JPH04261703A - Polycrystal diamond cutting tool - Google Patents
Polycrystal diamond cutting toolInfo
- Publication number
- JPH04261703A JPH04261703A JP3023342A JP2334291A JPH04261703A JP H04261703 A JPH04261703 A JP H04261703A JP 3023342 A JP3023342 A JP 3023342A JP 2334291 A JP2334291 A JP 2334291A JP H04261703 A JPH04261703 A JP H04261703A
- Authority
- JP
- Japan
- Prior art keywords
- tool
- polycrystalline diamond
- diamond
- cutting tool
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010432 diamond Substances 0.000 title claims abstract description 122
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 121
- 238000005520 cutting process Methods 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 claims abstract description 25
- 239000012808 vapor phase Substances 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims description 51
- 239000002184 metal Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 238000005219 brazing Methods 0.000 claims description 5
- 239000010409 thin film Substances 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 239000007769 metal material Substances 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 17
- 239000013078 crystal Substances 0.000 abstract description 5
- 239000002994 raw material Substances 0.000 abstract description 5
- 238000003475 lamination Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 24
- 239000007789 gas Substances 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 7
- 239000010408 film Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- -1 methanol and ethanol Chemical compound 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000012993 chemical processing Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001868 water Inorganic materials 0.000 description 1
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は、耐摩耗性、耐欠損性
および耐熱性に優れ、かつ鋭利な刃先を有する多結晶ダ
イヤモンド切削工具に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a polycrystalline diamond cutting tool having excellent wear resistance, chipping resistance and heat resistance, and having a sharp cutting edge.
【0002】0002
【従来の技術およびその課題】ダイヤモンドは、硬度と
熱伝導率が高いため、切削工具や耐摩工具として使用さ
れている。しかし、単結晶ダイヤモンドは劈開するとい
う欠点があり、この欠点を抑制するために、たとえば特
公昭52−12126号公報に記載されているような超
高圧焼結技術を用いてダイヤモンド同士を焼結したダイ
ヤモンド焼結体が開発されている。BACKGROUND OF THE INVENTION Diamond is used as cutting tools and wear-resistant tools because of its high hardness and high thermal conductivity. However, single-crystal diamond has the drawback of cleavage, and in order to suppress this drawback, diamonds have been sintered together using ultra-high pressure sintering technology, such as that described in Japanese Patent Publication No. 52-12126. Diamond sintered bodies have been developed.
【0003】市販されているダイヤモンド焼結体のうち
、特に粒径が数十μm以下の微粒のものは、上記の単結
晶ダイヤモンドに見られたような劈開現象が生ずること
なく、優れた耐摩耗性を示すことが知られている。Among commercially available diamond sintered bodies, those with particularly fine grains of several tens of micrometers or less have excellent wear resistance without causing the cleavage phenomenon seen in the above-mentioned single-crystal diamond. It is known to show gender.
【0004】しかしながら、これらのダイヤモンド焼結
体は数%〜数十%の結合材を含有するため、焼結体を構
成する粒子単位でチッピングが生じるという問題点があ
る。特に、このチッピング現象は、工具刃先のくさび角
が小さくなると顕著になり、鋭利な切れ刃を持った工具
の作製は極めて困難である。また、特に工具刃先のくさ
び角が80°よりも小さなくなると、現状のダイヤモン
ド焼結体では靭性が不足し、刃付けの際にチッピングが
生じるだけでなく、工具として使用時に欠損しやすくな
ることが知られている。However, since these diamond sintered bodies contain several percent to several tens of percent of binder, there is a problem in that chipping occurs in the particles constituting the sintered body. In particular, this chipping phenomenon becomes noticeable when the wedge angle of the cutting edge of the tool becomes small, and it is extremely difficult to manufacture a tool with a sharp cutting edge. In addition, especially when the wedge angle of the cutting edge of the tool becomes smaller than 80°, the current diamond sintered body lacks toughness, which not only causes chipping during cutting, but also makes it more likely to break when used as a tool. It has been known.
【0005】このような問題は、粒径が小さく内部欠陥
が少ないダイヤモンドを構成粒子とし、これらの粒子間
結合を強固にすれば改善されると考えられる。このよう
な観点から、結合材を含有させずにダイヤモンドだけを
焼結して強固な焼結体を合成することが試みられた。し
かし、ダイヤモンド粒子が変形しにくいため、粒子の間
隙に圧力が伝達されず、その結果黒鉛化が生じ、ダイヤ
モンド−黒鉛の複合体しか得られないのが実情である。[0005] It is thought that such problems can be improved by using diamond as constituent particles, which have a small particle size and few internal defects, and by strengthening the bonds between these particles. From this point of view, attempts have been made to synthesize a strong sintered body by sintering only diamond without containing a binder. However, since diamond particles are difficult to deform, pressure is not transmitted to the gaps between the particles, resulting in graphitization, and the reality is that only a diamond-graphite composite can be obtained.
