JPH04268062A - Atomsphere carburization method for steel - Google Patents
Atomsphere carburization method for steelInfo
- Publication number
- JPH04268062A JPH04268062A JP11268391A JP11268391A JPH04268062A JP H04268062 A JPH04268062 A JP H04268062A JP 11268391 A JP11268391 A JP 11268391A JP 11268391 A JP11268391 A JP 11268391A JP H04268062 A JPH04268062 A JP H04268062A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- amount
- raw material
- steel
- carburization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 5
- 238000000034 method Methods 0.000 title claims abstract description 5
- 239000010959 steel Substances 0.000 title claims abstract description 5
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 11
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 11
- 239000002994 raw material Substances 0.000 claims abstract description 10
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 62
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 31
- 238000005255 carburizing Methods 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 6
- 239000001569 carbon dioxide Substances 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 abstract description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 23
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 abstract description 19
- 239000004215 Carbon black (E152) Substances 0.000 abstract description 7
- -1 C3H8 or C4H10 Chemical class 0.000 abstract 1
- 238000002407 reforming Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 31
- 239000001294 propane Substances 0.000 description 8
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000013256 coordination polymer Substances 0.000 description 6
- 239000001273 butane Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、鋼の高温ガス浸炭法に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high temperature gas carburizing method for steel.
【0002】0002
【従来の技術】従来から広く用いられている浸炭雰囲気
ガスの一つとして、吸熱形ガスがある。この吸熱形ガス
は、プロパン,ブタンなどの炭化水素ガスと空気を混合
して、1050℃程度に加熱されたニッケル触媒中を通
過させて変成されるものである。また、メタノールを熱
分解して生成するものがある。前者はCO,H2,N2
ガスを主成分とし、CO2,CH4,H2Oを微量に含
むものであり、後者は一般的にはN2を含有しないもの
である。2. Description of the Related Art Endothermic gas is one of the carburizing atmosphere gases that have been widely used in the past. This endothermic gas is converted by mixing a hydrocarbon gas such as propane or butane with air and passing the mixture through a nickel catalyst heated to about 1050°C. There are also substances produced by thermally decomposing methanol. The former is CO, H2, N2
It is mainly composed of gas and contains trace amounts of CO2, CH4, and H2O, and the latter generally does not contain N2.
【0003】変成ガス組成は原料炭化水素と空気の混合
比で調整するが、通常は変成時にススの発生を少なくす
るため、カーボンポテンシャルは0.1〜0.3%程度
である。このために、吸熱形ガスに適量の炭化水素を添
加して、更にカーボンポテンシャルを高くすることが行
なわれている。[0003] The composition of the shift gas is adjusted by the mixing ratio of the raw material hydrocarbon and air, but the carbon potential is usually about 0.1 to 0.3% in order to reduce the generation of soot during shift. For this purpose, an appropriate amount of hydrocarbon is added to the endothermic gas to further increase the carbon potential.
【0004】メタノール分解ガスの炭素濃度の調整は、
吸熱形ガスと同様に炭化水素又は適当なアルコールを添
加して行なわれている。[0004] Adjustment of the carbon concentration of methanol decomposition gas is as follows:
Similar to endothermic gases, hydrocarbons or suitable alcohols are added.
【0005】ー般に、原料炭化水素には、米国では天然
ガス(主としてCH4)が、また我国ではLPG(ブタ
ンC4H10,プロパンC3H8又はその混合ガス)が
用いられている。Generally, natural gas (mainly CH4) is used as the raw material hydrocarbon in the United States, and LPG (butane C4H10, propane C3H8, or a mixed gas thereof) is used in Japan.
【0006】プロパンと空気を原料として、吸熱形ガス
を生成するときの変成反応式(式中でKPは平衡常数)
は、次の通りである。[0006] Transformation reaction equation for producing endothermic gas using propane and air as raw materials (KP is an equilibrium constant in the equation)
is as follows.
