において、当該磁気遮蔽体の中空部が磁
性作動体を収容するように配置すれば、当該磁性作動体
は消磁される。次いで、当該磁気遮蔽体の中空部から磁
性作動体が離脱するように当該磁気遮蔽体を、当該ソレ
ノイドコイルの中心軸の方向に平行移動すれば、磁性作
動体は励磁される。当該磁気遮蔽体を往復機構により、
往復移動させることによって磁性作動体が励磁される過
程と消磁される過程とを繰り返すことができる。超電導
コイルは、Nb−Ti合金の線やY1 Ba2 Cu3
酸化物の銅被覆線をを巻回して、ソレノイド状にしたも
のが、超電導遷移温度以下に冷却されて使用される。ま
た、磁気遮蔽体は、当該合金や酸化物を常電導性の銅や
アルミニウムの薄板・箔との積層体にして、筒状に形成
して、同様に冷却されて、使用される。[Operation] A strong magnetic field is generated in the hollow part of the superconducting solenoid coil, and the magnetic actuating body fixed in the solenoid coil is excited. Even if the cylinder made of superconductor is in a strong magnetic field, the inside of the hollow part has a completely zero magnetic field, so it can be used as a magnetic shield, and the magnetic shield can be used inside the hollow part of the solenoid coil. If the hollow part is arranged to accommodate the magnetic actuating body, the magnetic actuating body is demagnetized. Next, when the magnetic shield is moved in parallel in the direction of the central axis of the solenoid coil so that the magnetic actuator is removed from the hollow portion of the magnetic shield, the magnetic actuator is excited. The magnetic shield is reciprocated by a reciprocating mechanism.
By reciprocating, the process of exciting and demagnetizing the magnetic operating body can be repeated. Superconducting coils are made of Nb-Ti alloy wire or Y1 Ba2 Cu3
A solenoid-shaped oxide copper coated wire is used after being cooled to below the superconducting transition temperature. In addition, the magnetic shield is used by forming the alloy or oxide into a cylindrical laminate with normal conductive copper or aluminum thin plates or foils, and cooling the laminate in the same way.
【0017】磁気遮蔽体は、その中空部が磁性作動体を
収容する過程と離脱させる過程とで移動しても、当該ソ
レノイドコイルの中空部内において配置されており、当
該ソレノイドコイルの中空部の開口面から外側へ突出も
しくは逸脱することがない。当該ソレノイドコイルの中
空部内は概ね一様磁場が形成されているから、当該一様
磁場中を、その磁力線方向と平行に、当該磁気遮蔽体で
ある超電導体を移動させても、超電導体には磁気作用力
は働かない。従って当該ソレノイドコイルの中空部内に
おいて、磁気遮蔽体を往復移動させる往復機構の駆動力
は、小さくて足りる。[0017] Even if the hollow part moves between the process of accommodating and detaching the magnetic actuating body, the magnetic shielding body remains located within the hollow part of the solenoid coil, and the opening of the hollow part of the solenoid coil It does not protrude or deviate outward from the surface. Since a generally uniform magnetic field is formed inside the hollow part of the solenoid coil, even if the superconductor, which is the magnetic shield, is moved in the uniform magnetic field in parallel to the direction of the lines of magnetic force, the superconductor will not be affected. Magnetic force does not work. Therefore, the driving force of the reciprocating mechanism for reciprocating the magnetic shield within the hollow portion of the solenoid coil is sufficient to be small.
【0018】高温側熱スイッチ機構は、磁性作動体の励
磁過程で発生した熱を、高温側の熱浴槽に移送して逃が
し、かつ、消磁過程では、磁性作動体と高温側熱浴槽と
の熱移送を遮断する作用をする。低温側熱スイッチ機構
は、磁性作動体の消磁過程で発生した寒冷を低温側の熱
浴槽に移送して、当該熱浴槽を冷却し、かつ励磁過程で
は、当該低温側の熱浴槽とは熱的に遮断する作用を有す
るものである。The high-temperature side heat switch mechanism transfers the heat generated during the excitation process of the magnetic actuating body to the high-temperature side hot bath and releases it, and in the demagnetization process, the heat generated between the magnetic actuating body and the high-temperature side hot bath is transferred. It acts to block the transfer. The low-temperature side heat switch mechanism transfers the cold generated during the demagnetization process of the magnetic actuating body to the low-temperature side hot bath to cool the hot bath, and is thermally separate from the low-temperature side hot bath during the excitation process. It has the effect of blocking the
【0019】本発明の高温側熱スイッチ機構と低温側熱
スイッチ機構とを一体に組み込まれた実施例で、熱スイ
ッチ機構を説明する。図5(A)において、磁性作動体
2が保護管28内に断熱部材27により固定され、高温
側の熱浴槽41の端部にベローズ43を介して磁性体4
4が接続されて、高温側の封端部を構成し、その封端部
内には熱浴槽41の液体が流通するようにされ、封端部
先端の磁性体44の外面が磁性作動体2の一端と密接可
能に対面している。磁場がないときは、ベローズ43の
収縮力により封端部先端の磁性体44の外面は磁性作動
体2と離れて、適度の間隙Gが生ずるように調整されて
いる。間隙Gは1mm程度の狭隙で充分である。他方、
低温側の熱浴槽51の端部には、ベローズ52を介して
、超電導体積層板53が接続されて、低温側の封端部を
成し、封端部内は通常は低温側の熱浴槽51からの気体
が充填されている。A thermal switch mechanism will be explained using an embodiment in which a high temperature side thermal switch mechanism and a low temperature side thermal switch mechanism of the present invention are integrated. In FIG. 5(A), the magnetic actuating body 2 is fixed in the protective tube 28 by a heat insulating member 27, and the magnetic body 2 is attached to the end of the hot bath 41 on the high temperature side via a bellows 43.
