[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04260660A - Production of irreducible dielectric ceramic composition - Google Patents

Production of irreducible dielectric ceramic composition

Info

Publication number
JPH04260660A
JPH04260660A JP3044401A JP4440191A JPH04260660A JP H04260660 A JPH04260660 A JP H04260660A JP 3044401 A JP3044401 A JP 3044401A JP 4440191 A JP4440191 A JP 4440191A JP H04260660 A JPH04260660 A JP H04260660A
Authority
JP
Japan
Prior art keywords
dielectric ceramic
ceramic composition
precipitate
reducible
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3044401A
Other languages
Japanese (ja)
Inventor
Nobuyuki Wada
和  田   信  之
Yoshiaki Kono
河  野   芳  明
Shozo Kojima
児  島   昌  造
Shunsuke Nakatani
中  谷   俊  介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP3044401A priority Critical patent/JPH04260660A/en
Priority to US07/818,294 priority patent/US5232880A/en
Priority to DE4200356A priority patent/DE4200356C2/en
Publication of JPH04260660A publication Critical patent/JPH04260660A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To provide a process for producing an irreducible dielectric ceramic composition capable of forming a small-sized highly reliable laminated ceramic capacitor. CONSTITUTION:An irreversible dielectric ceramic composition having a perovskite structure expressed by the general formula (A1-xRx)yMO3 is produced by precipitating carbonates or hydroxides of the constituent elements from aqueous solution of the inorganic salts of the elements and subjecting the precipitate to filtration, washing with water, drying, calcination and crushing. In the above formula, A is at least one kind of element selected from Ba, Sr, Ca and Mg; R is at least one kind of rare-earth element; and M is at least one kind of element selected from Ti, Zr and Sn.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は非還元性誘電体磁器組
成物の製造方法に関し、特にたとえば、積層セラミック
コンデンサなどの材料として用いられる非還元性誘電体
磁器組成物の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-reducible dielectric ceramic composition, and more particularly to a method for producing a non-reducible dielectric ceramic composition used as a material for laminated ceramic capacitors and the like.

【0002】0002

【従来の技術】積層セラミックコンデンサを製造する場
合、シート状の誘電体材料と、内部電極となるべき電極
材料とを積層し、熱圧着によって一体化した積層体が得
られる。この積層体を所定の雰囲気中で焼成し、誘電体
磁器が形成される。そして、この誘電体磁器の端面に、
内部電極と導通する外部電極を焼き付けて、積層セラミ
ックコンデンサが製造される。
2. Description of the Related Art When manufacturing a multilayer ceramic capacitor, a sheet-like dielectric material and an electrode material to be an internal electrode are laminated and integrated by thermocompression bonding to obtain a laminated body. This laminate is fired in a predetermined atmosphere to form dielectric ceramic. Then, on the end face of this dielectric porcelain,
A multilayer ceramic capacitor is manufactured by baking an external electrode that is electrically connected to an internal electrode.

【0003】このような積層セラミックコンデンサに用
いられる誘電体磁器組成物では、中性または還元性の低
酸素分圧下で焼成すると還元され、半導体化してしまう
という性質を有していた。そのため、このような誘電体
材料を積層セラミックコンデンサの材料として用いると
、内部電極材料としては、誘電体磁器材料の焼結する温
度で溶融せず、かつ誘電体磁器材料を半導体化させない
高酸素分圧下で焼成しても酸化されないパラジウム,白
金などの貴金属を用いる必要があった。このように、内
部電極材料として高価なものを使用しなければならない
ため、積層コンデンサの製造コストが大きくなっていた
。特に、近年、電子部品の小型化が急速に進行し、積層
セラミックコンデンサも小型化,大容量化の傾向が顕著
になってきた。そのため、積層セラミックコンデンサの
製造コストに占める電極材料費の割合が上昇している。
The dielectric ceramic composition used in such multilayer ceramic capacitors has the property that when fired under neutral or reducing low oxygen partial pressure, it is reduced and becomes a semiconductor. Therefore, when such a dielectric material is used as a material for a multilayer ceramic capacitor, the internal electrode material must be a high oxygen content material that does not melt at the sintering temperature of the dielectric ceramic material and does not convert the dielectric ceramic material into a semiconductor. It was necessary to use noble metals such as palladium and platinum, which do not oxidize even when fired under pressure. As described above, since an expensive material must be used as the internal electrode material, the manufacturing cost of the multilayer capacitor increases. In particular, in recent years, the miniaturization of electronic components has progressed rapidly, and the trend toward miniaturization and increased capacity of multilayer ceramic capacitors has become noticeable. Therefore, the proportion of electrode material costs in the manufacturing cost of multilayer ceramic capacitors is increasing.