【0007】C3H8+空気7.14(1.5O2+5
.64N2)=3CO+4H2+5.64N2 ただ
し、上記反応式の生成ガス間で下記の反応が生じ、反応
時の温度で定まる平衡組成となる。[0007] C3H8 + air 7.14 (1.5O2 + 5
.. 64N2)=3CO+4H2+5.64N2 However, the following reaction occurs between the gases produced by the above reaction formula, resulting in an equilibrium composition determined by the temperature during the reaction.
【0008】
例えば、1050℃でカーボンポテンシャルを0.8%
とするための変成組成は表1の通りである。For example, the carbon potential is 0.8% at 1050°C.
The metamorphic composition to achieve this is shown in Table 1.
【0009】[0009]
【表1】[Table 1]
【0010】プロパンを原料とする変成ガスの1050
℃での平衡組成中のCO成分は、23.47%である。1050 of a converted gas using propane as a raw material
The CO content in the equilibrium composition at °C is 23.47%.
【0011】上記変成ガスのカーボンポテンシャルは、
次式の反応に依存する。
〔但し、CP:平衡炭素濃度%(カーボンポテンシャル
)AS:オーステナイトの飽和炭素量
〕[0011] The carbon potential of the above metamorphosed gas is:
It depends on the reaction of the following equation. [However, CP: equilibrium carbon concentration % (carbon potential) AS: saturated carbon content of austenite
]
【0012】従って、一般的に浸炭雰囲気ガスのカーボ
ンポテンシャルの調整は、COガス量とCO2の比を調
節することにより行なわれている。変成ガスの最大CO
量は原料ガスの種類によって定まり、プロパンの時は最
大23.7%,ブタンの時は最大で24.2%である。Therefore, the carbon potential of the carburizing atmosphere gas is generally adjusted by adjusting the ratio of the amount of CO gas to CO2. Maximum CO of metamorphic gas
The amount is determined by the type of raw material gas, with a maximum of 23.7% for propane and 24.2% for butane.
【0013】ところで、このCO量を20%一定とした
ときのCO2に伴なう各温度でのカーボンポテンシャル
とCO2量の関係をグラフにすると、図1のようになる
。図1中のB曲線の通り、例えば浸炭温度950℃では
、CO2量を0.07%とすればCPは1.2%となり
、CO2を0.08%とすればCPは1.0%程度とな
り、浸炭のために適したカーボンプテンシャルは比較的
に容易に設定できる。By the way, if the relationship between the carbon potential and the amount of CO2 at each temperature associated with CO2 is plotted as a graph, as shown in FIG. 1, when the amount of CO2 is constant at 20%. As shown by curve B in Figure 1, for example, at a carburizing temperature of 950°C, if the amount of CO2 is 0.07%, CP will be 1.2%, and if CO2 is 0.08%, CP will be approximately 1.0%. Therefore, the carbon potential suitable for carburizing can be set relatively easily.
【0014】[0014]
【発明が解決しようとする課題】一般に浸炭深さと時間
との関係は、ハリスの式として次式に示される。[Problems to be Solved by the Invention] Generally, the relationship between carburization depth and time is expressed by the following Harris equation.
【0015】例えば、900℃で浸炭深さ1mmを得る
には、3.5時間必要である。これを1100℃で浸炭
すれば、0.4時間でよい。このような高温下での急速
浸炭は工業的に有利である。For example, 3.5 hours are required to obtain a carburization depth of 1 mm at 900°C. If this is carburized at 1100°C, it will take only 0.4 hours. Rapid carburization at such high temperatures is industrially advantageous.