4 are connected to form a sealed end on the high temperature side, and the liquid in the hot bath 41 flows through the sealed end, and the outer surface of the magnetic body 44 at the tip of the sealed end is connected to the magnetic actuating body 2. Closely facing one end. When there is no magnetic field, the outer surface of the magnetic body 44 at the tip of the sealed end is separated from the magnetic actuating body 2 by the contraction force of the bellows 43, so that an appropriate gap G is created. A narrow gap G of about 1 mm is sufficient. On the other hand,
A superconducting laminate 53 is connected to the end of the hot bath 51 on the low temperature side via a bellows 52 to form a sealed end on the low temperature side, and the inside of the sealed end is normally filled with the hot bath 51 on the low temperature side. It is filled with gas from
【0020】当該封端部の先端の超電導体積層板53の
外面は当該磁性作動体2の他端面と密接可能に配置され
、磁場がないときは、ベローズ52の押圧力により、超
電導体積層板53の外面は当該磁性作動体2と面接して
いるように調整されている。The outer surface of the superconducting laminate 53 at the tip of the sealed end is arranged so as to be in close contact with the other end surface of the magnetic actuating body 2, and when there is no magnetic field, the superconducting laminate 53 is moved by the pressing force of the bellows 52. The outer surface of 53 is adjusted so as to be in contact with the magnetic actuating body 2.
【0021】保護管28内は常時高真空に保持されて管
内は断熱状態にある。The inside of the protection tube 28 is always maintained at a high vacuum and the inside of the tube is in an adiabatic state.
【0022】図5(A)に示した状態は、磁性作動体2
が消磁過程にあって、発生した寒冷は超電導体積層板5
3の外面を通過して、低温側の熱浴槽の流体を冷却する
が、高温側へは、当該間隙Gによって熱伝導が遮断され
ている。In the state shown in FIG. 5(A), the magnetic actuating body 2
is in the demagnetization process, and the generated cold cools the superconducting laminate 5.
3 to cool the fluid in the hot bath on the low temperature side, but heat conduction to the high temperature side is blocked by the gap G.
【0023】図5(B)は励磁過程を示しているが、こ
の図において、当該超電導体積層板53の内面より高温
の熱浴の方向に当該保護管28の外周面には、環状の超
電導体31が固定されており、励磁過程で、当該超電導
体積層板53の近傍の磁界を僅かに低減させるように配
置されている。励磁過程では、磁力線9により磁性作動
体2の励磁とともに高温側熱スイッチの磁性体44が磁
化され、磁性体44の外面は磁性作動体2と吸着されて
密接し、他方、低温側熱スイッチの当該超電導体積層板
53は反磁性を示すので、環状の超電導体31により磁
界の低減する方向に後退して、磁性作動体との間に間隙
Gを作るので、励磁によって発生した発熱は、高温側熱
浴41にのみ移動して、磁性作動体2は冷却される。FIG. 5(B) shows the excitation process. In this figure, a ring-shaped superconductor is formed on the outer peripheral surface of the protective tube 28 in the direction of the hot bath, which is higher than the inner surface of the superconducting laminate 53. The body 31 is fixed and arranged so as to slightly reduce the magnetic field near the superconducting laminate 53 during the excitation process. In the excitation process, the magnetic actuating body 2 is excited by the magnetic field lines 9, and the magnetic body 44 of the high-temperature side thermal switch is magnetized. Since the superconducting laminate 53 exhibits diamagnetic properties, it retreats in the direction in which the magnetic field is reduced by the annular superconductor 31 and creates a gap G between it and the magnetic actuating body, so that the heat generated by excitation is reduced to a high temperature. The magnetic actuating body 2 is cooled by moving only to the side heating bath 41.
【0024】この熱スイッチ機構は、磁性体44、磁気
遮蔽体2及び超電導積層板53を透過する磁場9を、磁
気遮蔽体の往復移動により同時に制御できるから、本発
明の熱スイッチ機構は、何ら操作部を必要とせず、上記
磁気遮蔽体の往復移動のみによって、励磁・消磁過程の
繰り返しに連動して、適格に作動する。Since this thermal switch mechanism can simultaneously control the magnetic field 9 that passes through the magnetic body 44, magnetic shield 2, and superconducting laminate 53 by reciprocating the magnetic shield, the thermal switch mechanism of the present invention has no There is no need for an operation unit, and the device operates properly by simply reciprocating the magnetic shield in conjunction with the repetition of the excitation/demagnetization process.
【0025】図6に示す熱スイッチは、磁性作動体2が
、保護管28の内面から断熱性のボールベアリング61
により、移動可能に保持され、高温側熱浴41の端部に
は、磁性体44により封止され、当該磁性体44の外面
は当該磁性作動体2の一端と密接可能に対面されている
。また、低温側熱浴51の先端には熱伝導体64により
封止されて、当該熱伝導体64の外面は、磁性作動体2
の他端面と密接可能に対面している。図6(A)に示す
ように、消磁過程では、一端が当該ボールベアリング6
1の基部に、他端が当該磁性作動体2に固定されたベロ
ーズ43の押圧力により、当該磁性作動体2が低温側の
当該熱伝導体64の外面と密接しており、従って、高温
側の当該磁性体44とは分離して、間隙Gを作っている
。そこで、消磁過程で発生した寒冷は、低温側熱浴51
を冷却することになる。In the thermal switch shown in FIG.
The end of the high-temperature side heat bath 41 is sealed with a magnetic body 44, and the outer surface of the magnetic body 44 faces one end of the magnetic actuating body 2 in a close manner. Further, the tip of the low temperature side heat bath 51 is sealed with a heat conductor 64, and the outer surface of the heat conductor 64 is connected to the magnetic actuating body 2.
It faces the other end face in a close manner. As shown in FIG. 6(A), in the demagnetization process, one end of the ball bearing 6
Due to the pressing force of the bellows 43 whose other end is fixed to the magnetic actuating body 2 at the base of the magnetic actuating body 2, the magnetic actuating body 2 is in close contact with the outer surface of the thermal conductor 64 on the low temperature side. It is separated from the magnetic material 44 to form a gap G. Therefore, the cold generated during the demagnetization process is removed from the low temperature side heat bath 51.
will be cooled down.
【0026】励磁過程では、磁性作動体2とともに磁性
体44も磁化されて互いに吸着し、他方、低温側の当該
熱伝導体64の外面とは、間隙Gを作るから、磁性作動
体2の発熱は、高温側熱浴41により冷却される。In the excitation process, the magnetic body 44 as well as the magnetic actuator 2 are magnetized and attract each other, and on the other hand, a gap G is created between the outer surface of the heat conductor 64 on the low temperature side, so that the heat generated by the magnetic actuator 2 is reduced. is cooled by the high temperature side heat bath 41.
