JPH04272619A - Manufacture of heat resistant electric wire - Google Patents
Manufacture of heat resistant electric wireInfo
- Publication number
- JPH04272619A JPH04272619A JP3053234A JP5323491A JPH04272619A JP H04272619 A JPH04272619 A JP H04272619A JP 3053234 A JP3053234 A JP 3053234A JP 5323491 A JP5323491 A JP 5323491A JP H04272619 A JPH04272619 A JP H04272619A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- resistant paint
- fiber layer
- heat resistant
- resistant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000003973 paint Substances 0.000 claims abstract description 127
- 239000000835 fiber Substances 0.000 claims abstract description 53
- 239000004020 conductor Substances 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 29
- 238000002347 injection Methods 0.000 claims description 9
- 239000007924 injection Substances 0.000 claims description 9
- 239000012210 heat-resistant fiber Substances 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 abstract description 28
- 238000005470 impregnation Methods 0.000 abstract description 20
- 238000002156 mixing Methods 0.000 abstract description 7
- 238000003825 pressing Methods 0.000 abstract description 2
- 239000000945 filler Substances 0.000 abstract 2
- 239000002904 solvent Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 33
- 230000000052 comparative effect Effects 0.000 description 20
- 238000010292 electrical insulation Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- 238000007796 conventional method Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000007865 diluting Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Insulated Conductors (AREA)
- Processes Specially Adapted For Manufacturing Cables (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、火炎に晒されても電気
的絶縁性が確保されているような耐熱性が400°C
以上を保持する耐熱性電線の製造方法、特に導体上に耐
熱性繊維からなる繊維層を設け、次いで前記繊維層に耐
熱性塗料を含浸させ、加熱焼付け処理して、耐熱性電線
を製造する方法に関する。[Industrial Application Field] The present invention has a heat resistance of 400°C, which ensures electrical insulation even when exposed to flame.
A method for manufacturing a heat-resistant electric wire that maintains the above properties, particularly a method for manufacturing a heat-resistant electric wire by providing a fiber layer made of heat-resistant fibers on a conductor, then impregnating the fiber layer with a heat-resistant paint, and subjecting the fiber layer to a heat-baking treatment. Regarding.
【0002】0002
【従来の技術】高い耐熱性を確保するために、耐熱性電
線は、導体上に被覆された耐熱ガラス繊維等の耐熱性繊
維の編組等からなる繊維層に火災時の火炎に晒されるよ
うな高温状態おいてセラミックス化ことを特徴とする耐
熱性塗料を含浸塗布し、更に焼き付け炉で加熱焼付け形
成された電気絶縁層を有している。この電気絶縁層は、
常温においては可撓性を有し、高温時においてはセラミ
ックス化することにより電気絶縁性と耐熱性とを合わせ
維持している。上記特徴を有する耐熱性塗料は一般に塗
料単味では粘度が高く扱い難いので、従来の耐熱性塗料
の含浸塗布方法では、適当な有機溶剤で耐熱性塗料を低
濃度に希釈して粘性が低い耐熱性塗料溶液に調製し、繊
維層で被覆された導体にその耐熱性塗料溶液中を適当な
液深で浸漬走行させ、その液深により生じた液圧により
繊維層に耐熱性塗料溶液を非強制的に含浸させた。例え
ば、図3に示すように、耐熱性塗料浴槽5に希釈した耐
熱性塗料溶液4を満たしておき、繊維層で被覆されてい
る導体1を前記耐熱性塗料溶液4の中に適当な液深で浸
漬通過させて、液圧により耐熱性塗料溶液4を繊維層に
含浸させていた。次いで、耐熱性塗料溶液を繊維層に含
浸させた導体を必要に応じてダイス2等に通して過剰の
耐熱性塗料塗膜を絞り外径を均一にし、続いて耐熱性塗
料を含浸させた導体1を焼き付け炉3で加熱焼き付けし
て耐熱性塗料を繊維層に固着させ電気絶縁層として形成
していた。[Prior Art] In order to ensure high heat resistance, heat-resistant electric wires have a fiber layer made of a braid of heat-resistant fibers such as heat-resistant glass fibers coated on a conductor, so that they are protected from exposure to flame during a fire. It is impregnated with a heat-resistant paint that turns into ceramic at high temperatures, and further has an electrically insulating layer formed by heating and baking in a baking furnace. This electrical insulation layer is
It is flexible at room temperature, and is made of ceramic at high temperatures to maintain both electrical insulation and heat resistance. Heat-resistant paints with the above characteristics generally have a high viscosity and are difficult to handle when used alone. Therefore, in the conventional impregnation coating method for heat-resistant paints, heat-resistant paints with the above characteristics are diluted to a low concentration with an appropriate organic solvent. The conductor coated with a fiber layer is immersed in the heat-resistant paint solution and run at an appropriate depth, and the heat-resistant paint solution is non-forced onto the fiber layer by the hydraulic pressure generated by the liquid depth. impregnated with water. For example, as shown in FIG. 3, a heat-resistant paint bath 5 is filled with a diluted heat-resistant paint solution 4, and a conductor 1 covered with a fiber layer is placed in the heat-resistant paint solution 4 at an appropriate depth. The fiber layer was impregnated with the heat-resistant paint solution 4 by liquid pressure. Next, the conductor whose fiber layer is impregnated with a heat-resistant paint solution is passed through a die 2 or the like as necessary to squeeze out the excess heat-resistant paint film to make the outer diameter uniform, and then the conductor impregnated with the heat-resistant paint is 1 was heated and baked in a baking furnace 3 to fix the heat-resistant paint to the fiber layer and form it as an electrically insulating layer.