【0006】一方、ダイヤモンドの合成法として、近年
、低圧気相法の技術の進展が目覚しく、ダイヤモンドの
みからなる多結晶体の製造が可能となっている。その1
つの工具形態としては、超硬合金やセラミックからなる
母材上に多結晶ダイヤモンド薄膜を被覆したものが知ら
れている。しかしながら、この種のダイヤコーティング
工具はダイヤモンド薄膜と母材との密着性に問題がある
ため、その用途は限定されたものである。低圧気相法を
利用した多結晶ダイヤモンド工具のもう1つの工具形態
は、たとえば特願昭63−34033号公報に開示され
たように、厚さが0.1〜3.0mmの多結晶ダイヤモ
ンド薄板を工具母材に直接ロウ付けするものである。
この工具は、ダイヤコーティング工具で問題となった多
結晶ダイヤモンドの剥離現象が生じず、従来の超高圧焼
結ダイヤモンド工具と同等以上の性能で使用可能である
。たとえば、特願平1−237534号公報には、強度
、耐熱性、耐摩耗性に優れた高靭性多結晶ダイヤモンド
工具が開示されている。On the other hand, as a method for synthesizing diamond, in recent years, the technology of low-pressure gas phase method has made remarkable progress, and it has become possible to manufacture polycrystals made only of diamond. Part 1
One known tool type is one in which a base material made of cemented carbide or ceramic is coated with a polycrystalline diamond thin film. However, this type of diamond-coated tool has a problem with the adhesion between the diamond thin film and the base material, so its use is limited. Another type of polycrystalline diamond tool using the low pressure gas phase method is a polycrystalline diamond thin plate with a thickness of 0.1 to 3.0 mm, as disclosed in Japanese Patent Application No. 63-34033. is brazed directly to the tool base material. This tool does not suffer from the peeling phenomenon of polycrystalline diamond, which is a problem with diamond-coated tools, and can be used with performance equivalent to or better than conventional ultra-high pressure sintered diamond tools. For example, Japanese Patent Application No. 1-237534 discloses a high-toughness polycrystalline diamond tool having excellent strength, heat resistance, and wear resistance.
【0007】しかしながら、低圧気相法による多結晶ダ
イヤモンドを用いても、刃先のくさび角が80°よりも
小さくなると鋭利な刃先形成が困難になり、また切削中
に欠損しやすくなる傾向が飛躍的に改善されるものでは
なかった。However, even when using polycrystalline diamond produced by the low-pressure vapor phase method, if the wedge angle of the cutting edge becomes smaller than 80°, it becomes difficult to form a sharp cutting edge, and there is a significant tendency for the cutting edge to break easily during cutting. It was not something that could be improved.
【0008】このように、従来のダイヤモンド工具は、
鋭利な刃先形成を行なおうとした場合、ダイヤモンド焼
結体あるいは低圧気相法により合成した多結晶ダイヤモ
ンドのいずれの素材を用いても刃先の欠損が生じ問題と
なっていた。[0008] In this way, conventional diamond tools
When attempting to form a sharp cutting edge, chipping of the cutting edge has been a problem, regardless of whether a diamond sintered body or polycrystalline diamond synthesized by a low-pressure vapor phase method is used.
【0009】したがって、この発明は、上記のような問
題点を解消するためになされたもので、鋭利な刃先を有
し、耐欠損性、耐摩耗性および耐熱性に優れた多結晶ダ
イヤモンド切削工具を提供するとを目的とする。[0009] Therefore, the present invention was made to solve the above problems, and provides a polycrystalline diamond cutting tool that has a sharp cutting edge and has excellent chipping resistance, wear resistance, and heat resistance. The purpose is to provide.
【0010】0010
【課題を解決するための手段】この発明による多結晶ダ
イヤモンド切削工具は、工具素材として、平均粒径が0
.1μm以上10μm以下のダイヤモンド焼結体と、こ
のダイヤモンド焼結体の少なくもと1主面上に低圧気相
法により合成された膜厚5μm以上20μm以下の多結
晶ダイヤモンド層とを有している。そして、多結晶ダイ
ヤモンド層の成長面側が工具のすくい面となるように構
成されている。[Means for Solving the Problems] The polycrystalline diamond cutting tool according to the present invention has an average grain size of 0 as a tool material.
.. It has a diamond sintered body of 1 μm or more and 10 μm or less, and a polycrystalline diamond layer with a film thickness of 5 μm or more and 20 μm or less synthesized by a low-pressure vapor phase method on at least one main surface of the diamond sintered body. . The growth surface side of the polycrystalline diamond layer is configured to be the rake face of the tool.
【0011】切削工具の形態としては、このダイヤモン
ド焼結体と低圧気相法による多結晶ダイヤモンド層との
2層構造体を工具本体として用いるもの、およびこの2
層構造体を工具支持体に接合して用いるものがある。[0011] As for the form of the cutting tool, there are those in which a two-layer structure of this diamond sintered body and a polycrystalline diamond layer formed by a low-pressure vapor phase method is used as the tool body, and those in which this two-layer structure is used as a tool body.
Some use a layered structure bonded to a tool support.
【0012】また、この発明による多結晶ダイヤモンド
切削工具のすくい面と逃げ面とにより構成される刃先部
のくさび角は40°以上70°以下に形成されている。Furthermore, the wedge angle of the cutting edge formed by the rake face and the flank face of the polycrystalline diamond cutting tool according to the present invention is formed to be 40° or more and 70° or less.
【0013】さらに、この発明による多結晶ダイヤモン
ド切削工具は、ダイヤモンド焼結体と多結晶ダイヤモン
ド層とを含む工具素材の、工具支持体との接合面側に周
期律表の第IVA族,第IVB族,第VA族,第VB族
,第VIA族,第VIB族,第VII族および第VII
B族に含まれる金属またはこれらの化合物のいずれかか
らなる薄膜層が形成されており、さらに工具素材と工具
支持体とがロウ材で接合されている。Furthermore, in the polycrystalline diamond cutting tool according to the present invention, the tool material containing the diamond sintered body and the polycrystalline diamond layer has a material of groups IVA and IVB of the periodic table on the side of the tool support that is joined to the tool support. Groups VA, VB, VIA, VIB, VII and VII
A thin film layer made of a metal included in Group B or a compound thereof is formed, and the tool material and tool support are further bonded with a brazing material.
【0014】[0014]
【発明の作用・効果】ここでは、この発明に至る過程を
参照してこの発明による多結晶ダイヤモンド切削工具の
作用効果について説明する。[Operations and Effects of the Invention] Here, the functions and effects of the polycrystalline diamond cutting tool according to the present invention will be explained with reference to the process leading up to the present invention.
【0015】発明者は、たとえば特願平1−23753
4号に示される従来の低圧気相法により合成された多結
晶ダイヤモンドを用いた切削工具の性能が不十分である
原因の解析を行なった。この従来例に示される多結晶ダ
イヤモンドは、機械加工やあるいは化学的な処理によっ
て溶解・分離することが可能なモリブデン(Mo)やシ
リコン(Si)などの基材を用い、この基材の表面上に
低圧気相法を用いて多結晶ダイヤモンド層を構成し、そ
の後、基材を多結晶ダイヤモンド層から分離させて工具
素材を取出している。このような方法においては、基材
の熱膨張係数と、その表面上に合成される多結晶ダイヤ
モンドの熱膨張係数とが異なるため、成膜後に大きな残
留応力が生じる。そして、成膜された多結晶ダイヤモン
ド層から基材を分離した場合には、残留応力により多結
晶体に変形が生ずることを確認した。また、この変形に
伴って、多結晶ダイヤモンドの内部には微視的なクラッ
クが導入され、これが工具の強度低下を招いている可能
性があると考えた。[0015] For example, the inventor has
We analyzed the cause of the insufficient performance of cutting tools using polycrystalline diamond synthesized by the conventional low-pressure gas phase method as shown in No. 4. The polycrystalline diamond shown in this conventional example uses a base material such as molybdenum (Mo) or silicon (Si) that can be dissolved and separated by mechanical processing or chemical processing, and the surface of this base material is A polycrystalline diamond layer is formed using a low-pressure vapor phase method, and then the base material is separated from the polycrystalline diamond layer to take out the tool material. In such a method, the coefficient of thermal expansion of the base material and the coefficient of thermal expansion of the polycrystalline diamond synthesized on the surface thereof are different, so that a large residual stress is generated after the film is formed. It was also confirmed that when the base material was separated from the formed polycrystalline diamond layer, the polycrystalline body was deformed due to residual stress. It was also thought that this deformation may introduce microscopic cracks into the interior of the polycrystalline diamond, leading to a decrease in the strength of the tool.
【0016】このような解析結果より、残留応力や、こ
れに起因するクラックの発生の問題は、基材にダイヤモ
ンド以外の物質を使用する限り回避することは極めて難
しいと考えられた。[0016] From these analytical results, it was considered that it is extremely difficult to avoid the problem of residual stress and the occurrence of cracks caused by it as long as a material other than diamond is used for the base material.