【0027】磁性作動体は、発生する発熱と寒冷をそれ
ぞれ高温側と低温側の熱浴に効率よく移送させる必要が
ある。この観点より、Gd−Ga酸化物ガーネットは、
熱伝導率が高く、好都合であり、ガーネットを単結晶と
して熱散乱を減少させ、その外面に銀皮膜を形成させて
、さらに磁性作動体の伝導率を高めることが可能である
。しかし、励磁・消磁過程での磁場の急激な変化により
、当該銀皮膜には渦電流が発生し、僅かであるがジュー
ル熱を発生して、消磁過程の熱効率を低下させる。本発
明の磁性作動体は、磁性体の薄膜と良熱伝導体の薄膜と
から成るの積層体もしくは巻回体であるから、当該薄膜
の面に平行な方向を磁力線の方向と概ね一致させれば、
良熱伝導体の薄膜に銀薄膜を使用しても、皮膜面には渦
電流の発生は極めて少なくすることが可能である。
このとき、同時に当該薄膜の面の方向を熱スイッチの方
向と概ね一致させれば、当該磁性体から熱スイッチへの
熱伝導が良好になる。このような積層体もしくは巻回体
をもって円柱状の磁性作動体とすれば、当該薄膜の面に
平行な方向の方向を円柱の中心軸方向として、当該中心
軸方向を磁力線方向及び熱伝導方向と一致するように磁
性作動体を配置することが可能となり、円柱の高さを比
較的大きくしても熱伝導は阻害されない。[0027] The magnetic actuator must efficiently transfer the generated heat and cold to the hot baths on the high temperature side and the cold side, respectively. From this point of view, Gd-Ga oxide garnet is
Advantageously, it has a high thermal conductivity, and it is possible to make garnet as a single crystal to reduce heat scattering and to form a silver coating on its outer surface to further increase the conductivity of the magnetic actuator. However, due to rapid changes in the magnetic field during the excitation/demagnetization process, eddy currents are generated in the silver film, generating a small amount of Joule heat, which reduces the thermal efficiency of the demagnetization process. Since the magnetic actuating body of the present invention is a laminate or a wound body consisting of a thin film of a magnetic material and a thin film of a good thermal conductor, the direction parallel to the surface of the thin film must be made to roughly match the direction of the magnetic lines of force. Ba,
Even if a thin silver film is used as a thin film of a good thermal conductor, it is possible to extremely reduce the generation of eddy currents on the film surface. At this time, if the direction of the surface of the thin film is made to roughly match the direction of the thermal switch, heat conduction from the magnetic body to the thermal switch will be improved. If such a laminated body or a wound body is used as a cylindrical magnetic actuating body, the direction parallel to the surface of the thin film is the central axis direction of the cylinder, and the central axis direction is the magnetic field line direction and the heat conduction direction. It becomes possible to arrange the magnetic actuators so that they coincide with each other, and heat conduction is not inhibited even if the height of the cylinder is made relatively large.
【0028】磁性体の薄膜と良熱伝導体の薄膜とから成
るの積層体の製法は、例えば、良熱伝導体の薄膜として
銀箔膜を使用し、磁性体の薄膜は当該銀薄膜の表面に、
例えば、Gd−Ga酸化物ガーネットを真空蒸着して銀
−ガーネット薄層を得て、この薄層を多数積層し、加熱
圧下して、積層体を形成する。また、帯状の銀箔に上記
ガーネットを蒸着して得た層状の帯を緻密に巻回して、
加熱焼鈍して、巻回体とする。A method for manufacturing a laminate consisting of a magnetic thin film and a good thermal conductor thin film is, for example, to use a silver foil film as the good thermal conductor thin film, and to apply the magnetic thin film on the surface of the silver thin film. ,
For example, Gd--Ga oxide garnet is vacuum-deposited to obtain a silver-garnet thin layer, and a large number of these thin layers are laminated and heated under pressure to form a laminate. In addition, a layered band obtained by vapor-depositing the above garnet on a band-shaped silver foil is tightly wound,
It is heated and annealed to form a wound body.
【0029】[0029]
【実施例】本発明の実施例を、図面に基づき説明する。
図1は、液体ヘリウム温度以下の冷却能力を有する静止
型磁気冷凍機の断面図を示している。超電導ソレノイド
コイル1が液体ヘリウムを充満した断熱容器8内に固定
され、当該ソレノイドコイル1の中空部内に、円筒状の
磁気遮蔽体3が当該容器8の上蓋81を貫通する支持棒
71により懸垂されて、当該支持棒71には昇降装置(
不示図)が取付けられており、当該磁気遮蔽体3は昇降
自在に配置されている。[Embodiment] An embodiment of the present invention will be explained based on the drawings. FIG. 1 shows a cross-sectional view of a static magnetic refrigerator having a cooling capacity below liquid helium temperature. A superconducting solenoid coil 1 is fixed in a heat insulating container 8 filled with liquid helium, and a cylindrical magnetic shield 3 is suspended in the hollow part of the solenoid coil 1 by a support rod 71 penetrating the upper lid 81 of the container 8. The support rod 71 is equipped with a lifting device (
(not shown) is attached, and the magnetic shield 3 is arranged so as to be movable up and down.
【0030】また、上蓋81下面には、当該磁気遮蔽体
3の中空部に貫通するように、上蓋81から垂下された
保護管28が固定されている。保護管28の内側上部は
、高温側液槽を構成しており、当該断熱容器8からの液
体ヘリウムが対流循環できるような開口部45によって
液体ヘリウムで満たされ、その液体ヘリウムは、高温側
液槽の封端部42が磁性体44により封止された内部空
間まで至っている。Further, a protection tube 28 is fixed to the lower surface of the upper lid 81 so as to pass through the hollow portion of the magnetic shield 3, and is suspended from the upper lid 81. The inner upper part of the protection tube 28 constitutes a high-temperature side liquid tank, and is filled with liquid helium through an opening 45 that allows liquid helium from the heat-insulating container 8 to circulate through convection. A sealed end 42 of the tank extends to an internal space sealed by a magnetic material 44 .