【0016】ところが、浸炭温度を高くすると、CO量
(前述した如く、プロパンのときで最大23.7%、ブ
タンのときで24.2%)に対するCO2量を変えて、
浸炭のために適したカーボンポテンシャルを得ることが
誠に難しくなる。例えば、図1中のC曲線から分る通り
、浸炭温度を1100℃としたとき、カーボンポテンシ
ャルを浸炭のために必要な1%にするためには、CO濃
度が20%のときCO2濃度を0.02%程度にまで制
御しなければならない。制御すべきCO2量の絶体値が
小さ過ぎ、しかもC曲線から分るように微量のCO2の
変化で大きくカーボンポテンシャルは変動してしまうの
で、高い精度でカーボンポテンシャルを設定することは
望めない。However, when the carburizing temperature is increased, the amount of CO2 relative to the amount of CO (as mentioned above, the maximum is 23.7% for propane and 24.2% for butane),
It becomes really difficult to obtain a suitable carbon potential for carburizing. For example, as can be seen from the C curve in Figure 1, when the carburizing temperature is 1100°C, in order to make the carbon potential 1% required for carburizing, the CO2 concentration must be reduced to 0 when the CO concentration is 20%. It must be controlled to about .02%. The absolute value of the amount of CO2 to be controlled is too small, and as can be seen from curve C, the carbon potential fluctuates greatly due to a slight change in CO2, so it is not possible to set the carbon potential with high accuracy.
【0017】[0017]
【課題を解決するための手段】本発明は、上述した課題
を解決するため、原料炭素水素ガスに二酸化炭素ガスを
混合し、必要によっては空気を加えて、高温ニッケル触
媒中を通して変成することにより、その変成ガス中のC
O量を30%〜60%に増大させることにある。このよ
うにして変成ガス中のCO量の絶体値を多くすれば、そ
れに対する比であるCO2量の絶体値をも多くすること
ができ、CO2量の制御が容易になるので、高い精度で
カーボンポテンシャルを管理することができるのである
。[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention mixes carbon dioxide gas with raw carbon hydrogen gas, adds air if necessary, and passes it through a high-temperature nickel catalyst for transformation. , C in the metamorphic gas
The aim is to increase the amount of O to 30% to 60%. By increasing the absolute value of the amount of CO in the metamorphic gas in this way, the absolute value of the amount of CO2, which is the ratio to it, can also be increased, making it easier to control the amount of CO2, resulting in high accuracy. This allows carbon potential to be managed.
【0018】例えば、CO量を50%,浸炭温度を11
00℃とするとき、カーボンポテンシャルを1%にする
ためには、前述した式(1)で示されるように、CO2
濃度は0.12%という高い値でよい。For example, if the amount of CO is 50% and the carburizing temperature is 11%,
When the temperature is 00°C, in order to make the carbon potential 1%, as shown in the above equation (1), CO2
The concentration may be as high as 0.12%.
【0019】従って、1100℃の高温浸炭下でカーボ
ンポテンシャル1%を得るために、従来の変成ガス(C
Oが約20%程度しかない)ではCO2量を0.02%
のオーダーで保持しなければならないのに対して、CO
量が50%のときのCO2量は0.12%のオーダーで
管理すればよく、前者の場合と比較すると、CO2量が
6倍でCO2量の調節がし易く、CPを容易に高精度で
制御することができる。本願発明による二酸化炭素ガス
を加える反応式は表2の通りである。Therefore, in order to obtain a carbon potential of 1% under high-temperature carburizing at 1100°C, conventional metamorphic gas (C
(O content is only about 20%), the amount of CO2 is reduced to 0.02%.
must be held in the order of CO
When the amount of CO2 is 50%, the amount of CO2 needs to be managed on the order of 0.12%, and compared to the former case, the amount of CO2 is 6 times more, making it easier to adjust the amount of CO2, making it easier to control CP with high precision. can be controlled. The reaction formula for adding carbon dioxide gas according to the present invention is shown in Table 2.
【0020】[0020]
【表2】[Table 2]
【0021】以上の如く、本発明は高温における浸炭を
高精度で行なうことができる優れた技術を提供するもの
である。As described above, the present invention provides an excellent technique that allows carburizing to be carried out at high temperatures with high precision.