【0003】この含浸塗布方法は、導体が浸漬される耐
熱性塗料溶液の液深により生じる液圧、即ち小さな圧力
により言わば非強制的に耐熱性塗料溶液を繊維層に含浸
させているので、耐熱性塗料溶液の繊維層への含浸速度
は、耐熱性塗料溶液の液深、粘度等により決定される。
従って、ある速度以上に導体の走行速度を速めることが
できず、含浸工程の生産性が低かった。加えて、キシレ
ン等の有機溶剤で耐熱性塗料を低い濃度に希釈して大幅
に粘度を低下させ含浸し易くする必要があった。しかし
、耐熱性塗料浴槽中の有機溶剤は、時間の経過と共に次
第に蒸発して行き、それにつれて耐熱性塗料溶液の粘度
が上昇し、耐熱性塗料の繊維層への含浸深さと含浸した
塗料量とが時間の経過と共に変化した。即ち、この従来
の方法は、電気絶縁層の品質を一定に維持することが困
難な欠点を有し、その変動を防止するには煩瑣な耐熱性
塗料溶液の粘度管理を頻繁に行う必要があった。また、
繊維層に含浸した耐熱性塗料溶液を焼き付け炉で加熱焼
付けする工程のおいて、焼付け処理に要する時間を短縮
するために急速な加熱を行うと、繊維層に多量に含まれ
た有機溶剤が蒸発せずに炭化し、形成された電気絶縁層
の品質を著しく損なうことになるので、焼付け工程での
加熱処理時間の短縮が難しく生産性が低かった。以上説
明したように有機溶剤で低い粘度に希釈した耐熱性塗料
を繊維層に非強制的に含浸させる従来の含浸塗布焼付け
方法は、含浸工程並びに後続の加熱焼付け工程での生産
性が低く、かつ得られる耐熱性電線の電気絶縁層の品質
保持を困難にし、頻繁な耐熱性塗料の粘度管理を必要と
した。In this impregnating coating method, the fiber layer is non-forced to be impregnated with the heat-resistant paint solution using liquid pressure generated by the depth of the heat-resistant paint solution in which the conductor is immersed, that is, a small pressure. The rate of impregnation of the heat-resistant paint solution into the fiber layer is determined by the liquid depth, viscosity, etc. of the heat-resistant paint solution. Therefore, it was not possible to increase the running speed of the conductor beyond a certain speed, and the productivity of the impregnation process was low. In addition, it was necessary to dilute the heat-resistant paint to a low concentration with an organic solvent such as xylene to significantly lower the viscosity and make it easier to impregnate. However, the organic solvent in the heat-resistant paint bath gradually evaporates over time, and the viscosity of the heat-resistant paint solution increases accordingly. changed over time. In other words, this conventional method has the disadvantage that it is difficult to maintain a constant quality of the electrically insulating layer, and to prevent variations in the quality, it is necessary to frequently perform complicated viscosity control of the heat-resistant paint solution. Ta. Also,
In the process of heating and baking the heat-resistant paint solution impregnated into the fiber layer in a baking oven, when rapid heating is performed to shorten the time required for baking, a large amount of organic solvent contained in the fiber layer evaporates. This results in carbonization, which significantly impairs the quality of the formed electrically insulating layer, making it difficult to shorten the heat treatment time in the baking process, resulting in low productivity. As explained above, the conventional impregnation coating and baking method in which the fiber layer is non-forcibly impregnated with a heat-resistant paint diluted to a low viscosity with an organic solvent has low productivity in the impregnation process and the subsequent heating and baking process. This made it difficult to maintain the quality of the electrical insulation layer of the resulting heat-resistant wire, and required frequent viscosity control of the heat-resistant paint.
【0004】0004
【発明が解決しようとする課題】以上の従来方法の欠点
に鑑み、本発明の目的は、高粘性の耐熱性塗料を繊維層
に含浸させることが可能で、かつ生産性の高い耐熱性塗
料の含浸工程を有する耐熱性電線の製造方法を提供する
ことにある。SUMMARY OF THE INVENTION In view of the above-mentioned drawbacks of the conventional methods, an object of the present invention is to provide a heat-resistant paint that can impregnate a fiber layer with a highly viscous heat-resistant paint and has high productivity. An object of the present invention is to provide a method for manufacturing a heat-resistant electric wire that includes an impregnation step.