【0031】当該保護管28の下方には、円柱状の磁性
作動体2が、断熱性ボールベアリング61により上下移
動可能に保持され、当該磁性作動体2の下方には、当該
ベアリング61の基部62に一端が接続されたベローズ
43の他端が接続されており、当該磁性作動体2は常時
下方に弾性力が付与されている。上記高温側液槽の封端
部外面が、当該磁性作動体2の上面と対面するように近
接して配置され、高温側熱スイッチを構成している。Below the protective tube 28, a cylindrical magnetic actuator 2 is held movably up and down by a heat insulating ball bearing 61, and below the magnetic actuator 2 is a base 62 of the bearing 61. One end of the bellows 43 is connected to the other end of the bellows 43, and an elastic force is always applied downward to the magnetic actuating body 2. The outer surface of the sealed end of the high temperature side liquid tank is disposed close to and facing the upper surface of the magnetic actuating body 2, thereby forming a high temperature side heat switch.
【0032】また当該保護管の底部には、低温側液槽5
1が固定され、当該低温側液槽51の上部は、熱伝導体
64が気密的に取付けられ、当該熱伝導体64の上面は
、上記磁性作動体2の下面と密接可能に対面するように
近接して配置されて低温側熱スイッチ機構が構成されて
いる。また、当該熱伝導体64の下面には寒冷を伝える
熱伝送柱54が、低温側液槽51内に突出して設けられ
、またこの低温側液槽51には、ヘリウムガス供給用細
管55とヘリウムガス排出用の細管56が接続されてい
る。[0032] Also, at the bottom of the protection tube, there is a low temperature side liquid tank 5.
1 is fixed, and a heat conductor 64 is airtightly attached to the upper part of the low temperature side liquid tank 51, such that the upper surface of the heat conductor 64 faces the lower surface of the magnetic actuator 2 in a close manner. A low-temperature side thermal switch mechanism is configured in close proximity to each other. In addition, a heat transmission column 54 that transmits cold is provided on the lower surface of the heat conductor 64 and protrudes into the low temperature side liquid tank 51, and the low temperature side liquid tank 51 is provided with a thin tube 55 for supplying helium gas and a helium gas supply tube 55. A thin tube 56 for gas discharge is connected.
【0033】当該保護管の内側下部は、高真空に保持さ
れており、高温側熱スイッチ機構、磁性作動体2、低温
側熱スイッチ機構、及び低温側液槽51は真空断熱状態
にある。The inner lower part of the protection tube is maintained in a high vacuum, and the high temperature side heat switch mechanism, magnetic operating body 2, low temperature side heat switch mechanism, and low temperature side liquid tank 51 are in a vacuum insulated state.
【0034】磁気遮蔽体3は、昇降装置による上昇限に
おいては、当該磁気遮蔽体3の下端部が少なくとも高温
側熱スイッチの磁性体44より高い位置にあることが必
要で、また下降限においては、図2に示すように当該磁
気遮蔽体3の中空部が、高温側熱スイッチの磁性体44
及び磁性作動体2の双方を収容できる位置にあることが
必要である。従って、当該磁性体44と当該磁性作動体
2との間の長さを基準にして磁気遮蔽体の高さと移動行
程が概ね定まる。さらに、超電導コイル1はその高さ(
当該コイル中空部の開口面間の距離)が、磁気遮蔽体の
高さと移動行程との和より大きくなるようなソレノイド
状コイルとする。The lower end of the magnetic shield 3 must be located at least at a higher position than the magnetic body 44 of the high-temperature side heat switch at the upper limit of the rise by the lifting device, and at the lower limit of the lower end of the magnetic shield 3. As shown in FIG. 2, the hollow part of the magnetic shield 3 is connected to the magnetic body 44 of the high temperature side thermal switch
It is necessary to be in a position where both the magnetic actuator 2 and the magnetic actuator 2 can be accommodated. Therefore, the height and movement distance of the magnetic shield are approximately determined based on the length between the magnetic body 44 and the magnetic actuating body 2. Furthermore, the superconducting coil 1 has a height (
The solenoid-like coil is such that the distance between the opening surfaces of the hollow part of the coil is larger than the sum of the height of the magnetic shield and the travel distance.
【0035】本実施例においては超電導コイル1は、N
b−Ti合金線を巻回したものである。磁気遮蔽体3は
Nb−Ti合金箔の円環板と金属アルミニウム箔の円環
板とを多数積重ねた積層体であって、液体ヘリウムに冷
却されて、超電導状態にある。In this embodiment, the superconducting coil 1 has N
It is made by winding b-Ti alloy wire. The magnetic shield 3 is a laminate made up of a large number of Nb-Ti alloy foil circular plates and metal aluminum foil circular plates, and is cooled by liquid helium to be in a superconducting state.
【0036】磁性作動体2はGd−Ga酸化物ガーネッ
トの単結晶の柱体であって、外周面は熱伝導を良好にす
るため銀膜層24によって被覆されている。もっとも、
励磁・消磁過程での渦電流の発生に伴う発熱を防止する
ために省略してもよい。また磁性作動体2の上面は、銀
膜層もしくは水晶薄板が被覆されている。高温側熱スイ
ッチの磁性体44も同様にGd−Ga酸化物ガーネット
が使用されている。当該熱伝導体64には、水晶が使用
され、次いで、銀製の輪環体が良い。The magnetic actuator 2 is a single-crystal column of Gd--Ga oxide garnet, and its outer peripheral surface is covered with a silver film layer 24 to improve heat conduction. However,
It may be omitted in order to prevent heat generation due to the generation of eddy currents during the excitation/demagnetization process. Further, the upper surface of the magnetic actuator 2 is coated with a silver film layer or a thin crystal plate. Similarly, Gd--Ga oxide garnet is used for the magnetic material 44 of the high-temperature side thermal switch. For the heat conductor 64, quartz is used, and a silver ring is preferably used.