【0004】そこで、このような問題を解決するために
、ニッケルなどの安価な卑金属を内部電極材料として使
用することが考えられる。しかしながら、このような卑
金属を内部電極材料として使用し、従来の条件下で焼成
すると、電極材料が酸化してしまい、電極としての機能
を果たさない。このような卑金属を電極材料として使用
するためには、酸素分圧の低い中性または還元性の雰囲
気中で焼成しても半導体化せず、コンデンサ用の誘電体
材料として十分な比抵抗と優れた誘電特性とを有する誘
電体磁器材料が必要とされている。これらの条件を満た
すものとして、たとえば特公平02−063664号公
報に示された、Ceなどの希土類元素を含むチタン酸バ
リウム固溶体などがある。このような材料は、還元性雰
囲気中で焼成しても還元されず、グレインサイズが小さ
く、高誘電率を示すなど、大変有用な組成物である。
[0004] In order to solve this problem, it is conceivable to use an inexpensive base metal such as nickel as the internal electrode material. However, when such base metals are used as internal electrode materials and fired under conventional conditions, the electrode materials become oxidized and do not function as electrodes. In order to use such a base metal as an electrode material, it must not turn into a semiconductor even when fired in a neutral or reducing atmosphere with a low oxygen partial pressure, and must have sufficient resistivity and excellent properties as a dielectric material for capacitors. What is needed is a dielectric porcelain material that has improved dielectric properties. Examples of materials that meet these conditions include barium titanate solid solutions containing rare earth elements such as Ce, as disclosed in Japanese Patent Publication No. 02-063664. Such a material is a very useful composition because it is not reduced even when fired in a reducing atmosphere, has a small grain size, and exhibits a high dielectric constant.

【0005】このような非還元性誘電体磁器組成物を得
る方法としては、炭酸化物や酸化物からなる素原料を混
合,仮焼し、合成する方法がある。
[0005] As a method for obtaining such a non-reducible dielectric ceramic composition, there is a method of mixing and calcining raw materials consisting of carbonates and oxides to synthesize them.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の方法では、素原料自体を1μm以下にするこ
とが難しく、そのため素原料を仮焼しても組成的に均一
なものを得ることが難しい。このような方法で、非還元
性誘電体磁器組成物として、Ceなどの希土類元素を含
むチタン酸バリウム固溶体を製造すると、仮焼後に希土
類元素が均一に拡散せず、濃度にばらつきが生じる。こ
の原料を用いて焼結体を作製すると、希土類元素濃度の
高いところでは、非還元性チタン酸バリウム固溶体が部
分的に半導体化するためか、積層コンデンサにした場合
の信頼性が低いことが明らかになった。
[Problems to be Solved by the Invention] However, with such conventional methods, it is difficult to reduce the raw material itself to 1 μm or less, and therefore it is difficult to obtain a uniform composition even if the raw material is calcined. difficult. When a barium titanate solid solution containing a rare earth element such as Ce is produced by such a method as a non-reducible dielectric ceramic composition, the rare earth element does not diffuse uniformly after calcination, resulting in variations in concentration. When a sintered body is made using this raw material, it is clear that reliability is low when made into a multilayer capacitor in areas with high concentrations of rare earth elements, probably because the non-reducible barium titanate solid solution partially becomes a semiconductor. Became.

【0007】それゆえに、この発明の主たる目的は、希
土類元素を含む非還元性誘電体磁器組成物を得る場合に
おいて、積層コンデンサを作製したときに、信頼性の高
い積層コンデンサを得ることができる、非還元性誘電体
磁器組成物の製造方法を提供することである。
Therefore, the main object of the present invention is to obtain a highly reliable multilayer capacitor when producing a multilayer capacitor in the case of obtaining a non-reducible dielectric ceramic composition containing a rare earth element. An object of the present invention is to provide a method for producing a non-reducible dielectric ceramic composition.

【0008】[0008]

【課題を解決するための手段】この発明の方法は、Ba
,Sr,Ca,Mgの中から選ばれる少なくとも1種類
をA、希土類元素の中から選ばれる少なくとも1種類を
R、Ti,Zr,Snから選ばれる少なくとも1種類を
Mとしたとき、次の一般式(A1−x Rx )y M
O3 で表され、xおよびyが、0.001≦x≦0.
020、1.002≦y≦1.03の関係を満足するペ
ロブスカイト型非還元性誘電体磁器組成物の製造方法で
あって、各成分の水溶性の無機塩を混合した水溶液から
、それぞれ炭酸塩として沈殿させた沈殿物または水酸化
物として沈殿させた沈殿物の少なくとも1種類を作製し
、それぞれの沈殿物を含むスラリーを混合し、ろ過,水
洗,乾燥,仮焼,粉砕する、非還元性誘電体磁器組成物
の製造方法である。
[Means for Solving the Problems] The method of the present invention is based on Ba
, Sr, Ca, Mg, at least one selected from rare earth elements is R, and at least one selected from Ti, Zr, Sn is M, then the following general Formula (A1-x Rx )y M
O3, and x and y are 0.001≦x≦0.
020, a method for producing a perovskite-type non-reducible dielectric ceramic composition satisfying the relationship of 1.002≦y≦1.03, wherein carbonate salts are obtained from an aqueous solution of a mixture of water-soluble inorganic salts of each component. At least one type of precipitate is prepared as a precipitate or a precipitate as a hydroxide, and a slurry containing each precipitate is mixed, filtered, washed with water, dried, calcined, and pulverized. This is a method for producing a dielectric ceramic composition.