【0022】[0022]
【実施例】原料ガスとして純プロパンを使用し、C3H
8,CO2,空気の混合比を20.2:46.6:33
.2とし、1100℃に調整されたニッケル触媒変成炉
で変成したときのCO量は50%、CO2濃度は0.3
7%、CPは0.32%であった。このガスにプロパン
を添加しCO2を還元してCO2量を減少させ、CO2
を0.1%に調整した。このガスのこの時のCPは図1
中の曲線Dに示される通り、1.15%であった。この
浸炭ガス中で、SCM420H材の20φ×100mm
の丸棒試料について1100℃で1時間の浸炭作業を行
なった結果、表面炭素濃度は1.15%、全浸炭深さは
約1.6mmを得ることができた。[Example] Using pure propane as the raw material gas, C3H
8. Mixing ratio of CO2 and air is 20.2:46.6:33
.. 2, and when transformed in a nickel catalyst transformation furnace adjusted to 1100°C, the amount of CO is 50% and the concentration of CO2 is 0.3
7%, and CP was 0.32%. Propane is added to this gas to reduce CO2 and reduce the amount of CO2.
was adjusted to 0.1%. The CP of this gas at this time is Figure 1
As shown in curve D in the middle, it was 1.15%. In this carburizing gas, 20φ x 100mm of SCM420H material
As a result of carburizing the round bar sample at 1100° C. for 1 hour, a surface carbon concentration of 1.15% and a total carburizing depth of about 1.6 mm were obtained.
【0023】[0023]
【発明の効果】これまでの炭化水素と空気とから変成さ
せる浸炭性ガスでは、高温下でのカーボンポテンシャル
の高精度の制御は困難であったが、本発明では二酸化炭
素ガスを添加することで、変成ガス中のCO量を増加さ
せることにより、CO2量の制御を容易にして、CO量
とCO2量の比に相関するカーボンポテンシャルの制御
を高温下でも容易にし、これにより雰囲気による高温で
短時間の浸炭が可能となる卓越した効果がある。[Effects of the Invention] It has been difficult to control the carbon potential with high precision at high temperatures using conventional carburizing gases that are metamorphosed from hydrocarbons and air, but in the present invention, by adding carbon dioxide gas. By increasing the amount of CO in the metamorphic gas, the amount of CO2 can be easily controlled, and the carbon potential, which is correlated with the ratio of the amount of CO to the amount of CO2, can be easily controlled even at high temperatures. It has the outstanding effect of allowing time carburizing.
【図1】カーボンポテンシャルとCO2量の関係を示す
グラフである。FIG. 1 is a graph showing the relationship between carbon potential and CO2 amount.
Claims (1)
ガスに二酸化炭素を加えて変成し、変成ガス組成中のC
O含有量を30〜60容量%として、COとCO2含有
量比の制御を容易にしたガスを使用することを特徴とす
る高温下での鋼の雰囲気高速浸炭法Claim 1: Carbon dioxide is added to a raw material gas of hydrocarbons or hydrocarbons and air to transform the gas, and C in the gas composition is modified.
A high-speed atmospheric carburizing method for steel at high temperatures, characterized by using a gas with an O content of 30 to 60% by volume and an easy control of the CO and CO2 content ratio.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11268391A JPH04268062A (en) | 1991-02-22 | 1991-02-22 | Atomsphere carburization method for steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11268391A JPH04268062A (en) | 1991-02-22 | 1991-02-22 | Atomsphere carburization method for steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04268062A true JPH04268062A (en) | 1992-09-24 |
Family
ID=14592865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11268391A Pending JPH04268062A (en) | 1991-02-22 | 1991-02-22 | Atomsphere carburization method for steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04268062A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001278610A (en) * | 2000-03-31 | 2001-10-10 | Nippon Sanso Corp | Method of generating atmospheric gas for high temperature rapid carburization |
JP2005290509A (en) * | 2004-04-02 | 2005-10-20 | Chugai Ro Co Ltd | Gas production device for carburizing |
JP2012092424A (en) * | 2010-09-30 | 2012-05-17 | Dowa Thermotech Kk | Method and device of gas carburizing |
JP2012092423A (en) * | 2010-09-30 | 2012-05-17 | Dowa Thermotech Kk | Method of gas carburizing |
JP2016183377A (en) * | 2015-03-26 | 2016-10-20 | 大同特殊鋼株式会社 | Heat treatment method of metallic material |
JP2019119892A (en) * | 2017-12-28 | 2019-07-22 | エア・ウォーター株式会社 | Gas carburization method |
-
1991
- 1991-02-22 JP JP11268391A patent/JPH04268062A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001278610A (en) * | 2000-03-31 | 2001-10-10 | Nippon Sanso Corp | Method of generating atmospheric gas for high temperature rapid carburization |
JP2005290509A (en) * | 2004-04-02 | 2005-10-20 | Chugai Ro Co Ltd | Gas production device for carburizing |
JP4488782B2 (en) * | 2004-04-02 | 2010-06-23 | 中外炉工業株式会社 | Carburizing gas production equipment |
JP2012092424A (en) * | 2010-09-30 | 2012-05-17 | Dowa Thermotech Kk | Method and device of gas carburizing |
JP2012092423A (en) * | 2010-09-30 | 2012-05-17 | Dowa Thermotech Kk | Method of gas carburizing |
JP2016183377A (en) * | 2015-03-26 | 2016-10-20 | 大同特殊鋼株式会社 | Heat treatment method of metallic material |
JP2019119892A (en) * | 2017-12-28 | 2019-07-22 | エア・ウォーター株式会社 | Gas carburization method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5827202B2 (en) | Kangengas no Seihou | |
JPH04268062A (en) | Atomsphere carburization method for steel | |
US4211584A (en) | Methods of heat-treating steel | |
US6406560B1 (en) | Method for the thermal treatment of metal | |
JP4823670B2 (en) | Carburizing atmosphere gas generation method | |
WO2023074660A1 (en) | Heat treatment furnace and heat treatment method | |
GB2044804A (en) | Heat treatment method | |
EP1081094A3 (en) | Process for reforming methane with carbon dioxide | |
MY104387A (en) | Process of producing a gas which is rich in carbon monoxide by a cracking of hydrocarbons | |
SU545697A1 (en) | Steel Nitriding Medium | |
GB775334A (en) | Improvements in the reaction of gaseous hydrocarbons with oxygen | |
GB349471A (en) | Improvements in the production of hydrogen, carbon monoxide/hydrogen mixtures of nitrogen/hydrogen mixtures | |
JPS60114565A (en) | Gas carburizing method | |
JP6133326B2 (en) | Method for producing a gas mixture containing substantially equal proportions of carbon monoxide and hydrogen | |
SU679643A1 (en) | Gas medium for low-temperature nitrocarburisation | |
JP2000256824A (en) | Production of carburizing atmospheric gas and carburizing method using the gas | |
JPS6349748B2 (en) | ||
SU833469A1 (en) | Method of obtaining controllable atmospheres | |
JP4340822B2 (en) | Method for producing atmospheric gas for metal heat treatment | |
JP4180492B2 (en) | Carburizing equipment | |
KR100474414B1 (en) | Bright heat treatment method of inert neutral-gas environment at a high temperature | |
JP2001152312A (en) | Apparatus and method for generating controlled atmospheric gas for high temperature rapid carburizing | |
RU2253683C1 (en) | Method of forming nitrogen-controllable atmosphere | |
US1200805A (en) | Process of producing hydrogen. | |
US1417952A (en) | Process to produce mixtures of hydrogen and nitrogen |