【0037】図1は、本磁気冷凍機の励磁過程を示して
いるが、磁気遮蔽体3は昇降装置(不示図)により上昇
限にあって、磁性作動体2は超電導コイル1の強磁場に
より励磁されて、発熱する状態にある。高温側熱スイッ
チの磁性体44も同様に磁化され、磁性作動体2は、ベ
ローズ43の弾性力に抗して当該磁性体44の下面に吸
引されて面着するので、磁性作動体2の熱は当該磁性体
44を伝導して高温側液槽41の封端部41の液体ヘリ
ウムに吸収され、磁性作動体2は、冷却される。他方、
低温側熱スイッチの良伝熱体円板64とは、磁性作動体
2の下面との間に空隙Gを形成するので、励磁による熱
は低温側液槽には伝導しない。FIG. 1 shows the excitation process of the present magnetic refrigerator. The magnetic shield 3 is at its upper limit due to the lifting device (not shown), and the magnetic actuator 2 is exposed to the strong magnetic field of the superconducting coil 1. It is in a state where it is excited and generates heat. The magnetic body 44 of the high-temperature side heat switch is similarly magnetized, and the magnetic actuating body 2 is attracted to the lower surface of the magnetic body 44 against the elastic force of the bellows 43 and is attached to the surface, so that the heat of the magnetic actuating body 2 is absorbed. is conducted through the magnetic body 44 and absorbed by the liquid helium in the sealed end 41 of the high temperature side liquid tank 41, and the magnetic actuating body 2 is cooled. On the other hand,
Since a gap G is formed between the good heat conductive disk 64 of the low temperature side heat switch and the lower surface of the magnetic actuating body 2, heat due to excitation is not conducted to the low temperature side liquid tank.
【0038】図2は、昇降装置により当該磁気遮蔽体3
が下降限にある消磁過程を示しているが、磁性作動体2
は、磁気遮蔽体の中空部にあって消磁され寒冷を発する
。高温側熱スイッチの磁性体44も消磁されるので、磁
性作動体2との間には吸引力が減少し、従ってベローズ
43の弾性力により、引き戻され磁性作動体の上面に空
隙Gを形成するので、寒冷を高温側液槽に失うことはな
い。FIG. 2 shows how the magnetic shield 3 is moved by the lifting device.
shows the demagnetization process at the lower limit, but the magnetic actuator 2
is located in the hollow part of the magnetic shield and is demagnetized and emits cold air. Since the magnetic body 44 of the high-temperature side thermal switch is also demagnetized, the attractive force between it and the magnetic actuating body 2 is reduced, and therefore, it is pulled back by the elastic force of the bellows 43 to form a gap G on the upper surface of the magnetic actuating body. Therefore, there is no loss of cold water to the hot side liquid tank.
【0039】他方、低温側熱スイッチの熱伝導体円板6
4は、何ら磁力線と作用しないから、ベローズ52の押
進力によって、磁性作動体2の下面に当接し、磁性作動
体2の寒冷は、熱伝導体円板64及び熱伝送柱54を伝
導して、低温側の液槽51のヘリウムガスを冷却液化さ
せ、液体ヘリウムが当該液槽にたまる。On the other hand, the heat conductor disk 6 of the low temperature side heat switch
4 does not interact with any lines of magnetic force, it comes into contact with the lower surface of the magnetic actuator 2 by the pushing force of the bellows 52, and the cold of the magnetic actuator 2 is conducted through the heat conductor disk 64 and the heat transfer column 54. Then, the helium gas in the liquid tank 51 on the low temperature side is cooled and liquefied, and liquid helium accumulates in the liquid tank.
【0040】磁気遮蔽体の昇降を繰り返すだけで、上記
の励磁過程と消磁過程とを繰り返すことができ、低温側
液槽の液体ヘリウムの温度を超流動ヘリウムの平衡温度
以下に低下させることができ、極低温を利用することが
できる。[0040] By simply repeating the raising and lowering of the magnetic shield, the above excitation process and demagnetization process can be repeated, and the temperature of liquid helium in the low temperature side liquid tank can be lowered to below the equilibrium temperature of superfluid helium. , cryogenic temperatures can be utilized.
【0041】人工衛星に搭載されて無重力状態で使用さ
れる場合には低温側液槽51中には超流動ヘリウムが液
滴となって浮遊するので、熱伝送柱54との熱伝達率が
低下する虞れがあるが、この場合には、熱伝送柱54に
銅製の多孔性焼結体を使用し、焼結体内に浮遊液滴を補
束する担持体とするのがよい。When used on a satellite in a zero-gravity state, superfluid helium floats in the form of droplets in the low-temperature side liquid tank 51, so the heat transfer coefficient with the heat transfer column 54 decreases. However, in this case, it is preferable to use a porous sintered body made of copper for the heat transfer column 54, and use the sintered body as a carrier that collects floating droplets.
【0042】図3は、人工衛星に搭載されて、宇宙空間
で使用される磁気冷凍機の低温側流体浴槽の周辺部断面
図である。保護管28は、真空断熱容器8の底壁を貫通
して、宇宙空間に開口されており、当該流体槽51の底
部は、熱伝導の良好な銅又は銀が使用されて、その外面
511は平面であって、赤外線撮像固体素子が貼着され
る。当該流体にヘリウムを使用して、当該撮像素子の温
度を1K以下に保持するので、熱雑音の少ない極めて良
好な赤外線画像が得られる。FIG. 3 is a sectional view of the periphery of a low-temperature side fluid bath of a magnetic refrigerator mounted on an artificial satellite and used in outer space. The protective tube 28 penetrates the bottom wall of the vacuum insulated container 8 and is opened to outer space.The bottom of the fluid tank 51 is made of copper or silver, which has good thermal conductivity, and the outer surface 511 is made of copper or silver, which has good thermal conductivity. It is a flat surface, and an infrared imaging solid-state device is attached thereto. Since helium is used as the fluid and the temperature of the image sensor is maintained at 1 K or less, extremely good infrared images with little thermal noise can be obtained.
【0043】図4は、磁性作動体2,2’を二段に使用
して、超電導コイル1の強磁界を単一の磁気遮蔽体3の
昇降のよって制御し、磁性作動体2,2’を交互に励磁
過程と消磁過程とを繰り返すタンデム型の磁気冷凍機の
断面図を示している。本実施例では、液体ヘリウムの製
造・冷却用に設計されている。FIG. 4 shows that the magnetic actuators 2, 2' are used in two stages to control the strong magnetic field of the superconducting coil 1 by raising and lowering a single magnetic shield 3. 1 is a cross-sectional view of a tandem magnetic refrigerator that alternately repeats an excitation process and a demagnetization process. This embodiment is designed for producing and cooling liquid helium.