【0005】[0005]
【課題を解決するための手段】本来粘度の高い耐熱性塗
料を有機溶剤で希釈して大幅に粘度を低下させた上で繊
維層に貯液槽の耐熱性塗料溶液の液圧のみにより自然的
に含浸させる従来方法に代えて、定量吐出装置を介して
圧力を加えて強制的に繊維層に耐熱性塗料を含浸させる
ことにより、本発明は上記目的を達成した。即ち、繊維
層に耐熱性塗料を含浸させる工程が、貫通した所定口径
のダイス孔と、一方の端部開口でダイス孔に交差して合
流し他方の端部開口で外部と接続する耐熱性塗料注入孔
とを備えるダイ部のダイス孔に繊維層で被覆された導体
を貫通走行させながら、定量吐出装置を介して加圧した
耐熱性塗料を前記ダイ部の他方の端部開口を経由耐熱性
塗料注入孔を介して供給し、導体の繊維層に耐熱性塗料
を強制的に圧入させる工程からなることを特徴とする。[Means for solving the problem] The heat-resistant paint, which is originally highly viscous, is diluted with an organic solvent to significantly lower its viscosity, and then applied naturally to the fiber layer using only the liquid pressure of the heat-resistant paint solution in the liquid storage tank. The present invention has achieved the above object by forcibly impregnating the fiber layer with the heat-resistant paint by applying pressure through a metering device, instead of the conventional method of impregnating the fiber layer with the heat-resistant paint. That is, the process of impregnating the fiber layer with a heat-resistant paint involves forming a through-through die hole of a predetermined diameter, a heat-resistant paint that intersects and merges with the die hole at one end opening, and is connected to the outside at the other end opening. While passing a conductor coated with a fiber layer through the die hole of a die section equipped with an injection hole, pressurized heat-resistant paint is applied via a fixed-rate dispensing device through the other end opening of the die section. It is characterized by a step of supplying the heat-resistant paint through a paint injection hole and forcibly injecting the heat-resistant paint into the fiber layer of the conductor.
【0006】本発明に係る強制的含浸方法を適用できる
耐熱性塗料の粘度限界は、従来の非強制的含浸方法に比
べて遙かに高く、好適には5,000から100,00
0CPのである。市販の耐熱性塗料の大半は、粘度が上
記範囲に入るので、有機溶剤で希釈することなく使用で
きる。但し、5,000cp以下の耐熱性塗料は、その
低い粘性のため本発明に係る方法を適用することは困難
である。上記粘度範囲を超えた高い粘度の耐熱性塗料を
使用する場合には適当な有機溶剤で希釈して耐熱性塗料
溶液にすることが好ましい一方、上記粘度の範囲に既に
粘度が調整されている耐熱性塗料を使用する場合には、
有機溶剤で更に希釈する必要はないので、本発明で言う
耐熱性塗料とは、特に断らない限り耐熱性塗料単味及び
耐熱性塗料を有機溶剤で希釈して調製した耐熱性塗料溶
液の双方を意味する。The viscosity limit of heat-resistant paints to which the forced impregnation method of the present invention can be applied is much higher than that of conventional non-forced impregnation methods, and is preferably from 5,000 to 100,000 ml.
It's 0CP. Most commercially available heat-resistant paints have a viscosity within the above range, so they can be used without diluting with organic solvents. However, it is difficult to apply the method of the present invention to heat-resistant paints of 5,000 cp or less due to their low viscosity. When using a heat-resistant paint with a high viscosity exceeding the above viscosity range, it is preferable to dilute it with an appropriate organic solvent to make a heat-resistant paint solution. When using color paint,
Since there is no need to further dilute the heat-resistant paint with an organic solvent, the heat-resistant paint in the present invention refers to both the heat-resistant paint alone and the heat-resistant paint solution prepared by diluting the heat-resistant paint with an organic solvent, unless otherwise specified. means.