【0017】したがって、次にダイヤモンドを基材とし
て用い、その表面上に低圧気相法により多結晶ダイヤモ
ンドを成膜する方法を検討した。このような方法におい
ては、従来いくつかの類似した公知例が存在する。たと
えば、特開昭60−90884号公報には、ダイヤモン
ド基焼結材料の表面に気相合成法によりダイヤモンド被
膜層を0.2〜20μmの平均膜厚で形成してなる切削
工具および耐摩耗工具用表面被覆ダイヤモンド基焼結材
料が開示されている。この従来の例では、ダイヤモンド
基焼結材料に鉄族金属を結合材として5容量%以上含有
するものを使用している。このような材料を基材に用い
て、上記公報の例に記載の条件(基材表面温度500〜
830℃)で多結晶ダイヤモンドを被覆することを試み
たが、基材に含まれる結合材の影響により被覆層が形成
されにくく、あるいは基材と被覆層との密着強度が劣る
などの問題点が生じた。このような問題を改善する方法
として示された従来の他の例として、特開昭63−69
971号公報には、基材に鉄族金属結合材を除去したも
のを用いるダイヤモンド被覆焼結体の製造方法が開示さ
れている。また、特開昭63−185859号公報には
、少量のSiCを結合材として含有する焼結ダイヤモン
ドを基材として用いる方法およびそれにより得られるダ
イヤモンド被膜焼結ダイヤモンドが開示されている。
この発明は、上記の従来例にさらに検討を加えることに
より、従来の材質では実現できなかった優れた強度を持
った工具素材ならびに鋭利な刃先を有する切削工具の製
造を可能としたものである。[0017] Therefore, next, we investigated a method of using diamond as a base material and forming a polycrystalline diamond film on its surface by a low-pressure vapor phase method. In such a method, there are several similar known examples. For example, Japanese Patent Application Laid-Open No. 60-90884 discloses a cutting tool and a wear-resistant tool in which a diamond coating layer is formed on the surface of a diamond-based sintered material by vapor phase synthesis to an average thickness of 0.2 to 20 μm. Surface-coated diamond-based sintered materials are disclosed. In this conventional example, a diamond-based sintered material containing 5% by volume or more of an iron group metal as a binder is used. Using such a material as a base material, the conditions described in the example of the above publication (substrate surface temperature 500~
Attempts were made to coat polycrystalline diamond at temperatures (830°C), but there were problems such as difficulty in forming a coating layer due to the influence of the binder contained in the base material, or poor adhesion strength between the base material and the coating layer. occured. Another conventional example of a method for improving such problems is Japanese Patent Application Laid-open No. 63-69.
No. 971 discloses a method for manufacturing a diamond-coated sintered body using a base material from which an iron group metal binder has been removed. Further, Japanese Patent Application Laid-Open No. 185859/1983 discloses a method using sintered diamond containing a small amount of SiC as a binder as a base material, and a diamond-coated sintered diamond obtained thereby. By further studying the above-mentioned conventional examples, the present invention has made it possible to manufacture tool materials with excellent strength that could not be achieved with conventional materials, as well as cutting tools with sharp cutting edges.
【0018】すなわち、この発明の多結晶ダイヤモンド
切削工具においては、基材として平均粒子径が0.1〜
10μmのダイヤモンド焼結体を用いている。このダイ
ヤモンド焼結体の平均粒子径をこの範囲に規定した理由
は、仮に平均粒子径が10μmより大きい場合には、そ
の表面上に被覆される多結晶ダイヤモンドの粒子も粗大
化し、工具作製時あるいは工具として使用する際にチッ
ピングや欠損が発生しやすくなるためである。また、0
.1μmよりも小さい場合には、現状の焼結技術では均
一な組成を呈するダイヤモンド焼結体が得られず、その
結果、その表面上に被覆された多結晶ダイヤモンドの粒
子も不均一なものとなり、安定した強度を持った素材が
得られないからである。That is, in the polycrystalline diamond cutting tool of the present invention, the base material has an average particle diameter of 0.1 to
A 10 μm diamond sintered body is used. The reason why the average particle size of this diamond sintered body is specified within this range is that if the average particle size is larger than 10 μm, the polycrystalline diamond particles coated on the surface will also become coarser, and when the tool is manufactured or This is because chipping and breakage are likely to occur when used as a tool. Also, 0
.. If it is smaller than 1 μm, the current sintering technology cannot produce a diamond sintered body with a uniform composition, and as a result, the polycrystalline diamond particles coated on the surface become non-uniform. This is because a material with stable strength cannot be obtained.
【0019】また、このダイヤモンド焼結体は、被覆す
る多結晶ダイヤモンドの低圧気相合成時にさらされる温
度条件下(現状技術では一般的に700〜1000℃)
で変質しない耐熱性の高いものが用いられる。このよう
な高耐熱性のダイヤモンド焼結体はたとえば特開昭53
−114589号公報、あるいは特開昭61−3386
5号公報に記載されたものが知られている。[0019] Furthermore, this diamond sintered body is exposed to the temperature conditions (generally 700 to 1000°C in the current technology) during the low-pressure vapor phase synthesis of the polycrystalline diamond to be coated.
A material with high heat resistance that does not deteriorate in quality is used. Such a highly heat-resistant diamond sintered body is known, for example, from Japanese Patent Application Laid-open No. 53
-114589 publication or JP-A-61-3386
The one described in Publication No. 5 is known.
【0020】さらに、その表面上に合成される多結晶ダ
イヤモンド層との熱膨張係数のバランスを考慮して、ダ
イヤモンド焼結体中のダイヤモンドの含有率は80%以
上であることが好ましい。このようなダイヤモンドの含
有率が高い焼結体では、一般的にダイヤモンド粒子相互
の直接接合が生じており、このような接合状態は、その
表面上に合成される多結晶ダイヤモンド層の粒子にも継
続、維持される。したがって、合成される多結晶ダイヤ
モンドの粒子においても、各々の粒子間が明確な粒界を
有さず直接結合した高靭性のダイヤモンド層が合成しや
すくなる。Further, in consideration of the balance of thermal expansion coefficient with the polycrystalline diamond layer synthesized on the surface thereof, the diamond content in the diamond sintered body is preferably 80% or more. In such a sintered body with a high diamond content, direct bonding between diamond particles generally occurs, and this bonding state also affects the particles of the polycrystalline diamond layer synthesized on the surface. Continued and maintained. Therefore, even in the polycrystalline diamond particles to be synthesized, a highly tough diamond layer in which each particle is directly bonded without having a clear grain boundary can be easily synthesized.
【0021】さらに、この発明による多結晶ダイヤモン
ド切削工具は、ダイヤモンド焼結体の表面上に低圧気相
法により合成された、膜厚が5〜200μmの多結晶ダ
イヤモンド層が形成されている。この多結晶ダイヤモン
ド層は、上記のようにダイヤモンド焼結体の粒子間の直
接接合を反映した高靭性を有し、かつ所定の膜厚を備え
ることにより、工具作製時あるいは工具としての使用時
にチッピングや欠損が生じるのを抑制することができる
。Further, in the polycrystalline diamond cutting tool according to the present invention, a polycrystalline diamond layer having a thickness of 5 to 200 μm is formed on the surface of the diamond sintered body, which is synthesized by a low-pressure vapor phase method. As mentioned above, this polycrystalline diamond layer has high toughness that reflects the direct bonding between the particles of the diamond sintered body, and has a predetermined film thickness that prevents chipping during tool manufacturing or use as a tool. It is possible to suppress the occurrence of defects.
【0022】[0022]
【実施例】以下、この発明の実施例について説明する。
図1はこの発明による多結晶ダイヤモンド切削工具の刃
先部分の部分断面構造図である。なお、図示された切削
工具は工具形態として、工具素材を工具支持体に接合し
たものが例示されている。図1を参照して、超硬合金あ
るいは鋼などの工具支持体1の所定領域にロウ付け部6
を介して工具のチップ2が固定されている。チップ2は
ダイヤモンド焼結体3と低圧気相法により合成された多
結晶ダイヤモンド層4と、さらにダイヤモンド焼結体3
の接合面側に被覆された被覆金属層5とを備える。そし
て、多結晶ダイヤモンド層4の成長面側には工具のすく
い面7が形成されている。さらに、チップ2の端面には
工具の逃げ面8が形成されている。さらに、工具のすく
い面7と逃げ面8との交差部に形成される刃先部分は、
この両面により構成される刃先のくさび角θが40°以
上70°以下の範囲に形成されている。[Embodiments] Examples of the present invention will be described below. FIG. 1 is a partial cross-sectional structural view of the cutting edge portion of a polycrystalline diamond cutting tool according to the present invention. Note that the illustrated cutting tool has a tool form in which a tool material is joined to a tool support. Referring to FIG. 1, a brazed portion 6 is attached to a predetermined area of a tool support 1 made of cemented carbide or steel.
The tip 2 of the tool is fixed through the . The chip 2 includes a diamond sintered body 3, a polycrystalline diamond layer 4 synthesized by a low pressure vapor phase method, and a diamond sintered body 3.
A coating metal layer 5 is provided on the bonding surface side of the substrate. A rake face 7 of the tool is formed on the growth surface side of the polycrystalline diamond layer 4. Furthermore, a tool flank 8 is formed on the end face of the chip 2. Furthermore, the cutting edge portion formed at the intersection of the rake face 7 and flank face 8 of the tool is
The wedge angle θ of the cutting edge constituted by both surfaces is formed in a range of 40° or more and 70° or less.
【0023】被覆金属層5は、たとえばチタン(Ti)
やニッケル(Ni)などが用いられるが、さらには周期
律表の第IVA族,第IVB族,第VA族,第VB族,
第VIA族,第VIB族,第VII族および第VIIB
族に含まれる金属層あるいはそれらの化合物などが用い
られても構わない。The coating metal layer 5 is made of, for example, titanium (Ti).
and nickel (Ni), but also groups IVA, IVB, VA, VB, etc. of the periodic table.
Group VIA, Group VIB, Group VII and Group VIIB
A metal layer included in the group or a compound thereof may be used.
【0024】多結晶ダイヤモンド層4の合成には、種々
の低圧気相法の適用が可能である。たとえば、熱電子放
射やプラズマ放電を利用して原料ガスの分解・励起を生
じさせる方法や、燃焼炎を用いた成膜方法が有効である
。また、原料ガスとしては、たとえばメタン、エタン、
プロパンなどの炭化水素類、メタノール、エタノールな
どのアルコール類、エステル類などの有機炭素化合物と
水素とを主成分とする混合ガスを用いることが一般であ
る。しかし、これら以外にアルゴンなどの不活性ガスや
酸素、一酸化炭素、水などもダイヤモンドの合成反応や
その特性を阻害しない範囲内であれば原料中に含有され
ていても差し支えない。Various low pressure vapor phase methods can be applied to synthesize the polycrystalline diamond layer 4. For example, a method in which thermionic radiation or plasma discharge is used to decompose and excite the raw material gas, and a method in which a film is formed using a combustion flame are effective. In addition, raw material gases include, for example, methane, ethane,
It is common to use a mixed gas whose main components are hydrocarbons such as propane, alcohols such as methanol and ethanol, organic carbon compounds such as esters, and hydrogen. However, in addition to these, inert gases such as argon, oxygen, carbon monoxide, water, etc. may also be contained in the raw material as long as they do not interfere with the diamond synthesis reaction or its properties.
【0025】次に、具体的な実施例について説明する。
具体的実施例
熱電子放射材に直径0.5mm、長さ100mmの直線
状タングステンフィラメントを用いた熱CVD法により
、以下の条件で多結晶ダイヤモンドを10時間合成した
。なお、基材には結合材として2容量%含有されたCo
を酸処理によって溶解・抽出した、平均結晶粒径が3μ
mのダイヤモンド焼結体を用いた。Next, a concrete example will be explained. Specific Examples Polycrystalline diamond was synthesized for 10 hours under the following conditions by thermal CVD using a linear tungsten filament with a diameter of 0.5 mm and a length of 100 mm as a thermionic emitting material. Note that the base material contains 2% by volume of Co as a binder.
was dissolved and extracted by acid treatment, with an average crystal grain size of 3μ
A diamond sintered body of m was used.
【0026】
原料ガス(流量) :H2
300 sccm
C2 H2
15 sccm ガス圧力
:80 Torr
フィラメント温度 :2250℃
フィラメント−
基板間距離:5mm 基板温度
:900℃合成後、回収したダイヤモンド
塊体を分断して構造を観察したところ、平均結晶粒径が
3μmで厚さが100μmの多結晶ダイヤモンドによっ
て基材のダイヤモンド焼結体が被覆されている状態が観
察された。このダイヤモンド塊体(A)に対し、その多
結晶ダイヤモンド層の成長面に鏡面研磨加工を施した後
、基材側に厚さ1μmのTiと厚さ2μmのNiとを積
層・被覆し、この被覆面を接合面として超硬合金製のシ
ャンクと融点が730℃の銀ロウを用いてろう付け接合
を行なった。次に、この接合体をダイヤモンド砥石を用
いた研削加工により、刃先加工を行ない、くさび角の大
きさの異なるスローアウェイチップを作製した。Raw material gas (flow rate): H2
300 sccm
C2 H2
15 sccm gas pressure
:80 Torr
Filament temperature: 2250℃
filament
Distance between boards: 5mm Board temperature
: After synthesis at 900°C, the recovered diamond mass was cut into pieces and the structure was observed, and it was found that the base diamond sintered body was covered with polycrystalline diamond with an average crystal grain size of 3 μm and a thickness of 100 μm. was observed. After mirror-polishing the growth surface of the polycrystalline diamond layer of this diamond mass (A), Ti with a thickness of 1 μm and Ni with a thickness of 2 μm are laminated and coated on the base material side. Brazing was performed using a cemented carbide shank and silver solder having a melting point of 730° C. using the coated surface as the joining surface. Next, this joined body was subjected to cutting edge processing by grinding using a diamond grindstone to produce indexable tips with different wedge angle sizes.
【0027】比較として、上記と同じ条件でSi基材上
に合成した厚さ0.1mmの多結晶ダイヤモンド単体を
工具素材としたもの(B)、上記の実験で基材に用いた
Co抽出済みのダイヤモンド焼結体を工具素材としたも
の(C)、上記の実験で基材に用いたダイヤモンド焼結
体のCoを抽出する前のものを工具素材としたもの(D
)についてスローアウェイチップを作製した。For comparison, the tool material was a single polycrystalline diamond with a thickness of 0.1 mm synthesized on a Si base material under the same conditions as above (B), and the Co-extracted tool used as the base material in the above experiment. The diamond sintered body used as the base material in the above experiment was used as the tool material (C), and the tool material was the diamond sintered body used as the base material in the above experiment before Co was extracted (D
) was made into a throw-away tip.
【0028】これらの種々の工具の刃先のチッピング量
を表1に示す。Table 1 shows the amount of chipping on the cutting edge of these various tools.
【0029】[0029]
【表1】
表1の結果が示すように、この発明によれば従来の
研削加工では作製困難であった良好な刃立ち性を持った
工具が容易に作製できることが明らかとなった。[Table 1] As shown in the results in Table 1, it has become clear that according to the present invention, it is possible to easily produce a tool with good edge sharpness, which was difficult to produce by conventional grinding.
【0030】さらに、これらの工具の性能を評価するた
めに、以下の条件で切削試験を行なった。Furthermore, in order to evaluate the performance of these tools, cutting tests were conducted under the following conditions.
【0031】
(切削条件)
被削材 :A390−T6(Al−
17%Si) 軸
方向に4本のV字形状の溝が形成された丸棒
切削速度 :600m/min 切り込
み量:0.3mm
送り速度 :0.12mm/rev.
冷却液 :水溶性油剤その結果、この
発明の工具は、いずれも90分切削しても刃先の欠損を
生ずることなく、良好な被削面粗度が得られた。しかし
、比較工具の(B)、(C)、(D)はいずれもくさび
角が70°以下になると、切削開始から10分以内に刃
先の欠損が生じて使用不可能となった。(Cutting conditions) Work material: A390-T6 (Al-
17%Si) A round bar with four V-shaped grooves formed in the axial direction.
Cutting speed: 600m/min Depth of cut: 0.3mm Feed rate: 0.12mm/rev.
Coolant: Water-soluble oil As a result, the tools of the present invention did not suffer from chipping of the cutting edge even after cutting for 90 minutes, and good work surface roughness was obtained. However, when the wedge angle of the comparative tools (B), (C), and (D) was less than 70°, the cutting edge was damaged within 10 minutes from the start of cutting, making them unusable.
【図1】この発明による多結晶ダイヤモンド切削工具の
刃先部の部分断面図である。FIG. 1 is a partial sectional view of the cutting edge portion of a polycrystalline diamond cutting tool according to the present invention.
1 工具支持体 2 チップ 3 ダイヤモンド焼結体 4 多結晶ダイヤモンド層 5 被覆金属層 6 ろう付け部 7 すくい面 8 逃げ面 1 Tool support 2 Chip 3 Diamond sintered body 4 Polycrystalline diamond layer 5 Coating metal layer 6 Brazing part 7 Rake face 8 Relief surface
Claims (5)
m以上10μm以下のダイヤモンド焼結体と、前記ダイ
ヤモンド焼結体の少なくとも1主面上に低圧気相法によ
り合成された膜厚5μm以上20μm以下の多結晶ダイ
ヤモンド層とを有し、前記多結晶ダイヤモンド層の成長
面側を工具のすくい面とした、多結晶ダイヤモンド切削
工具。[Claim 1] As a tool material, the average grain size is 0.1μ.
m or more and 10 μm or less, and a polycrystalline diamond layer having a thickness of 5 μm or more and 20 μm or less synthesized by a low-pressure vapor phase method on at least one main surface of the diamond sintered body, A polycrystalline diamond cutting tool with the growing surface of the diamond layer serving as the rake face of the tool.
具支持体をさらに備え、前記ダイヤモンド焼結体と前記
多結晶ダイヤモンド層とを含む工具素材は、前記多結晶
ダイヤモンド層の成長面側が工具のすくい面となるよう
に前記工具支持体に接合される、請求項1記載の多結晶
ダイヤモンド切削工具。2. The polycrystalline diamond cutting tool further includes a tool support, and the tool material including the diamond sintered body and the polycrystalline diamond layer is such that the growth surface side of the polycrystalline diamond layer faces the rake of the tool. The polycrystalline diamond cutting tool of claim 1, wherein the polycrystalline diamond cutting tool is joined to the tool support in a plane manner.
ダイヤモンド層の前記すくい面と交わる工具の逃げ面が
形成され、前記すくい面と前記逃げ面とに挟まれる刃先
部のくさび角が40°以上70°以下である、請求項1
または2に記載の多結晶ダイヤモンド切削工具。3. A flank face of the tool that intersects with the rake face of the polycrystalline diamond layer is formed on the end face of the tool material, and the wedge angle of the cutting edge portion sandwiched between the rake face and the flank face is 40. Claim 1, wherein the angle is between 70° and 70°.
Or the polycrystalline diamond cutting tool according to 2.
合面側には、周期律表第IVA族,第IVB族,第VA
族,第VB族,第VIA族,第VIB族,第VIIA族
および第VIIB族に含まれる金属または、これらの化
合物のうちのいずれかからなる薄膜層が形成され、前記
工具素材と前記工具支持体とがロウ材で接合されている
、請求項2または3のいずれかに記載の多結晶ダイヤモ
ンド切削工具。4. On the side of the joint surface of the tool material with the tool support, there is formed a metal material of Group IVA, Group IVB, and VA of the periodic table.
A thin film layer made of a metal included in Group VB, Group VIA, Group VIB, Group VIIA, or Group VIIB, or a compound thereof, is formed between the tool material and the tool support. 4. The polycrystalline diamond cutting tool according to claim 2, wherein the cutting tool is joined to the body using a brazing material.
300℃以下の材料が用いられる、請求項4記載の多結
晶ダイヤモンド切削工具。5. The brazing material has a melting point of 700° C. or higher.
The polycrystalline diamond cutting tool according to claim 4, wherein a material having a temperature of 300° C. or less is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3023342A JPH04261703A (en) | 1991-02-18 | 1991-02-18 | Polycrystal diamond cutting tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3023342A JPH04261703A (en) | 1991-02-18 | 1991-02-18 | Polycrystal diamond cutting tool |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04261703A true JPH04261703A (en) | 1992-09-17 |
Family
ID=12107921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3023342A Pending JPH04261703A (en) | 1991-02-18 | 1991-02-18 | Polycrystal diamond cutting tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04261703A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0619382A1 (en) * | 1993-04-09 | 1994-10-12 | Sumitomo Electric Industries, Ltd. | Hard sintered tool and manufacturing method thereof |
EP1098013A1 (en) * | 1999-11-05 | 2001-05-09 | De Beers Industrial Diamonds (Proprietary) Limited | Coating of ultra-hard materials |
WO2004054943A1 (en) * | 2002-12-18 | 2004-07-01 | Japan Science And Technology Agency | Heat-resistant composite diamond sintered product and method for production thereof |
JP2012526662A (en) * | 2009-05-15 | 2012-11-01 | エレメント シックス リミテッド | Carbide cutter elements |
JP2016180132A (en) * | 2015-03-23 | 2016-10-13 | 地方独立行政法人東京都立産業技術研究センター | Method for manufacturing diamond film, hot filament cvd apparatus and mechanical seal |
EP3563952A1 (en) * | 2018-05-03 | 2019-11-06 | Ceratizit Austria Gesellschaft m.b.H. | Cutting device |
-
1991
- 1991-02-18 JP JP3023342A patent/JPH04261703A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0619382A1 (en) * | 1993-04-09 | 1994-10-12 | Sumitomo Electric Industries, Ltd. | Hard sintered tool and manufacturing method thereof |
EP1098013A1 (en) * | 1999-11-05 | 2001-05-09 | De Beers Industrial Diamonds (Proprietary) Limited | Coating of ultra-hard materials |
WO2004054943A1 (en) * | 2002-12-18 | 2004-07-01 | Japan Science And Technology Agency | Heat-resistant composite diamond sintered product and method for production thereof |
CN1300053C (en) * | 2002-12-18 | 2007-02-14 | 独立行政法人科学技术振兴机构 | Heat-resistant composite diamond sintered product and method for production thereof |
JP2012526662A (en) * | 2009-05-15 | 2012-11-01 | エレメント シックス リミテッド | Carbide cutter elements |
US9233422B2 (en) | 2009-05-15 | 2016-01-12 | Element Six Limited | Superhard cutter element |
JP2016180132A (en) * | 2015-03-23 | 2016-10-13 | 地方独立行政法人東京都立産業技術研究センター | Method for manufacturing diamond film, hot filament cvd apparatus and mechanical seal |
EP3563952A1 (en) * | 2018-05-03 | 2019-11-06 | Ceratizit Austria Gesellschaft m.b.H. | Cutting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5435815A (en) | Cutting tool employing vapor-deposited polycrystalline diamond for cutting edge and method of manufacturing the same | |
US5020394A (en) | Polycrystal diamond fluted tool and a process for the production of the same | |
EP0541071B1 (en) | Polycrystalline diamond cutting tool and method of manufacturing the same | |
EP0503822B2 (en) | A diamond- and/or diamond-like carbon-coated hard material | |
JP2867694B2 (en) | Polycrystalline diamond cutting tool and its manufacturing method | |
JPH06297207A (en) | Vapor phase synthetic diamond cutting tool with high toughness | |
JPH04261703A (en) | Polycrystal diamond cutting tool | |
EP0560287A1 (en) | Diamond cutting tool and method of manufacturing the same | |
JP2557560B2 (en) | Polycrystalline diamond cutting tool and manufacturing method thereof | |
KR102532558B1 (en) | Coating method of solid diamond material | |
JPH04240007A (en) | Polycrystal diamond cutting tool and manufacture thereof | |
US5567522A (en) | Diamond cutting tool and method of manufacturing the same | |
JP3235206B2 (en) | Diamond cutting tool and manufacturing method thereof | |
JPH08151297A (en) | Production of diamond | |
JPH0671503A (en) | Diamond cutting tool and its manufacture | |
JPH0679504A (en) | Polycrystal diamond cutting tool and its manufacture | |
JPH04263074A (en) | Diamond or diamondlike carbon-coated hard material | |
JPH02232106A (en) | Polycrystal diamond for tool | |
JP2008100300A (en) | Diamond-coated cutting insert and cutting tool | |
JPH05253757A (en) | Diamond cutting tool and manufacture thereof | |
JPH07196379A (en) | Tool for brazing synthetic diamond in gas phase and its production | |
JP2792136B2 (en) | High toughness polycrystalline diamond and method for producing the same | |
JPH0516004A (en) | Cutting tool and manufacture thereof | |
JPH01225774A (en) | High-hardness polycrystalline diamond tool | |
JP2571821B2 (en) | Method for producing granular polycrystalline diamond film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20000919 |