【0044】図4において、高温側熱浴41には、小型
のガス冷却機が使用され、その下部の封端部内42’に
は液体水素が運転中20Kの温度で満たされて、封端部
内42’の先端にはベローズ43’を介在させて、磁性
体DyAl2の円板44’が接続されている。上段のD
yAl2 の磁性作動体2’は、保護管28に固定され
、当該磁性作動体2’の上面が上記磁性体の円板44’
と対面して、上段の磁性作動体2’の高温側熱スイッチ
を構成している。当該上段の磁性作動体2’の低温側熱
スイッチは、水晶製の熱伝導体47を介して接続されて
いる磁性体Gd−Gaガーネットの円盤44によって構
成され、当該円盤44は下側の磁性作動体2の上面と密
接可能に対面して配置されている。In FIG. 4, a small gas cooler is used for the high-temperature side heat bath 41, and the lower sealed end 42' is filled with liquid hydrogen at a temperature of 20 K during operation. A disk 44' made of a magnetic material DyAl2 is connected to the tip of 42' with a bellows 43' interposed therebetween. Upper D
The magnetic actuating body 2' of yAl2 is fixed to the protection tube 28, and the upper surface of the magnetic actuating body 2' is the disc 44' of the magnetic body.
The high-temperature side heat switch of the upper magnetic actuating body 2' is configured to face the upper magnetic actuating body 2'. The low-temperature side thermal switch of the upper magnetic actuating body 2' is constituted by a disk 44 made of magnetic Gd-Ga garnet connected via a thermal conductor 47 made of crystal, and the disk 44 is connected to the lower magnetic body 2'. It is arranged to face the upper surface of the actuating body 2 in a close manner.
【0045】下側の磁性作動体2はGd−Gaガーネッ
トの単結晶で形成されて、ポリエチレン製の断熱製ボー
ルベアリング61を介して、保護管28の内面に、上下
移動自在に保持されており、上面は上記の磁性体円板4
4の下面と、下面は、当該保護管28の端部を封止して
いる熱伝導体64と密接可能に対面し、当該熱伝導体6
4は、、上述の液体ヘリウム浴中に浸漬されて、当該液
体ヘリウム浴51を冷却する。The lower magnetic actuator 2 is made of a single crystal of Gd-Ga garnet, and is held on the inner surface of the protection tube 28 via a heat-insulating ball bearing 61 made of polyethylene so as to be movable up and down. , the upper surface is the above-mentioned magnetic disk 4
The lower surface of 4 faces the thermal conductor 64 sealing the end of the protective tube 28 in a close manner, and the lower surface of the thermal conductor 6
4 is immersed in the liquid helium bath described above to cool the liquid helium bath 51.
【0046】図4に図示する状態は、磁気遮蔽体3が、
下側の磁性作動体2だけを収容しており、上側の磁性作
動体2’が励磁過程にあり、上側の磁性作動体2’と磁
性体44’とが密着して、その発熱は、ガス冷却機41
に移送されている。他方下側の磁性作動体2は、消磁過
程にあって、発生した寒冷が、ヘリウム浴51を冷却し
ている。磁気遮蔽体3を上昇させれば、上側の磁性作動
体2’が消磁されて寒冷を発し、励磁過程にある下側の
磁性作動体2の発熱を吸収して、冷却する。In the state shown in FIG. 4, the magnetic shield 3 is
Only the lower magnetic actuating body 2 is accommodated, and the upper magnetic actuating body 2' is in the excitation process, and the upper magnetic actuating body 2' and the magnetic body 44' are in close contact, and the heat generated is generated by the gas. Cooler 41
has been transferred to. On the other hand, the lower magnetic actuator 2 is in the demagnetization process, and the generated cold cools the helium bath 51. When the magnetic shield 3 is raised, the upper magnetic actuator 2' is demagnetized and generates cold, and the lower magnetic actuator 2, which is in the process of being excited, absorbs the heat generated and is cooled.
【0047】本実施例においても、上昇限及び下降限に
ある磁気遮蔽体3は、超電導コイル1の中空部内に完全
に収容されているので、磁気遮蔽体の昇降操作は、極め
て容易になされる。In this embodiment as well, the magnetic shield 3 at the upper and lower limits is completely housed within the hollow part of the superconducting coil 1, so the operation of raising and lowering the magnetic shield is extremely easy. .
【0048】[0048]
【発明の効果】本発明の磁気冷凍機を実施すれば、次の
ような効果を奏することができる。[Effects of the Invention] By implementing the magnetic refrigerator of the present invention, the following effects can be achieved.
【0049】超電導性磁気遮蔽体の往復移動によって、
磁性作動体の励磁過程と消磁過程とを繰り返すことがで
き、さらに超電導コイルの中空部の両開口面の範囲内に
当該磁気遮蔽体が往復移動するような超電導コイルとす
るので、往復移動の所要力は極めて小さくてよいから、
往復機構は小型化簡素化でき、結果として、エネルギー
効率が高く、冷凍能力に比して小型でコンパクトな静止
型磁気冷凍機とすることができる。By reciprocating the superconducting magnetic shield,
Since the superconducting coil is such that the excitation process and demagnetization process of the magnetic actuating body can be repeated, and the magnetic shielding body moves back and forth within the range of both openings of the hollow part of the superconducting coil, the reciprocating movement is required. The force may be extremely small, so
The reciprocating mechanism can be miniaturized and simplified, and as a result, a stationary magnetic refrigerator that has high energy efficiency and is small and compact compared to its refrigerating capacity can be obtained.
【0050】磁性作動体の発生した熱を高温側熱浴に移
送する高温側熱スイッチ及び発生した寒冷を低温側熱浴
即ち冷浴に伝送する低温側熱スイッチは、ともに磁性作
動体を励磁・消磁する磁界の変化だけに感応して、的確
に作動し、かつ何ら人為的操作手段を要せず、誤動作が
少なく、小型・簡便に構成することができる。特に往復
移動する超電導性磁気遮蔽体の中空部に当該熱スイッチ
と磁性作動体とが収容されて消磁される構成にすれば、
磁気遮蔽体の往復移動のみによって、当該熱スイッチを
作動させることができるので、永久電流モードで超電導
コイルを使用する静止型冷凍機を構成できる。[0050] Both the high temperature side heat switch that transfers the heat generated by the magnetic actuating body to the high temperature side heat bath and the low temperature side heat switch that transfers the generated cold to the low temperature side heat bath, that is, the cold bath, excite and excite the magnetic actuating body. It operates accurately in response to only changes in the demagnetizing magnetic field, does not require any manual operation means, has few malfunctions, and can be constructed in a compact and simple manner. In particular, if the thermal switch and the magnetic operating body are housed in the hollow part of the reciprocating superconducting magnetic shield and are demagnetized,
Since the thermal switch can be activated only by reciprocating the magnetic shield, a static refrigerator using superconducting coils in persistent current mode can be constructed.