【0007】次に本発明に係る耐熱性電線の製造方法を
実施する装置の一例として図1に示す装置10について
説明する。図1に示す装置10は、強制的耐熱性塗料含
浸装置12と焼付け工程を実施する加熱焼付装置14と
引取り装置16とからなる。加熱焼付装置14と引取り
装置16とは従来の装置と変わるところがないので、強
制的耐熱性塗料含浸装置12についてのみ説明する。強
制的耐熱性塗料含浸装置12は、耐熱性塗料を入れるほ
ぼ密閉できる耐熱性塗料供給槽18と粘度調整用有機溶
剤を入れる同じく密閉できる有機溶剤供給槽20とそれ
ぞれに接続された耐熱性塗料定量吐出装置22と有機溶
剤定量吐出装置24とを備える耐熱性塗料供給部を有す
る。各吐出装置22と24には、好適には、所定の耐熱
性塗料溶液の粘度、例えば本発明を実施する好適範囲で
ある5000〜100,000cpの範囲の粘度になる
ような比率で耐熱性塗料を有機溶剤で希釈するように設
定したそれぞれの設定流量で吐出できる定量式ポンプ、
例えばプランジャーポンプ、ギヤポンプ等を使用する。
尚、上記粘度の範囲に既に粘度が調整されている耐熱性
塗料を使用する場合には、有機溶剤で更に希釈する必要
はない。Next, an apparatus 10 shown in FIG. 1 will be described as an example of an apparatus for carrying out the method of manufacturing a heat-resistant electric wire according to the present invention. The apparatus 10 shown in FIG. 1 includes a forced heat-resistant paint impregnation device 12, a heating baking device 14 for carrying out a baking process, and a take-off device 16. Since the heat-baking device 14 and the take-off device 16 are the same as conventional devices, only the forced heat-resistant paint impregnation device 12 will be described. The forced heat-resistant paint impregnation device 12 includes a heat-resistant paint supply tank 18 that contains a heat-resistant paint, which can be almost sealed, an organic solvent supply tank 20, which contains an organic solvent for viscosity adjustment, which can also be sealed, and a heat-resistant paint metering tank that is connected to each of them. It has a heat-resistant paint supply section including a discharge device 22 and an organic solvent quantitative discharge device 24. Each dispensing device 22 and 24 is preferably provided with a heat resistant paint solution in proportions to provide a predetermined heat resistant paint solution viscosity, such as a viscosity in the range of 5000 to 100,000 cp, which is the preferred range for practicing the present invention. metering pump that can discharge at each set flow rate set to dilute with organic solvent,
For example, a plunger pump, gear pump, etc. are used. In addition, when using a heat-resistant paint whose viscosity has already been adjusted to the above-mentioned viscosity range, there is no need to further dilute it with an organic solvent.
【0008】各吐出装置20、22の吐出側は混合装置
26に接続されていて、そこで各吐出装置から吐出され
た耐熱性塗料と有機溶剤とが完全に混合されて所定の粘
度に調製された耐熱性塗料溶液となる。混合装置26は
、市販の混合装置、例えばスクリュー式混合装置等を使
用する。混合装置26の下流側は、2次定量吐出装置2
8に接続されている。そこで耐熱性塗料は所要の圧力に
加圧されて、図2に示すダイ部30の耐熱性塗料注入口
32に入る。2次定量吐出装置28には、好適には同じ
く定量式ポンプ、例えばプランジャーポンプ、ギヤポン
プ等を使用する。ダイ部30は、図2に示すようにほぼ
その中心に沿って貫通する所定の口径のダイス孔34と
耐熱性塗料注入口32からダイス孔32に交差する
方向でダイス孔に合流する耐熱性塗料注入孔36とを有
している。好適には、図2に示すように耐熱性塗料注入
孔36とダイス孔34との合流部がダイス孔34を環状
に取り囲むような環状中空部の形状になっていると、耐
熱性塗料が走行中の導体38の繊維層に含浸し易い。The discharge side of each discharge device 20, 22 is connected to a mixing device 26, where the heat-resistant paint and organic solvent discharged from each discharge device are completely mixed and adjusted to a predetermined viscosity. It becomes a heat-resistant paint solution. The mixing device 26 uses a commercially available mixing device, such as a screw type mixing device. On the downstream side of the mixing device 26 is a secondary quantitative dispensing device 2.
8 is connected. There, the heat-resistant paint is pressurized to a required pressure and enters the heat-resistant paint inlet 32 of the die section 30 shown in FIG. The secondary metering pump 28 is preferably a metering pump, such as a plunger pump or a gear pump. As shown in FIG. 2, the die part 30 has a die hole 34 of a predetermined diameter that penetrates almost along the center thereof, and a heat-resistant paint inlet 32 that flows into the die hole in a direction crossing the die hole 32. It has an injection hole 36. Preferably, as shown in FIG. 2, the joining part of the heat-resistant paint injection hole 36 and the die hole 34 has the shape of an annular hollow part that surrounds the die hole 34 in an annular shape, so that the heat-resistant paint can run smoothly. It is easy to impregnate the fiber layer of the conductor 38 therein.
【0009】繊維層で被覆された導体38はダイ部30
のダイス孔32を貫通してほぼ一定速度で走行し、耐熱
性塗料注入孔36を経て流入してきた耐熱性塗料は加圧
された圧力で走行中の導体38の繊維層に圧入する。耐
熱性塗料の粘度と繊維層の種類に応じて導体38の走行
速度と耐熱性塗料の圧力を調整することにより、繊維層
に耐熱性塗料を完全にかつ均一に含浸させることができ
る。繊維層に耐熱性塗料を含浸させた導体38は、従来
の方法で加熱焼付装置14で焼付け工程が実施され、更
に引取り装置16に導入される。The conductor 38 covered with the fiber layer is connected to the die portion 30.
The heat-resistant paint passes through the die hole 32 of the conductor 32 at a substantially constant speed, and flows in through the heat-resistant paint injection hole 36. The heat-resistant paint is press-fitted into the fiber layer of the running conductor 38 under increased pressure. By adjusting the traveling speed of the conductor 38 and the pressure of the heat-resistant paint according to the viscosity of the heat-resistant paint and the type of the fiber layer, the fiber layer can be completely and uniformly impregnated with the heat-resistant paint. The conductor 38, whose fibrous layer is impregnated with a heat-resistant paint, is subjected to a baking process in a heating baking device 14 in a conventional manner, and is further introduced into a take-off device 16.
【0010】以下に、本発明を実施例と比較例に基づき
より詳細に説明する。[0010] The present invention will be explained in more detail below based on Examples and Comparative Examples.
【実施例】実施例1
耐熱性塗料として粘度60,000cpの宇部興産(株
)製の耐熱性塗料(商品名チラノコート)を使用し、そ
れを図1に示す強制的耐熱性塗料含浸装置12の耐熱性
塗料供給槽18に投入した。一方、希釈用有機溶剤とし
てキシレンを選択し、それを有機溶剤供給槽20に投入
した。表1の実施例1の欄に記載したようにダイ部30
に入る耐熱性塗料溶液の粘度が10,000cpに成る
ように耐熱性塗料定量吐出装置22と有機溶剤定量吐出
装置24の吐出量をそれぞれ調整し、混合装置26で混
合し、2次定量吐出装置28で加圧してダイ部30に供
給した。一方、0.75mm2 の導体断面積を有する
集合撚線導体上に耐熱ガラス繊維を0.3mmの厚さに
巻付け、更にその上に耐熱ガラス繊維を0.2mmの厚
さに編組して繊維層を形成した線体を1.5m/min
の線速でダイ部30を貫通走行させ、その繊維層に加
圧された耐熱性塗料を含浸させた。次いで、加熱焼付装
置14による従来の焼付け工程を経て実施例品1の耐熱
性電線を得た。実施例1にて製造した耐熱性電線の品質
を評価するため、電気絶縁層の表面外観と耐熱性電線の
断面を観察し、かつ電気絶縁破壊電圧を測定して、その
評価結果を同じく表1に記載した。尚、粘度に変化が生
じていないことを確認するため製造開始4時間後の耐熱
性塗料溶液の粘度を測定し、その測定結果を合わせて表
1に記載した。[Example] Example 1 A heat-resistant paint (trade name: Tyranno Coat) manufactured by Ube Industries, Ltd. with a viscosity of 60,000 cp was used as the heat-resistant paint, and it was applied to the forced heat-resistant paint impregnation device 12 shown in FIG. It was put into the heat-resistant paint supply tank 18. On the other hand, xylene was selected as the organic solvent for dilution, and was introduced into the organic solvent supply tank 20. As described in the column of Example 1 in Table 1, the die portion 30
The discharge amounts of the heat-resistant paint metering dispensing device 22 and the organic solvent metering dispensing device 24 are adjusted respectively so that the viscosity of the heat-resistant paint solution entering the solution becomes 10,000 cp. 28 and supplied to the die section 30. On the other hand, heat-resistant glass fibers were wound to a thickness of 0.3 mm on a stranded conductor having a conductor cross-sectional area of 0.75 mm2, and then heat-resistant glass fibers were further braided to a thickness of 0.2 mm on top of that. 1.5m/min of the layered wire body
The fiber layer was impregnated with the pressurized heat-resistant paint by passing through the die section 30 at a linear speed of . Next, a heat-resistant electric wire of Example 1 was obtained through a conventional baking process using a heating baking device 14. In order to evaluate the quality of the heat-resistant wire manufactured in Example 1, the surface appearance of the electrical insulating layer and the cross section of the heat-resistant wire were observed, and the electrical breakdown voltage was measured. The evaluation results are also shown in Table 1. Described in . In addition, in order to confirm that there was no change in viscosity, the viscosity of the heat-resistant paint solution was measured 4 hours after the start of production, and the measurement results are listed in Table 1.
【0011】実施例2
表1の実施例2の欄に記載したようにダイ部30に入る
耐熱性塗料溶液の粘度が30,000cpに成るように
耐熱性塗料定量吐出装置22と有機溶剤定量吐出装置2
4の吐出量をそれぞれ調整し、2次定量吐出装置28で
加圧してダイ部30に供給したこと、及び繊維層が形成
された線体を2.0m/min の線速でダイ部30を
貫通走行させたこと以外は、実施例1と同様に製造した
耐熱性電線を実施例品2とした。実施例1と同様に評価
を行い、その評価結果を表1に記載した。Example 2 As described in the column of Example 2 in Table 1, the heat-resistant paint metering dispensing device 22 and the organic solvent metering discharge device were installed so that the viscosity of the heat-resistant paint solution entering the die section 30 was 30,000 cp. Device 2
4, the discharge amount was adjusted respectively, and the wire body was supplied to the die section 30 under pressure with the secondary quantitative dispensing device 28, and the wire body on which the fiber layer was formed was passed through the die section 30 at a linear speed of 2.0 m/min. Example product 2 was a heat-resistant electric wire manufactured in the same manner as in Example 1, except that it was run through the wire. Evaluation was performed in the same manner as in Example 1, and the evaluation results are listed in Table 1.
【0012】0012
【表1】[Table 1]
【0013】比較例1
本発明に係る実施例との比較を行うため、次に説明する
ように従来の浸漬式非強制的含浸方法を実施した。実施
例1及び2同様に、耐熱性塗料として粘度60,000
cpの宇部興産(株)製の耐熱性塗料(商品名チラノコ
ート)、希釈用有機溶剤としてキシレンを選定し、耐熱
性塗料溶液の粘度が1,000cpになるように希釈し
て耐熱性塗料溶液を調製した。図3に示すような耐熱性
塗料浴槽に調製した耐熱性塗料溶液を満たしておき、実
施例1と同様に繊維層を形成した線体を前記耐熱性塗料
溶液の中に線速0.5m/min 、液深20cmで浸
漬通過させて繊維層に耐熱性塗料を含浸させた。更に従
来の焼付け工程を経て比較例品1の耐熱性電線を得た。
こうして得た耐熱性電線について実施例1と同様に比較
例品1の品質の評価及び耐熱性塗料の粘度の時間的変化
の測定を行い、その評価結果及び測定結果を表1に記載
した。Comparative Example 1 In order to make a comparison with the examples according to the present invention, a conventional immersion non-forced impregnation method was carried out as described below. Similar to Examples 1 and 2, the viscosity was 60,000 as a heat-resistant paint.
A heat-resistant paint (trade name: Tyrannocoat) manufactured by Ube Industries, Ltd., xylene was selected as the organic solvent for dilution, and the heat-resistant paint solution was diluted so that the viscosity of the heat-resistant paint solution was 1,000 cp. Prepared. A heat-resistant paint bath as shown in FIG. 3 is filled with the prepared heat-resistant paint solution, and a wire body on which a fiber layer is formed in the same manner as in Example 1 is placed in the heat-resistant paint solution at a linear speed of 0.5 m/min. The fiber layer was impregnated with the heat-resistant paint by passing the fiber through immersion at a liquid depth of 20 cm. Furthermore, a heat-resistant electric wire of Comparative Example 1 was obtained through a conventional baking process. Regarding the thus obtained heat-resistant electric wire, the quality of Comparative Example 1 was evaluated and the change in viscosity of the heat-resistant paint over time was measured in the same manner as in Example 1, and the evaluation and measurement results are listed in Table 1.
【0014】比較例2
繊維層を形成した線体を耐熱性塗料溶液の中を線速1.
0m/min で浸漬通過させて繊維層に耐熱性塗料を
含浸させたこと以外は、比較例品1と同様にして得た比
較例品2の耐熱性電線を同じく比較例品1と同様に評価
しその結果を表1に記載した。
比較例3
耐熱性塗料溶液の粘度が3,000cpになるように希
釈して比較例1で用いた耐熱性塗料溶液を調製したこと
以外は、比較例品1と同様にして得た比較例品3の耐熱
性電線を同じく比較例品1と同様に評価しその結果を表
1に記載した。Comparative Example 2 A wire body with a fiber layer formed thereon was passed through a heat-resistant paint solution at a wire speed of 1.
The heat-resistant wire of Comparative Example 2, which was obtained in the same manner as Comparative Example 1, was evaluated in the same manner as Comparative Example 1, except that the fiber layer was impregnated with a heat-resistant paint by dipping at 0 m/min. The results are listed in Table 1. Comparative Example 3 A comparative example product obtained in the same manner as Comparative Example Product 1, except that the heat-resistant paint solution used in Comparative Example 1 was prepared by diluting the heat-resistant paint solution so that the viscosity was 3,000 cp. The heat-resistant electric wire No. 3 was evaluated in the same manner as Comparative Example Product 1, and the results are shown in Table 1.
【0015】実施例1と2は、比較例に比べて有機溶剤
の使用量が少なく、線体の走行線速度が速い。一方、従
来の方法による比較例は、全て時間経過による耐熱性塗
料溶液の粘度の変化が大きく、また焼付け処理後の比較
例品の電気絶縁層は、低い粘度の耐熱性塗料溶液を使用
し、かつ導体の線速が遅い比較例1を除いて何らかの欠
陥を有し、加えて耐熱性塗料が繊維層の上層の編組層ま
でしか含浸していない上に不完全含浸のため端末加工性
に劣る。実施例1と2により製造された耐熱性電線は、
電気絶縁層に欠陥がなく、比較例品に比較して電気絶縁
破壊電圧が格段に高く、かつ耐熱性塗料が繊維層の下層
の繊維巻付け層にまで完全に含浸しており、そのため端
末処理も簡単である。一方、導体の走行速度を速くした
比較例2及び耐熱性塗料溶液の粘度を高くした比較例3
では、得られた耐熱性電線の電気絶縁層に欠陥があり、
そのため電気絶縁破壊電圧が低い。[0015] In Examples 1 and 2, the amount of organic solvent used was smaller than in the comparative example, and the linear velocity of the wire was faster. On the other hand, in all the comparative examples made using the conventional method, the viscosity of the heat-resistant paint solution changed significantly over time, and the electrical insulation layer of the comparative example product after the baking process used a heat-resistant paint solution with a low viscosity. In addition, the wire speed of the conductor was low, except for Comparative Example 1, which had some defects, and in addition, the heat-resistant paint impregnated only up to the braided layer on the upper layer of the fiber layer, and the end processability was poor due to incomplete impregnation. . The heat-resistant electric wires manufactured according to Examples 1 and 2 were as follows:
There are no defects in the electrical insulation layer, the electrical breakdown voltage is much higher than that of the comparative example product, and the heat-resistant paint completely impregnates the fiber wrapping layer below the fiber layer, so the terminal treatment is also easy. On the other hand, Comparative Example 2 in which the running speed of the conductor was increased and Comparative Example 3 in which the viscosity of the heat-resistant paint solution was increased.
In this case, there is a defect in the electrical insulation layer of the obtained heat-resistant wire,
Therefore, the electrical breakdown voltage is low.
【0016】[0016]
【発明の効果】耐熱性電線の製造において、本発明は、
高濃度の耐熱性塗料を定量吐出装置を介して加圧して強
制的に繊維層に含浸させることにより、含浸工程で導体
の繊維層への耐熱性塗料含浸速度を速くできるので含浸
工程の所要時間を短縮し、加えて有機溶剤の添加量を大
幅に減少できるので含浸工程に続く焼付け工程で焼付け
処理に要する時間を短縮し、この結果耐熱性電線製造の
生産性を大幅に向上させる。本発明は、同時に有機溶剤
の使用を節減する効果を有する。更に、本発明に係る方
法で製造された耐熱性電線は、繊維層全体に耐熱性塗料
が含浸した均質な高い品質の、電気絶縁性と耐熱性の双
方に優れた電気絶縁層を備えているので、火災等の高温
時でも電気絶縁電線としの機能を高い信頼性で果たすこ
とができる。更に、有機溶剤の蒸発が無いので労働環境
の改善に寄与する効果もある。[Effects of the Invention] In the production of heat-resistant electric wires, the present invention
By forcibly impregnating the fiber layer with high-concentration heat-resistant paint through a quantitative dispensing device, the speed of impregnation of the heat-resistant paint into the fiber layer of the conductor can be increased during the impregnation process, thereby reducing the time required for the impregnation process. In addition, since the amount of organic solvent added can be significantly reduced, the time required for baking in the baking process following the impregnation process is shortened, and as a result, productivity in the production of heat-resistant electric wires is greatly improved. The present invention also has the effect of reducing the use of organic solvents. Furthermore, the heat-resistant electric wire manufactured by the method according to the present invention has a homogeneous, high-quality electrical insulation layer with excellent both electrical insulation properties and heat resistance, in which the entire fiber layer is impregnated with heat-resistant paint. Therefore, it can function as an electrically insulated wire with high reliability even at high temperatures such as during a fire. Furthermore, since there is no evaporation of organic solvents, there is an effect that contributes to improving the working environment.
【図1】図1は、本発明に係る耐熱性電線の製造方法を
実施する装置の概略説明図である。FIG. 1 is a schematic explanatory diagram of an apparatus for carrying out a method for manufacturing a heat-resistant electric wire according to the present invention.
【図2】図2は、本発明に係る耐熱性電線の製造方法を
実施する装置のダイ部の断面図である。FIG. 2 is a cross-sectional view of a die portion of an apparatus for carrying out the method for manufacturing a heat-resistant electric wire according to the present invention.
【図3】図3は、従来の耐熱性電線の製造方法を実施す
る装置の概略説明図である。FIG. 3 is a schematic explanatory diagram of an apparatus for carrying out a conventional method for manufacturing a heat-resistant electric wire.
1 導体
2 ダイス
3 焼付け炉
4 耐熱性塗料
5 耐熱性塗料浴槽
10 本発明に係る耐熱性電線の製造方法を実施する
装置
12 強制的耐熱性塗料含浸装置
14 加熱焼付装置
16 引取り装置
18 耐熱性塗料供給槽
20 有機溶剤供給槽
22 耐熱性塗料定量吐出装置
24 有機溶剤定量吐出装置
26 混合装置
28 2次定量吐出装置
30 ダイ部
32 耐熱性塗料注入口
34 ダイス孔
36 耐熱性塗料注入孔
38 繊維層で被覆された導体1 Conductor 2 Dice 3 Baking furnace 4 Heat-resistant paint 5 Heat-resistant paint bath 10 Apparatus for carrying out the method for manufacturing a heat-resistant electric wire according to the present invention 12 Forced heat-resistant paint impregnation device 14 Heat-baking device 16 Taking-off device 18 Heat resistance Paint supply tank 20 Organic solvent supply tank 22 Heat-resistant paint metering discharge device 24 Organic solvent metering discharge device 26 Mixing device 28 Secondary metering discharge device 30 Die section 32 Heat-resistant paint injection port 34 Die hole 36 Heat-resistant paint injection hole 38 Fiber conductor coated with layers
Claims (1)
設け、次いで前記繊維層に耐熱性塗料を含浸させ、加熱
焼付け処理して、耐熱性電線を製造する方法において、
前記繊維層に耐熱性塗料を含浸させる工程が、貫通した
所定口径のダイス孔と、一方の端部開口で前記ダイス孔
に交差して合流し他方の端部開口で外部と接続する耐熱
性塗料注入孔とを備えるダイ部の前記ダイス孔に前記繊
維層で被覆された導体を貫通走行させながら、定量吐出
装置を介して加圧した耐熱性塗料を前記ダイ部の他方の
端部開口を経由前記耐熱性塗料注入孔を介して供給し、
前記導体の前記繊維層に前記耐熱性塗料を強制的に圧入
させる工程からなることを特徴とする耐熱性電線の製造
方法。1. A method for manufacturing a heat-resistant electric wire by providing a fiber layer made of heat-resistant fibers on a conductor, then impregnating the fiber layer with a heat-resistant paint, and subjecting the fiber layer to a heat-baking treatment, comprising:
The step of impregnating the fiber layer with a heat-resistant paint includes a through-through die hole of a predetermined diameter, a heat-resistant paint that intersects and merges with the die hole at one end opening, and is connected to the outside at the other end opening. While passing the conductor covered with the fiber layer through the die hole of the die section having an injection hole, pressurized heat-resistant paint is passed through the opening at the other end of the die section through the metering dispensing device. Supplied through the heat-resistant paint injection hole,
A method for producing a heat-resistant electric wire, comprising the step of forcibly press-fitting the heat-resistant paint into the fiber layer of the conductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3053234A JPH04272619A (en) | 1991-02-26 | 1991-02-26 | Manufacture of heat resistant electric wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3053234A JPH04272619A (en) | 1991-02-26 | 1991-02-26 | Manufacture of heat resistant electric wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04272619A true JPH04272619A (en) | 1992-09-29 |
Family
ID=12937122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3053234A Pending JPH04272619A (en) | 1991-02-26 | 1991-02-26 | Manufacture of heat resistant electric wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04272619A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1935506A1 (en) * | 2006-12-19 | 2008-06-25 | Hitachi Magnet Wire Corporation | Varnish coating device and method for coating a varnish |
JP2011156456A (en) * | 2010-01-29 | 2011-08-18 | Mitsubishi Electric Corp | Apparatus and method of applying coating agent on wire |
JP2012067405A (en) * | 2010-09-22 | 2012-04-05 | Mitsubishi Electric Corp | Adhesive application device |
-
1991
- 1991-02-26 JP JP3053234A patent/JPH04272619A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1935506A1 (en) * | 2006-12-19 | 2008-06-25 | Hitachi Magnet Wire Corporation | Varnish coating device and method for coating a varnish |
JP2011156456A (en) * | 2010-01-29 | 2011-08-18 | Mitsubishi Electric Corp | Apparatus and method of applying coating agent on wire |
JP2012067405A (en) * | 2010-09-22 | 2012-04-05 | Mitsubishi Electric Corp | Adhesive application device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3991397A (en) | Ignition cable | |
DE3011047C2 (en) | Heat-resistant, insulated electrical conductor wire and method for making the same | |
US4497849A (en) | Process for polymer coating electrical conductors | |
JPH04272619A (en) | Manufacture of heat resistant electric wire | |
DE2716452C2 (en) | Method and apparatus for producing a flux-coated wick from fibers of metals | |
US4327122A (en) | Evaporated electrodes for zirconia exhaust gas oxygen sensors | |
CN102646488B (en) | Process for machining tin-plated screening layer of cable | |
JP4383031B2 (en) | Wire coating method | |
US8293320B2 (en) | Method for producing an electrical conductor with an insulation and at least one point to be kept free of the insulation | |
DE2204655C3 (en) | Process for the production of electrical cables or lines with a sheath and / or insulation based on a crosslinked polyethylene | |
DE102012111710B4 (en) | Verfa for plasma treatment of a colloidal solution and application of the method | |
DE3744465C1 (en) | Device and method for producing the insulation layer of a line | |
US1890291A (en) | Insttlated electric conductor and the method of | |
DE1646024B2 (en) | Process for the production of an electrically insulating coating on an electrical part by cataphoretic application of a lacquer dispersed in water | |
US4299788A (en) | Process for manufacturing stranded copper wire | |
CN113321826B (en) | Preparation method of glass fiber resin composite material | |
US6027680A (en) | Method and apparatus for the in-line impregnation of fibers with a non-aqueous chemical treatment | |
US1587155A (en) | Electrical apparatus | |
US2352426A (en) | Manufacture of insulated wire | |
US2387191A (en) | Apparatus for insulating electrical conductors | |
CA2424573C (en) | High temperature wire construction | |
US2359590A (en) | Electrical conductor and a method of making it | |
JPH0379637A (en) | Method for impregnating fiber with phenolic resin | |
EP0063963A1 (en) | Method and apparatus for coating filaments | |
US267044A (en) | Richard s |