【0009】また、この発明の別の方法は、Ba,Sr
,Ca,Mgの中から選ばれる少なくとも1種類をA、
希土類元素の中から選ばれる少なくとも1種類をR、T
i,Zr,Snから選ばれる少なくとも1種類をMとし
たとき、次の一般式(A1−x Rx )y MO3 
で表され、xおよびyが、0.001≦x≦0.020
、1.002≦y≦1.03の関係を満足するペロブス
カイト型非還元性誘電体磁器組成物の製造方法であって
、各成分の水溶性の無機塩を混合した水溶液から、炭酸
塩および水酸化物を順次沈殿させて沈殿物を作製し、沈
殿物をろ過,水洗,乾燥,仮焼,粉砕する、非還元性誘
電体磁器組成物の製造方法である。
[0009] Another method of the present invention is that Ba, Sr
, Ca, Mg at least one selected from A,
At least one selected from rare earth elements R, T
When at least one type selected from i, Zr, and Sn is M, the following general formula (A1-x Rx )y MO3
, where x and y are 0.001≦x≦0.020
, 1.002≦y≦1.03. A method for producing a perovskite non-reducible dielectric ceramic composition satisfying the relationship of , 1.002≦y≦1.03. This is a method for producing a non-reducible dielectric ceramic composition, in which a precipitate is prepared by sequentially precipitating oxides, and the precipitate is filtered, washed with water, dried, calcined, and crushed.

【0010】0010

【作用】水溶性の無機塩の水溶液から得た炭酸塩または
水酸化物の沈殿物は、直径0.01μm前後の小さい粒
径を有する。そのため、それぞれの元素の分散がよく、
希土類元素も均一に分散する。
[Operation] The precipitate of carbonate or hydroxide obtained from an aqueous solution of a water-soluble inorganic salt has a small particle size of about 0.01 μm in diameter. Therefore, each element is well dispersed,
Rare earth elements are also uniformly dispersed.

【0011】ここで、一般式(A1−x Rx )y 
MO3 で表される非還元性誘電体磁器組成物のxおよ
びyを限定した理由について説明する。つまり、xが0
.001より小さい場合、信頼性向上作用が認められず
、好ましくない。また、xが0.02を超えた場合、信
頼性が低下してしまい、好ましくない。yが1.002
より小さい場合、半導体化されやすくなり、信頼性が大
幅に低下して、好ましくない。また、yが1.03を超
えた場合、焼結性が低下して、好ましくない。
Here, the general formula (A1-x Rx )y
The reason for limiting x and y of the non-reducible dielectric ceramic composition represented by MO3 will be explained. In other words, x is 0
.. If it is smaller than 001, no reliability improvement effect is observed, which is not preferable. Moreover, when x exceeds 0.02, reliability decreases, which is not preferable. y is 1.002
If it is smaller, it is undesirable because it is more likely to be made into a semiconductor and the reliability will be significantly lowered. Moreover, when y exceeds 1.03, sinterability deteriorates, which is not preferable.

【0012】0012

【発明の効果】この発明によれば、各元素および希土類
元素が均一に分散した組成物が得られるため、積層セラ
ミックコンデンサを作製したときに、信頼性の高い積層
セラミックコンデンサを得ることができる。そのため、
従来の誘電体磁器組成物を用いた積層セラミックコンデ
ンサに比べて、内部電極間のセラミック素子部の厚みを
大幅に小さくすることができる。したがって、積層セラ
ミックコンデンサを小型大容量化することが可能である
。また、この非還元性誘電体磁器組成物は非還元性であ
るため、内部電極材料として卑金属を使用することがで
き、貴金属を用いたものに比べて、製造コストを下げる
ことができる。
According to the present invention, a composition in which each element and rare earth element are uniformly dispersed can be obtained, so that a highly reliable multilayer ceramic capacitor can be obtained when a multilayer ceramic capacitor is manufactured. Therefore,
Compared to multilayer ceramic capacitors using conventional dielectric ceramic compositions, the thickness of the ceramic element portion between internal electrodes can be significantly reduced. Therefore, it is possible to make the multilayer ceramic capacitor smaller and larger in capacity. Further, since this non-reducible dielectric ceramic composition is non-reducible, base metals can be used as the internal electrode material, and manufacturing costs can be lowered compared to those using noble metals.

【0013】この発明の上述の目的,その他の目的,特
徴および利点は、以下の実施例の詳細な説明から一層明
らかとなろう。
The above objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments.

【0014】[0014]

【実施例】まず、Ba,Sr,Ca,Mgの中から選ば
れる少なくとも1種類の無機塩、希土類元素の中から選
ばれる少なくとも1種類の無機塩、Ti,Zr,Snの
中から選ばれる少なくとも1種類の無機塩が準備される
。これらの無機塩は、すべて水溶性のものである。水溶
性の無機塩としては、たとえば硝酸塩,塩化物,ヨウ化
物,臭化物およびカルボン酸塩などが上げられる。これ
らの各水溶液を混合し、炭酸ソーダなどを加えて、炭酸
塩として沈殿する沈殿物が得られる。また、各水溶液を
混合し、苛性ソーダなどを加えて、水酸化物として沈殿
する沈殿物が得られる。これらの沈殿物は、0.01μ
m前後の小さい粒径を有する。沈殿物として、炭酸塩と
して沈殿させるか水酸化物として沈殿させるかは、安定
に沈殿が生じるという点で決定される。これらの沈殿物
を用いて、スラリーが得られる。
[Example] First, at least one inorganic salt selected from Ba, Sr, Ca, and Mg, at least one inorganic salt selected from rare earth elements, and at least one selected from Ti, Zr, and Sn. One type of inorganic salt is prepared. All of these inorganic salts are water-soluble. Examples of water-soluble inorganic salts include nitrates, chlorides, iodides, bromides, and carboxylates. By mixing these aqueous solutions and adding soda carbonate or the like, a precipitate that precipitates as carbonate is obtained. Alternatively, by mixing each aqueous solution and adding caustic soda or the like, a precipitate that precipitates as hydroxide can be obtained. These precipitates are 0.01μ
It has a small particle size of around m. Whether the precipitate is to be precipitated as a carbonate or a hydroxide is determined from the viewpoint of stable precipitation. A slurry is obtained using these precipitates.

【0015】また、無機塩の水溶液に炭酸ソーダおよび
苛性ソーダを順次加え、炭酸塩および水酸化物を順次沈
殿させて、スラリーを得てもよい。この場合も、0.0
1μm前後の小さい粒径を有する。そのため、得られた
スラリーは、各元素の分散がよく、特に希土類元素も均
一に分散する。このスラリーをろ過,水洗,乾燥,仮焼
,粉砕することによって、希土類元素がペロブスカイト
構造内に均一に固溶した非還元性誘電体磁器材料が得ら
れる。
Alternatively, a slurry may be obtained by sequentially adding sodium carbonate and caustic soda to an aqueous solution of an inorganic salt to precipitate the carbonate and hydroxide. In this case as well, 0.0
It has a small particle size of around 1 μm. Therefore, in the obtained slurry, each element is well dispersed, and in particular, rare earth elements are also uniformly dispersed. By filtering, washing, drying, calcining, and pulverizing this slurry, a non-reducible dielectric ceramic material in which rare earth elements are uniformly dissolved in a perovskite structure can be obtained.

【0016】この非還元性誘電体磁器材料をX線マイク
ロアナライザで分析すると、従来のように酸化物や炭酸
塩を粉砕,混合した固相焼結法で得た仮焼原料にみられ
るような、未反応希土類元素酸化物凝集体やペロブスカ
イト構造をなすAサイト元素酸化物あるいはBサイト元
素酸化物の凝集体は全く認められなかった。また、この
非還元性誘電体磁器材料を用いて積層コンデンサ用チッ
プに加工し、これを還元性雰囲気中で焼成した場合にも
、従来の固相焼結法で得た原料を用いた場合にみられた
ような、信頼性低下を招く2次層が発生していない。
[0016] When this non-reducible dielectric ceramic material is analyzed with an X-ray microanalyzer, it is found that it is similar to that seen in calcined raw materials obtained by conventional solid-phase sintering methods in which oxides and carbonates are crushed and mixed. No aggregates of unreacted rare earth element oxides or aggregates of A-site element oxides or B-site element oxides forming a perovskite structure were observed. In addition, when this non-reducible dielectric ceramic material is used to process a chip for a multilayer capacitor and this is fired in a reducing atmosphere, when raw materials obtained by conventional solid-phase sintering methods are used, There is no occurrence of a secondary layer that causes a decrease in reliability, as was seen in the previous study.

【0017】そのため、本発明の方法による非還元性誘
電体磁器組成物を用いた積層セラミックコンデンサでは
、従来の非還元性チタン酸バリウム固溶体や希土類元素
を含む非還元性チタン酸バリウム固溶体を用いたものに
比べて、絶縁抵抗における信頼性が1桁以上よくなって
いる。なお、通常の窯業技術として用いられるSiO2
 などの鉱化剤や絶縁抵抗を上げるためのMnO,Cr
2 O3 ,Fe2 O3 などを適量加えても、本発
明の効果を損なうものではない。
Therefore, in a multilayer ceramic capacitor using a non-reducible dielectric ceramic composition according to the method of the present invention, a conventional non-reducible barium titanate solid solution or a non-reducible barium titanate solid solution containing a rare earth element is used. Reliability in insulation resistance is improved by more than one order of magnitude compared to conventional products. Note that SiO2, which is used as a normal ceramic technology,
Mineralizers such as MnO and Cr to increase insulation resistance.
Even if appropriate amounts of 2 O3, Fe2 O3, etc. are added, the effects of the present invention will not be impaired.

【0018】実施例として、まず表1に示す割合で原料
を準備した。そして、第1の槽において、BaCl2 
,SrCl2 ,MgCl2 ,CeCl2 の各水溶
液を混合し、炭酸ソーダ(Na2 CO3 )を加えて
pHを調整し、BaCO3 ,SrCO3 ,MgCO
3 ,Ce2 (CO3 )2 として沈殿させた。ま
た、第2の槽において、TiCl4 ,ZrOCl2 
・8H2 Oの各水溶液を混合し、これに安定剤である
30%過酸化水素水を加え、さらに苛性ソーダ(NaO
H)を加えてpHを調整し、Ti,Zrを含む沈殿物を
得た。さらに、各沈殿物スラリーを十分均一に混合し、
洗浄,脱水を繰り返した。洗浄,脱水を行ったスラリー
を110℃で乾燥し、乾燥原料を得た。そののち、乾燥
原料を1100℃の温度で2時間仮焼し、(Ba,Sr
,Mg,Ce)(Ti,Zr)O3 系の仮焼粉末Iを
得た。
As an example, raw materials were first prepared in the proportions shown in Table 1. Then, in the first tank, BaCl2
, SrCl2 , MgCl2 , and CeCl2 , the pH was adjusted by adding sodium carbonate (Na2 CO3 ), and BaCO3 , SrCO3 , MgCO
3, Ce2 (CO3)2. In addition, in the second tank, TiCl4, ZrOCl2
・Mix each aqueous solution of 8H2O, add 30% hydrogen peroxide as a stabilizer, and add caustic soda (NaO
The pH was adjusted by adding H) to obtain a precipitate containing Ti and Zr. Furthermore, each precipitate slurry is thoroughly and uniformly mixed,
Washing and dehydration were repeated. The washed and dehydrated slurry was dried at 110°C to obtain a dry raw material. After that, the dry raw materials were calcined at a temperature of 1100°C for 2 hours, and (Ba, Sr
, Mg, Ce) (Ti, Zr) O3 based calcined powder I was obtained.

【0019】[0019]

【表1】[Table 1]

【0020】次に、表2に示す割合で原料を準備した。 そして、第1の槽において、Ba(NO3 )2 ,C
a(NO3 )2・4H2 Oの各水溶液を混合し、炭
酸ソーダ(Na2 CO3 )を加えてpHを調整し、
BaCO3 ,CaCO3 として沈殿させた。また、
第2の槽において、NdCl2 ・6H2 O,TiC
l4 ,ZrOCl2 ・8H2 O,SnCl4 の
各水溶液を混合し、これに安定剤である30%過酸化水
素水を加え、さらに苛性ソーダ(NaOH)を加えてp
Hを調整し、Nd,Ti,Zr,Snを含む沈殿物を得
た。さらに、各沈殿物スラリーを十分均一に混合し、洗
浄,脱水を繰り返した。洗浄,脱水を行ったスラリーを
110℃で乾燥し、乾燥原料を得た。そののち、乾燥原
料を1150℃の温度で2時間仮焼し、(Ba,Ca,
Nd)(Ti,Zr,Sn)O3 系の仮焼粉末IIを
得た。
Next, raw materials were prepared in the proportions shown in Table 2. Then, in the first tank, Ba(NO3)2, C
a Mix each aqueous solution of (NO3)2.4H2O, add soda carbonate (Na2CO3) to adjust the pH,
It was precipitated as BaCO3 and CaCO3. Also,
In the second tank, NdCl2 ・6H2 O, TiC
14, ZrOCl2 ・8H2 O, and SnCl4 aqueous solutions were mixed, 30% hydrogen peroxide solution as a stabilizer was added to this, and caustic soda (NaOH) was added to p
H was adjusted to obtain a precipitate containing Nd, Ti, Zr, and Sn. Furthermore, each precipitate slurry was thoroughly and uniformly mixed, and washing and dehydration were repeated. The washed and dehydrated slurry was dried at 110°C to obtain a dry raw material. After that, the dry raw materials were calcined at a temperature of 1150°C for 2 hours (Ba, Ca,
Nd) (Ti, Zr, Sn) O3 based calcined powder II was obtained.

【0021】[0021]

【表2】[Table 2]

【0022】また、表3に示す割合で原料を準備した。 そして、第1の槽において、Ba(CH3 COO)2
 ,Sr(NO3 )2 ,CaCl2 の各水溶液を
混合し、炭酸ソーダ(Na2 CO3 )を加えてpH
を調整し、BaCO3 ,SrCO3 ,CaCO3 
として沈殿させた。また、第2の槽において、DyCl
3 ,TiCl4 ,SnCl4 ,Sm(NO3 )
3 ・6H2 Oの各水溶液を混合し、これに安定剤で
ある30%過酸化水素水を加え、さらに苛性ソーダ(N
aOH)を加えてpHを調整し、Dy,Ti,Snを含
む沈殿物を得た。さらに、各沈殿物スラリーを十分均一
に混合し、洗浄,脱水を繰り返した。洗浄,脱水を行っ
たスラリーを110℃で乾燥し、乾燥原料を得た。その
のち、乾燥原料を1200℃の温度で2時間仮焼し、(
Ba,Sr,Ca,Dy,Sm)(Ti,Sn)O3 
系の仮焼粉末IIIを得た。
[0022] Raw materials were also prepared in the proportions shown in Table 3. Then, in the first tank, Ba(CH3COO)2
, Sr(NO3)2, and CaCl2 were mixed, and sodium carbonate (Na2 CO3) was added to adjust the pH.
BaCO3, SrCO3, CaCO3
It was precipitated as In addition, in the second tank, DyCl
3, TiCl4, SnCl4, Sm(NO3)
3. Mix each aqueous solution of 6H2O, add 30% hydrogen peroxide solution as a stabilizer, and add caustic soda (N
aOH) was added to adjust the pH, and a precipitate containing Dy, Ti, and Sn was obtained. Furthermore, each precipitate slurry was thoroughly and uniformly mixed, and washing and dehydration were repeated. The washed and dehydrated slurry was dried at 110°C to obtain a dry raw material. After that, the dry raw materials were calcined at a temperature of 1200℃ for 2 hours.
Ba, Sr, Ca, Dy, Sm) (Ti, Sn) O3
A calcined powder III of the system was obtained.

【0023】[0023]

【表3】[Table 3]

【0024】さらに、純度99.8%以上の素原料を表
4に示す割合で準備した。この素原料を3000ccの
純水とともにボールミルに入れ、直径5mmのジルコニ
ア質の粉砕玉石5000gを用いて、16時間粉砕,混
合して、混合物を得た。この混合物を1180℃の温度
で仮焼し、従来の固相法としての(Ba,Sr,Mg,
Ce)(Ti,Zr)O3 系の仮焼粉末IVを得た。
Furthermore, raw materials having a purity of 99.8% or more were prepared in the proportions shown in Table 4. This raw material was put into a ball mill together with 3000 cc of pure water, and pulverized and mixed for 16 hours using 5000 g of zirconia crushed boulders with a diameter of 5 mm to obtain a mixture. This mixture was calcined at a temperature of 1180°C, and the conventional solid phase method (Ba, Sr, Mg,
A Ce)(Ti,Zr)O3 based calcined powder IV was obtained.

【0025】[0025]

【表4】[Table 4]

【0026】200gの仮焼粉末Iを適当量の有機溶剤
および有機バインダとともに樹脂ポットに入れ、直径5
mmのジルコニア質の粉砕用玉石2000gを用いて、
10時間混合し、スラリーを得た。同様にして、仮焼粉
末II,仮焼粉末IIIおよび仮焼粉末IVを用いて、
スラリーを得た。
[0026] 200 g of calcined powder I was placed in a resin pot with an appropriate amount of organic solvent and organic binder, and
Using 2000 g of millimeter zirconia crushing stones,
The mixture was mixed for 10 hours to obtain a slurry. Similarly, using calcined powder II, calcined powder III and calcined powder IV,
Got slurry.

【0027】得られた各スラリーを用いて、ドクターブ
レードを用いたキャスティング法によって、厚さ15μ
mのセラミックグリーンシートを作製した。このセラミ
ックグリーンシート上に、Ni粉末を用いた内部電極用
ペーストを通常の積層セラミックコンデンサを製造する
方法でスクリーン印刷した。内部電極用ペーストを印刷
したセラミックグリーンシートを、積層数が10層とな
るように積層し、熱プレスによって一体化し、積層体を
得た。その後、この積層体を所定の寸法に切断して、生
チップを作製した。
[0027] Using each of the obtained slurries, a 15 μm thick film was cast by a casting method using a doctor blade.
A ceramic green sheet of m was produced. On this ceramic green sheet, a paste for internal electrodes using Ni powder was screen printed using a conventional method for manufacturing multilayer ceramic capacitors. Ceramic green sheets printed with paste for internal electrodes were stacked so that the number of layers was 10, and they were integrated by hot pressing to obtain a laminate. Thereafter, this laminate was cut into predetermined dimensions to produce green chips.

【0028】得られた生チップを温度300℃,酸素分
圧100ppmの雰囲気下で2時間保持し、脱バインダ
処理をした。脱バインダ処理を施した生チップを、酸素
分圧3×10−8〜3×10−10 atmに調節した
還元性雰囲気中において、1250〜1300℃で2時
間焼成し、焼結体を得た。この焼結体に外部電極を付け
て試料とした。なお、仮焼粉末Iを用いて作製した試料
は、試料Iとした。同様に、仮焼粉末II,III,I
Vを用いた試料は、それぞれ試料II,III,IVと
した。
The obtained raw chips were held for 2 hours in an atmosphere with a temperature of 300° C. and an oxygen partial pressure of 100 ppm to perform a binder removal treatment. The raw chips subjected to the binder removal treatment were fired at 1250 to 1300°C for 2 hours in a reducing atmosphere adjusted to an oxygen partial pressure of 3 x 10-8 to 3 x 10-10 atm to obtain a sintered body. . This sintered body was attached with an external electrode and used as a sample. Note that the sample produced using calcined powder I was referred to as sample I. Similarly, calcined powder II, III, I
The samples using V were designated as samples II, III, and IV, respectively.

【0029】得られた試料I,II,III,IVにつ
いて、静電容量,誘電率(ε),誘電損失(tanδ)
,絶縁抵抗および平均故障時間(MTTF)を測定し、
表5に示した。なお、静電容量および誘電損失は、1k
Hz,1Vrms の交流電圧を印加することによって
測定した。また、誘電率は、電極面積および電極間距離
を測定し、静電容量から算出した。さらに、平均故障時
間は、150℃の雰囲気中で、64V/10μmの直流
電界を印加した条件のもとで測定した値である。また、
絶縁抵抗については、その対数値(logIR)を示し
た。
[0029] Regarding the obtained samples I, II, III, and IV, the capacitance, dielectric constant (ε), dielectric loss (tan δ)
, measure insulation resistance and mean time to failure (MTTF),
It is shown in Table 5. Note that the capacitance and dielectric loss are 1k
The measurement was performed by applying an alternating current voltage of Hz, 1 Vrms. Further, the dielectric constant was calculated from the capacitance by measuring the electrode area and the distance between the electrodes. Furthermore, the mean failure time is a value measured under the condition of applying a DC electric field of 64 V/10 μm in an atmosphere of 150° C. Also,
Regarding insulation resistance, its logarithm value (logIR) is shown.

【0030】[0030]

【表5】[Table 5]

【0031】表5からわかるように、従来の固相焼結法
によって得られた仮焼粉体のみからなる試料IVでは、
平均故障時間が1.3時間と短く、信頼性に劣る。一方
、本発明の方法で製造した非還元性誘電体磁器組成物を
用いることによって製造した磁器組成物からなる試料I
,II,IIIの平均故障時間は30.3〜44.5時
間であり、試料IVに比べて1桁以上よくなっているの
が確認できる。
[0031] As can be seen from Table 5, in sample IV consisting only of calcined powder obtained by the conventional solid phase sintering method,
The mean failure time is short at 1.3 hours, and the reliability is poor. On the other hand, sample I consisting of a ceramic composition manufactured by using a non-reducible dielectric ceramic composition manufactured by the method of the present invention
, II, and III are 30.3 to 44.5 hours, and it can be confirmed that the average time to failure is 30.3 to 44.5 hours, which is one order of magnitude better than that of sample IV.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  Ba,Sr,Ca,Mgの中から選ば
れる少なくとも1種類をA、希土類元素の中から選ばれ
る少なくとも1種類をR、Ti,Zr,Snから選ばれ
る少なくとも1種類をMとしたとき、次の一般式(A1
−x Rx )y MO3  で表され、xおよびyが、 0.001≦x≦0.020 1.002≦y≦1.03 の関係を満足するペロブスカイト型非還元性誘電体磁器
組成物の製造方法であって、各成分の水溶性の無機塩を
混合した水溶液から、それぞれ炭酸塩として沈殿させた
沈殿物または水酸化物として沈殿させた沈殿物の少なく
とも1種類を作製し、それぞれの前記沈殿物を含むスラ
リーを混合し、ろ過,水洗,乾燥,仮焼,粉砕する、非
還元性誘電体磁器組成物の製造方法。
[Claim 1] At least one selected from Ba, Sr, Ca, and Mg is A, at least one selected from rare earth elements is R, and at least one selected from Ti, Zr, and Sn is M. Then, the following general formula (A1
-xRx)yMO3, where x and y satisfy the following relationships: 0.001≦x≦0.020 1.002≦y≦1.03 Production of a perovskite-type non-reducible dielectric ceramic composition A method, comprising: preparing at least one kind of precipitate as a carbonate or a precipitate as a hydroxide from an aqueous solution of a mixture of water-soluble inorganic salts of each component; A method for producing a non-reducible dielectric ceramic composition, which involves mixing a slurry containing a substance, filtering it, washing it with water, drying it, calcining it, and crushing it.
【請求項2】  Ba,Sr,Ca,Mgの中から選ば
れる少なくとも1種類をA、希土類元素の中から選ばれ
る少なくとも1種類をR、Ti,Zr,Snから選ばれ
る少なくとも1種類をMとしたとき、次の一般式(A1
−x Rx )y MO3  で表され、xおよびyが、 0.001≦x≦0.020 1.002≦y≦1.03 の関係を満足するペロブスカイト型非還元性誘電体磁器
組成物の製造方法であって、各成分の水溶性の無機塩を
混合した水溶液から、炭酸塩および水酸化物を順次沈殿
させて沈殿物を作製し、前記沈殿物をろ過,水洗,乾燥
,仮焼,粉砕する、非還元性誘電体磁器組成物の製造方
法。
[Claim 2] At least one selected from Ba, Sr, Ca, and Mg is A, at least one selected from rare earth elements is R, and at least one selected from Ti, Zr, and Sn is M. Then, the following general formula (A1
-xRx)yMO3, where x and y satisfy the following relationships: 0.001≦x≦0.020 1.002≦y≦1.03 Production of a perovskite-type non-reducible dielectric ceramic composition The method comprises sequentially precipitating carbonates and hydroxides from an aqueous solution containing water-soluble inorganic salts of each component to prepare a precipitate, and filtering, washing, drying, calcining, and pulverizing the precipitate. A method for producing a non-reducible dielectric ceramic composition.
JP3044401A 1991-01-11 1991-02-16 Production of irreducible dielectric ceramic composition Pending JPH04260660A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3044401A JPH04260660A (en) 1991-02-16 1991-02-16 Production of irreducible dielectric ceramic composition
US07/818,294 US5232880A (en) 1991-01-11 1992-01-09 Method for production of nonreducible dielectric ceramic composition
DE4200356A DE4200356C2 (en) 1991-01-11 1992-01-09 Process for making a non-reducible dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3044401A JPH04260660A (en) 1991-02-16 1991-02-16 Production of irreducible dielectric ceramic composition

Publications (1)

Publication Number Publication Date
JPH04260660A true JPH04260660A (en) 1992-09-16

Family

ID=12690490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3044401A Pending JPH04260660A (en) 1991-01-11 1991-02-16 Production of irreducible dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPH04260660A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024135566A1 (en) * 2022-12-22 2024-06-27 株式会社村田製作所 Layered ceramic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024135566A1 (en) * 2022-12-22 2024-06-27 株式会社村田製作所 Layered ceramic capacitor

Similar Documents

Publication Publication Date Title
JP4110978B2 (en) Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
KR102706702B1 (en) Multilayer ceramic capacitor and ceramic material powder
KR20180027358A (en) Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
JP4552419B2 (en) Dielectric ceramic and multilayer ceramic capacitors
CN105601273B (en) Method for producing barium titanate-based powder and laminated ceramic capacitor
JP4457630B2 (en) Dielectric ceramic and multilayer ceramic capacitors
KR101237256B1 (en) Barium titanate dielectric powder, method for manufacturing the same, method for manufacturing ceramic green sheet, and method for manufacturing laminated ceramic capacitor
JP3882054B2 (en) Multilayer ceramic capacitor
JP2014152098A (en) Dielectric composition and multilayer ceramic electronic component using the same
JP2022108636A (en) Dielectric, ceramic electronic component, manufacturing method of dielectric, and manufacturing method of ceramic electronic component
JP3389408B2 (en) Multilayer capacitors
KR101515522B1 (en) Method for producing perovskite type composite oxide
US5232880A (en) Method for production of nonreducible dielectric ceramic composition
JP2871135B2 (en) Method for producing non-reducing dielectric ceramic composition
JP3182772B2 (en) Method for producing non-reducing dielectric ceramic composition
JP5423303B2 (en) Method for producing dielectric ceramic composition
JP5299400B2 (en) Method for producing composite oxide powder
JPH0825795B2 (en) Non-reducing dielectric ceramic composition
JP3482654B2 (en) Dielectric ceramic composition powder, multilayer ceramic capacitor using the same, and method for producing dielectric ceramic composition powder
JP7262640B2 (en) ceramic capacitor
JP4643443B2 (en) Method for producing barium titanate powder
JPH04260660A (en) Production of irreducible dielectric ceramic composition
JP2002134350A (en) Laminated ceramic capacitor and its manufacturing method
JPH08153605A (en) Manufacture of laminated type semiconductor ceramic element
JP2020019673A (en) Manufacturing method of dielectric material and manufacturing method of multilayer ceramic capacitor