【図1】磁気冷凍機の断面図であって、励磁過程にある
ことを示す。FIG. 1 is a cross-sectional view of a magnetic refrigerator, showing that it is in the excitation process.
【図2】消磁過程における磁気冷凍機の断面図。FIG. 2 is a cross-sectional view of the magnetic refrigerator during the demagnetization process.
【図3】宇宙空間で使用される磁気冷凍機の低温側熱浴
の部分断面図。FIG. 3 is a partial cross-sectional view of the low-temperature side heat bath of a magnetic refrigerator used in outer space.
【図4】タンデム型磁気冷凍機の断面図。FIG. 4 is a sectional view of a tandem magnetic refrigerator.
【図5】磁性作動体と熱スイッチ機構の部分断面図。FIG. 5 is a partial cross-sectional view of a magnetic actuator and a thermal switch mechanism.
【図6】磁性作動体と他の熱スイッチ機構の部分断面図
。FIG. 6 is a partial cross-sectional view of a magnetic actuator and other thermal switch mechanisms.
1 超電導コイル 2 磁性作動体 28 保護管 3 磁気遮蔽体 31 環状の超電導体 41 高温側流体浴槽 43 ベローズ 44 磁性体円盤 51 低温側流体浴槽 52 ベローズ 53 超電導性円盤 54 熱伝送柱 55 ヘリウムガス供給管 61 断熱性ボールベアリング 62 断熱性ボールベアリング基部 71 磁気遮蔽体昇降用の支持棒 64 熱伝導体 8 真空断熱容器 83 ヘリウム液面 9 磁力線 G 熱スイッチの間隙 1 Superconducting coil 2 Magnetic working body 28 Protection tube 3 Magnetic shield 31 Annular superconductor 41 High temperature side fluid bath 43 Bellows 44 Magnetic disc 51 Low temperature side fluid bath 52 Bellows 53 Superconducting disk 54 Heat transfer column 55 Helium gas supply pipe 61 Insulating ball bearing 62 Insulating ball bearing base 71 Support rod for lifting and lowering the magnetic shield 64 Thermal conductor 8 Vacuum insulation container 83 Helium liquid level 9. Lines of magnetic force G Gap between heat switch
Claims (6)
該超電導コイルの中空部に配置された磁性作動体とから
成る静止型磁気冷凍機において、当該超電導コイルの中
空部内には、筒状の超電導性磁気遮蔽体が当該超電導コ
イルの当該中空部の両開口面から内側の範囲内において
往復移動可能に且つ当該磁気遮蔽体の中空部に当該磁性
作動体を収容することができるように配置されて、当該
磁気遮蔽体を往復機構により往復移動することによって
、当該磁性作動体が当該磁気遮蔽体の当該中空部に収容
されて消磁される過程と当該中空部より抜き出されて励
磁される過程とを繰り返すようにしたことを特徴とする
静止型磁気冷凍機。Claim 1: A stationary magnetic refrigerator comprising a superconducting coil that generates a strong magnetic field and a magnetic actuator disposed in a hollow part of the superconducting coil, in which a cylindrical superconducting member is provided in the hollow part of the superconducting coil. The magnetic shielding body is arranged so that it can reciprocate within a range inside from both opening surfaces of the hollow part of the superconducting coil, and the magnetic operating body can be accommodated in the hollow part of the magnetic shielding body, By reciprocating the magnetic shield by a reciprocating mechanism, the magnetic operating body is accommodated in the hollow part of the magnetic shield and demagnetized, and the process of being extracted from the hollow part and excited. A stationary magnetic refrigerator characterized by being designed to repeat.
側熱スイッチ機構を介在させて、高温側熱浴と熱伝送可
能に接続され、当該磁性作動体の他端面が低温側熱スイ
ッチ機構を介在させて低温側熱浴と熱伝送可能に接続さ
れている請求項1記載の磁気冷凍機。2. The magnetic actuating body has one end surface connected to the high temperature side heat bath with a high temperature side heat switch mechanism interposed therebetween, and the other end surface of the magnetic actuating body having a low temperature side heat switch mechanism. 2. The magnetic refrigerator according to claim 1, wherein the magnetic refrigerator is connected to the low-temperature side heat bath through a heat bath.
熱浴が流体浴槽で形成され、当該流体浴槽に弾性付勢力
を有するベローズが接続され、当該ベローズの他端が磁
性体により気密的に封止されて、封端部と成し、当該封
端部の外面が当該磁性作動体の表面と密接可能に対面す
るように当該封端部が当該磁性作動体に近接して配置さ
れて成ることを特徴とする請求項2記載の静止型磁気冷
凍機用。3. In the high-temperature side heat switch mechanism, the high-temperature side heat bath is formed of a fluid bath, a bellows having an elastic biasing force is connected to the fluid bath, and the other end of the bellows is made airtight by a magnetic material. The sealed end is sealed to form a sealed end, and the sealed end is arranged close to the magnetic actuating body such that the outer surface of the sealed end closely faces the surface of the magnetic actuating body. The static magnetic refrigerator according to claim 2, characterized in that:
熱浴が流体浴槽で形成され、当該流体浴槽に弾性付勢力
を有するベローズが接続され、当該ベローズの他端が超
電導体により気密的に封止されて、封端部と成し、当該
封端部の外面が当該磁性作動体の表面と密接可能に対面
するように当該封端部が当該磁性作動体に近接して配置
されて成ることを特徴とする請求項2記載の静止型磁気
冷凍機。4. In the low-temperature side heat switch mechanism, the low-temperature side heat bath is formed of a fluid bath, a bellows having an elastic biasing force is connected to the fluid bath, and the other end of the bellows is airtightly connected by a superconductor. The sealed end is sealed to form a sealed end, and the sealed end is arranged close to the magnetic actuating body such that the outer surface of the sealed end closely faces the surface of the magnetic actuating body. The static magnetic refrigerator according to claim 2, characterized in that:
熱浴が流体浴槽で形成され、当該高温側の流体浴槽が磁
性体で封止されて、高温側封端部となし、当該高温側封
端部の外面が当該磁性作動体の表面と密接可能に対面す
るように当該高温側封端部が当該磁性作動体に近接して
配置されて成り、当該低温側熱スイッチ機構は、低温側
熱浴が流体浴槽で形成され、当該低温側の流体浴槽が非
磁性体で封止されて、低温側封端部となし、当該低温側
封端部の外面が当該磁性作動体の他の表面と密接可能に
対面するように当該低温側封端部が当該磁性作動体に近
接して配置されて成り、当該磁性作動体は、固定部材に
固定された断熱性ベアリングを介して往復移動自在に配
置され、且つ、当該固定部材もしくは当該ベアリングの
固定側基部に一端を固定した断熱性弾性体に接続されて
、消磁過程では、当該低温側封端部の外面と密接するよ
うに当該弾性体により弾性付勢されて成る請求項2記載
の静止型磁気冷凍機。5. The high temperature side heat switch mechanism has a high temperature side heat bath formed of a fluid bath, the high temperature side fluid bath being sealed with a magnetic material to form a high temperature side sealed end, and the high temperature side The high-temperature side sealed end is disposed close to the magnetic actuating body such that the outer surface of the sealed end closely faces the surface of the magnetic actuating body, and the low-temperature side heat switch mechanism The heat bath is formed of a fluid bath, the fluid bath on the low temperature side is sealed with a non-magnetic material to form a low temperature side sealed end, and the outer surface of the low temperature side sealed end is the other surface of the magnetic actuating body. The low-temperature side sealed end is disposed close to the magnetic actuating body so as to closely face the magnetic actuating body, and the magnetic actuating body is movable back and forth via an insulating bearing fixed to the fixed member. and connected to an insulating elastic body having one end fixed to the fixed side base of the fixed member or the bearing, and in the degaussing process, the elastic body is in close contact with the outer surface of the low temperature side sealed end. The static magnetic refrigerator according to claim 2, wherein the static magnetic refrigerator is elastically biased.
伝導体の薄膜とから成る積層体もしくは巻回体である請
求項1記載の静止型磁気冷凍機。6. The static magnetic refrigerator according to claim 1, wherein the magnetic operating body is a laminate or a wound body comprising a thin film of magnetic material and a thin film of thermal conductor.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3059637A JP2945153B2 (en) | 1991-02-28 | 1991-02-28 | Stationary magnetic refrigerator |
US07/788,100 US5156003A (en) | 1990-11-08 | 1991-11-05 | Magnetic refrigerator |
EP91202909A EP0487130B1 (en) | 1990-11-08 | 1991-11-06 | A magnetic refrigerator |
DE69101539T DE69101539T2 (en) | 1990-11-08 | 1991-11-06 | Magnetic cooling device. |
CA002055043A CA2055043C (en) | 1990-11-08 | 1991-11-06 | Magnetic refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3059637A JP2945153B2 (en) | 1991-02-28 | 1991-02-28 | Stationary magnetic refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04273956A true JPH04273956A (en) | 1992-09-30 |
JP2945153B2 JP2945153B2 (en) | 1999-09-06 |
Family
ID=13118942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3059637A Expired - Fee Related JP2945153B2 (en) | 1990-11-08 | 1991-02-28 | Stationary magnetic refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2945153B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6408644B1 (en) * | 2000-08-21 | 2002-06-25 | Don Williams | Microwave home energy heating and cooling system |
JP2006042506A (en) * | 2004-07-28 | 2006-02-09 | Kayaba Ind Co Ltd | motor |
JP2013204973A (en) * | 2012-03-29 | 2013-10-07 | Toshiba Corp | Magnetic refrigeration device and magnetic refrigeration system |
-
1991
- 1991-02-28 JP JP3059637A patent/JP2945153B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6408644B1 (en) * | 2000-08-21 | 2002-06-25 | Don Williams | Microwave home energy heating and cooling system |
JP2006042506A (en) * | 2004-07-28 | 2006-02-09 | Kayaba Ind Co Ltd | motor |
JP2013204973A (en) * | 2012-03-29 | 2013-10-07 | Toshiba Corp | Magnetic refrigeration device and magnetic refrigeration system |
Also Published As
Publication number | Publication date |
---|---|
JP2945153B2 (en) | 1999-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5156003A (en) | Magnetic refrigerator | |
JP2933731B2 (en) | Stationary magnetic refrigerator | |
JP4468388B2 (en) | Magnetic field generator | |
US4033734A (en) | Continuous, noncyclic magnetic refrigerator and method | |
JP4512644B2 (en) | Magnet magnetization system and magnetized superconducting magnet | |
GB2179729A (en) | A method of magnetic refrigeration and a magnetic refrigerating apparatus | |
JP2945153B2 (en) | Stationary magnetic refrigerator | |
JP3285751B2 (en) | Magnetic refrigerator | |
JP4799757B2 (en) | Superconducting magnet | |
JP2877495B2 (en) | Magnetic refrigerator | |
JP3233811B2 (en) | Magnetic refrigerator | |
JP3046457B2 (en) | Magnetic chiller for cooling liquid helium | |
JP3572087B2 (en) | Magnetic refrigerator for cooling pressurized liquid helium | |
JPH0663675B2 (en) | Magnetic refrigerator | |
JP3281740B2 (en) | Refrigeration equipment | |
JP3170949B2 (en) | Cooling device for AC magnets using oxide superconducting wires | |
JPH09113048A (en) | Cryotemperature apparatus | |
JPH05291034A (en) | Superconducting magnet device | |
KR20240018625A (en) | Superconducting switch for superconducting magnets | |
JPH0371627B2 (en) | ||
JPS63169463A (en) | Cooling device for pulse superconducting magnet | |
JPH0423184B2 (en) | ||
JPS63129265A (en) | Reciprocating type magnetic refrigerator | |
JPH07142243A (en) | Superconductor device | |
JPH10205913A (en) | Magnetic refrigerating machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |