JPH04253584A - Laser beam cutting method and laser beam machining apparatus - Google Patents
Laser beam cutting method and laser beam machining apparatusInfo
- Publication number
- JPH04253584A JPH04253584A JP3098351A JP9835191A JPH04253584A JP H04253584 A JPH04253584 A JP H04253584A JP 3098351 A JP3098351 A JP 3098351A JP 9835191 A JP9835191 A JP 9835191A JP H04253584 A JPH04253584 A JP H04253584A
- Authority
- JP
- Japan
- Prior art keywords
- laser
- laser beam
- cut
- optical path
- cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims description 10
- 238000003754 machining Methods 0.000 title description 2
- 239000000463 material Substances 0.000 claims abstract description 24
- 230000003287 optical effect Effects 0.000 claims abstract description 20
- 238000003698 laser cutting Methods 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 5
- 239000007789 gas Substances 0.000 description 9
- 230000004075 alteration Effects 0.000 description 6
- 239000002184 metal Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/0869—Devices involving movement of the laser head in at least one axial direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/0869—Devices involving movement of the laser head in at least one axial direction
- B23K26/0892—Controlling the laser beam travel length
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、レーザ光を利用して金
属板、プラスチック板等の所定肉厚の被加工材を所望形
状に切断するレーザ切断方法に係わり、特に、レーザ発
振器より加工ヘッド内に導かれたレーザビームを、該ヘ
ッド内の集光レンズ系により集束させながら被切断材上
に導き、所望形状の切断を行うレーザ切断方法及びレー
ザ加工装置に関する。[Field of Industrial Application] The present invention relates to a laser cutting method for cutting a workpiece of a predetermined thickness, such as a metal plate or a plastic plate, into a desired shape using laser light. The present invention relates to a laser cutting method and a laser processing apparatus in which a laser beam guided inside the head is guided onto a material to be cut while being focused by a condensing lens system in the head to cut into a desired shape.
【0002】0002
【従来の技術】従来より、例えば第1図に示すようにレ
ーザ発振器より発振される炭酸ガスレーザその他のレー
ザビームを変向ミラーにより変向させながら加工ヘッド
に導き、該加工ヘッド内の集光レンズ系を利用して被切
断材表面に前記ビームを集束させるとともに、該ビーム
の周囲より空気若しくは酸素ガスを噴出させながら前記
被切断材を所望形状に切断するようにしたレーザ切断装
置は公知である。かかる装置においては、例えば特開昭
63−154285号(特願昭61−296684号)
に示す様に、レーザ発振器から加工ヘッドのレーザ光路
中に、例えばメニスカスレンズ等を配し、レーザ発振器
より発振されるレーザ光をコリメート(平行光線)化し
、常に一定光束のレーザ光が加工ヘッドに導かれるよう
に構成しているが、前記レーザ光を完全に平行化するの
は不可能であり、この為従来装置においてはレーザ発振
器より集光レンズ系に至るまでの光路長の一定化を図り
、被加工材表面に精度よくレーザ光が集束されるよう構
成している。2. Description of the Related Art Conventionally, as shown in FIG. 1, for example, a carbon dioxide laser or other laser beam emitted from a laser oscillator is guided to a processing head while being deflected by a deflection mirror, and a condenser lens in the processing head is used. There is a known laser cutting device that uses a system to focus the beam on the surface of the material to be cut, and cuts the material into a desired shape while ejecting air or oxygen gas from around the beam. . In such a device, for example, Japanese Patent Application Laid-Open No. 63-154285 (Japanese Patent Application No. 61-296684)
As shown in , a meniscus lens or the like is placed in the laser optical path from the laser oscillator to the processing head, and the laser light emitted from the laser oscillator is collimated (parallel rays), so that a constant beam of laser light is always directed to the processing head. However, it is impossible to completely collimate the laser beam, so in conventional devices, the optical path length from the laser oscillator to the condensing lens system is made constant. The laser beam is configured to be focused on the surface of the workpiece with high precision.
【0003】0003
【発明が解決しようとする課題】さて近年のレーザ切断
装置においては前記レーザ光の高出力化を図り、厚肉な
部材をも切断可能に構成しているが、単に高出化のみの
方法で構成すると前記レーザ光は被加工材表面上に精度
よく集束されるよう構成している為に、該加工材の表面
域と裏面域では集光ビームのパワー密度の差が大きく、
厚肉は被加工部材になるにつれて、良好な切断面を得る
事が困難となる。[Problem to be Solved by the Invention] In recent years, laser cutting devices have been designed to increase the output of the laser beam and are configured to be able to cut even thick parts. Since the laser beam is configured to be focused on the surface of the workpiece with high accuracy, there is a large difference in the power density of the focused beam between the front surface area and the back surface area of the workpiece.
The thicker the workpiece, the more difficult it becomes to obtain a good cut surface.
【0004】例えば切断ガス(アシストガス)に酸素を
用いて、板厚の異なる軟鋼を切断する場合について検討
してみるに、厚板の切断では厚み方向に対するパワー密
度の差を小さくすることに加え、アシストガスによる溶
融金属の排除性を高めるために、切断溝巾を大きくする
ことが要求される。特にアシストガスに酸素を用いる軟
鋼切断では、溶融金属の排除性を高めるためにガス圧力
を上げると、切断面粗さが大きくなり、切断品質の低下
が顕著である。このため切断溝巾内を通過するアシスト
ガスの気流が切断下面部まで安定する条件として気流を
強めることなく切断溝巾を大きくする条件が重要となる
。一方、薄板切断では、上記の厚板切断で要される材料
の厚み方向に対するパワー密度の差および気流の影響が
切断品質に与える影響は比較的少なく、むしろ高速で切
断する条件が重要な要素となる。高速での切断は、焦光
点でのパワー密度を高めることにより可能となるが、レ
ーザビーム出力が一定の場合、パワー密度を高くするこ
とは焦光点での焦光ビーム径を小さくすることを意味し
、結果的には、切断溝巾を小さくして切断することにな
る。したがって、集光点でのビーム径を固定にした従来
の方法では、同一の焦光レンズを使用する限り、肉厚の
薄い材料から厚い材料まで、最適な品質と速度で切断す
ることが困難である。For example, when we consider the case of cutting mild steel plates of different thicknesses using oxygen as the cutting gas (assist gas), we find that in cutting thick plates, in addition to reducing the difference in power density in the thickness direction, In order to improve the removal of molten metal by the assist gas, it is required to increase the width of the cutting groove. Particularly when cutting mild steel using oxygen as an assist gas, when the gas pressure is increased to improve the removal of molten metal, the roughness of the cut surface increases and the quality of the cut is significantly degraded. Therefore, as a condition for stabilizing the airflow of the assist gas passing through the cutting groove width up to the lower surface of the cut, it is important to increase the cutting groove width without increasing the airflow. On the other hand, when cutting thin plates, the difference in power density in the thickness direction of the material required for thick plate cutting and the effect of airflow have relatively little effect on cutting quality, and rather the conditions for cutting at high speed are important factors. Become. High-speed cutting is made possible by increasing the power density at the focal point, but if the laser beam output is constant, increasing the power density means decreasing the focal beam diameter at the focal point. This means that the cutting groove width will be made smaller as a result. Therefore, with the conventional method of fixing the beam diameter at the focal point, it is difficult to cut thin to thick materials with optimal quality and speed as long as the same focusing lens is used. be.
【0005】本発明はかかる従来技術の欠点に鑑み、被
切断部材の肉厚に応じて常に良好な切断面を得る事を可
能にしたレーザ切断方法及びレーザ加工装置を提供する
事を目的とする。SUMMARY OF THE INVENTION In view of the shortcomings of the prior art, it is an object of the present invention to provide a laser cutting method and a laser processing apparatus that make it possible to always obtain a good cut surface depending on the thickness of the member to be cut. .
【0006】[0006]
【課題を解決するための手段】本発明は、加工ヘッド内
の集束レンズのレンズ形状に起因する球面収差とビーム
波長に起因する回析収差を有効に利用して、被切断材の
肉厚が大、言換えれば厚板20Aを切断する場合には、
図1及び図3(A)に示す如くヘッド内の集光レンズ系
に導かれる入射ビーム径Dを小(A)にして薄板20B
を加工する場合(図3(B)参照)に比較して焦点深度
を大にし、これにより集光ビーム径d01がd11に比
較して大きくなり、集光点でのパワー密度は低下するが
、その分、切断上面から下面に向うパワー密度の変化(
d01−d02)を(d11−d12)に比較して小さ
くすることができる。また集光ビーム径が大きくなる分
、切断溝巾が大きくなり、切断溝を通過する切断ガス(
アシストガス)の作用による溶融金属の排除性が良くな
り、切断品質の向上を計ることができる。[Means for Solving the Problems] The present invention effectively utilizes spherical aberration caused by the shape of the focusing lens in the processing head and diffraction aberration caused by the beam wavelength, thereby reducing the thickness of the material to be cut. In other words, when cutting a thick plate 20A,
As shown in FIGS. 1 and 3(A), the diameter D of the incident beam guided to the condensing lens system in the head is made small (A) and the thin plate 20B
The depth of focus is increased compared to when processing (see FIG. 3(B)), and as a result, the focused beam diameter d01 becomes larger than d11, and the power density at the focused point decreases, but The change in power density from the upper surface to the lower surface of the cutting (
d01-d02) can be made smaller than (d11-d12). In addition, as the focused beam diameter increases, the cutting groove width increases, and the cutting gas (
The removal of molten metal by the action of assist gas (assist gas) improves the cutting quality.
【0007】又薄板の場合は被切断材の表面域と裏面域
でのビームパワー密度の変化は図2Bに示す如く厚板の
ような重要性は無く、この為前記厚板の場合より入射ビ
ーム径Dを大(B)きくし、具体的には切断材表面に導
かれた集束ビーム径の複合収差(球面収差+回析収差)
が相対的に小さくなるように入射ビーム径を変化させる
のがよく、これにより高いパワー密度で切断が可能とな
り、高速切断が可能となる。In addition, in the case of a thin plate, the change in beam power density between the front surface and the back surface of the material to be cut is not as important as in the case of a thick plate, as shown in FIG. 2B. The diameter D is increased (B), specifically, the compound aberration (spherical aberration + diffraction aberration) of the focused beam diameter guided to the surface of the cutting material
It is preferable to change the diameter of the incident beam so that it becomes relatively small, which enables cutting with high power density and high speed cutting.
【0008】この場合、焦点深度Fは下記式に示すよう
に、レンズ焦点距離fに比例して変化するものであるた
めに、焦点距離が固定の場合には、光路長に対して、ビ
ーム径が拡がり角を有することを利用して前記レーザ発
振器より加工ヘッドまでの光路長を可変、具体的には厚
板の場合は前記光路長を短く又薄板の場合には長くする
ように可変させてもよい。
F(焦点深度)=f(焦点距離)/D(入射ビーム径)
尚、本発明は被切断材の肉厚のみに限定される事なく材
質等を加味して設定する必要がある。In this case, the depth of focus F changes in proportion to the lens focal length f, as shown in the following equation, so when the focal length is fixed, the beam diameter changes with respect to the optical path length. The optical path length from the laser oscillator to the processing head is varied by taking advantage of the fact that the laser beam has a divergence angle, and specifically, the optical path length is shortened in the case of a thick plate and lengthened in the case of a thin plate. Good too. F (depth of focus) = f (focal length) / D (incidence beam diameter)
Note that the present invention is not limited only to the thickness of the material to be cut, but must be set in consideration of the material, etc.
【0009】[0009]
【発明の効果】上記記載より明らかな如く本発明は、前
記従来技術の様に前記光路長を常に一定化させる事なく
、言換えれば焦点深度や集束ビーム密度を一定にする事
なく、被切断材の肉厚に対応させて前記光路長や入射ビ
ーム径を可変する事により最も好ましい焦点深度や集束
ビーム密度に設定することを特徴とするものであ。[Effects of the Invention] As is clear from the above description, the present invention does not always make the optical path length constant as in the prior art, or in other words, does not make the depth of focus or the focused beam density constant. It is characterized in that the most preferable depth of focus and focused beam density are set by varying the optical path length and incident beam diameter in accordance with the thickness of the material.
【0010】これにより薄板切断を行う場合には集束ビ
ーム密度を高めて高速切断を可能とするものであり、一
方厚板切断を行う場合には前記収差を有効に利用して焦
点深度を前記被切断材の肉厚に対応させて大にし、これ
により切断品質の向上を図る事が出来る。従って本発明
は総合的な品質を考慮して厚板切断の場合には切断面品
質を重視するも、薄板切断の場合は厚みに相応して、焦
点深度を浅くしても切断面品質が極度に低下しないため
に、加工性能(切断速度)を重視したものである。[0010] As a result, when cutting a thin plate, the focused beam density is increased to enable high-speed cutting, while when cutting a thick plate, the depth of focus is effectively utilized to adjust the depth of focus to the above-mentioned target. By increasing the size according to the thickness of the material to be cut, it is possible to improve cutting quality. Therefore, in the present invention, when cutting a thick plate, emphasis is placed on the quality of the cut surface in consideration of overall quality, but when cutting a thin plate, the quality of the cut surface is extremely poor even if the depth of focus is made shallow, depending on the thickness. In order to avoid deterioration, machining performance (cutting speed) is emphasized.
【0011】[0011]
【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但し、この実施例に記載されてい
る構造部品の寸法、材質、形状、その相対位置などは特
に特定的な記載がない限りは、この発明の範囲をそれの
みに限定する趣旨でなく単なる説明例に過ぎない。第1
図は本発明の実施例に係わるレーザ加工装置の平面構成
図で、平行に配列した一対のY軸レール13,14、該
Y軸レール13,14間に移動可能に架設され、メイン
フレーム11とガーダ12から成る加工機本体10、メ
インフレーム11上に搭載されたレーザ発振器18、Y
軸方向に位置変位可能にメインフレーム11上に搭載さ
れた光路長調整用反転ミラーブロック15、該ブロック
15よりの出射光を90°変向させてX軸方向に導き可
能にメインフレーム11上に搭載された変向ミラー16
、前記ガーダ12に取り付けたX軸レール17に沿って
往復走行可能な加工ヘッド22と光路長固定用の反転ミ
ラーブロック25からなる。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail by way of example with reference to the drawings. However, the dimensions, materials, shapes, relative positions, etc. of the structural parts described in this example are merely illustrative examples, and are not intended to limit the scope of the present invention, unless otherwise specified. It's nothing more than that. 1st
The figure is a plan configuration diagram of a laser processing apparatus according to an embodiment of the present invention, in which a pair of Y-axis rails 13 and 14 are arranged in parallel, a main frame 11 and a main frame 11 are installed movably between the Y-axis rails 13 and 14. A processing machine main body 10 consisting of a girder 12, a laser oscillator 18 mounted on the main frame 11, Y
A reversing mirror block 15 for optical path length adjustment is mounted on the main frame 11 so as to be movable in the axial direction. Mounted deflection mirror 16
It consists of a processing head 22 that can reciprocate along the X-axis rail 17 attached to the girder 12, and a reversing mirror block 25 for fixing the optical path length.
【0012】そして前記第1の反転ミラーブロック15
は、被切断材の板厚、材質、使用レンズの焦点距離等を
入力情報として不図示の演算回路により設定された最適
光路長に対応して、Y軸方向に位置変位可能な不図示の
サーボモータ等が付設されている。一方第2のミラーブ
ロック25は加工ヘッド22と共に、X軸方向に移動可
能に構成されているが、該ミラーブロック25は特に、
切断動作時における加工ヘッド22の移動量に対し1/
2の移動量、言換えれば移動速度を1/2に設定し、こ
れにより加工ヘッド22がX軸方向のいずれに移動した
場合についても発振器18より加工ヘッド22に至る光
路長が常に一定になるよう制御している。[0012]The first reversing mirror block 15
is a servo (not shown) that can be displaced in the Y-axis direction in accordance with the optimum optical path length set by an arithmetic circuit (not shown) using input information such as the thickness of the material to be cut, the material, and the focal length of the lens used. A motor etc. are attached. On the other hand, the second mirror block 25 is configured to be movable in the X-axis direction together with the processing head 22.
1/ for the amount of movement of the processing head 22 during cutting operation.
The moving amount of 2, in other words, the moving speed is set to 1/2, so that the optical path length from the oscillator 18 to the processing head 22 is always constant no matter where the processing head 22 moves in the X-axis direction. It seems like it's under control.
【0013】加工ヘッド22は公知の様に変向ミラーと
共に集束レンズ(不図示)が組込まれており、該ヘッド
22内に導かれた入射ビームを集束して被切断材20表
面に結像可能に構成している。As is well known, the processing head 22 incorporates a deflection mirror and a focusing lens (not shown), and can focus the incident beam guided into the head 22 and form an image on the surface of the material to be cut 20. It is composed of
【0014】次にかかる実施例の作用を簡単に説明する
。先ず段取動作時に被切断材の板厚に対応させて、被切
断材20の板厚が大の場合には、第1図に示す如くヘッ
ド22内の集光レンズ系に導かれる入射ビーム径Dが(
A)に位置するように、第1のミラーブロック15を僅
かに図上下方にずらした後、下記切断工程に移行する。Next, the operation of this embodiment will be briefly explained. First, during the setup operation, in accordance with the thickness of the material to be cut, if the material to be cut 20 is thick, the diameter of the incident beam guided to the condensing lens system in the head 22 is adjusted as shown in FIG. D is (
After the first mirror block 15 is slightly shifted up and down in the figure so that it is located at A), the process proceeds to the cutting process described below.
【0015】一方薄板を加工する場合は入射ビーム径D
が(B)の位置に位置するように、第1のミラーブロッ
ク15を僅かに図上上方にずらした後、下記切断工程に
移行する。この場合前記ミラーブロックの移動は2段階
若しくは更に多くの複数段階的に設定してもよく、又無
段階制御を行ってもよい。On the other hand, when processing a thin plate, the incident beam diameter D
After the first mirror block 15 is slightly shifted upward in the figure so that it is located at the position shown in (B), the process proceeds to the cutting process described below. In this case, the movement of the mirror block may be set in two steps or in a plurality of steps, or may be controlled steplessly.
【0016】そしてこの状態で前記レーザ発振器21よ
りレーザ光を発振する事により、切断動作中メインフレ
ーム11上に搭載された発振器18、第1のミラーブロ
ック15、及び変向ミラー16はいずれも位置決め固定
されており、この為変向ミラーに導かれるまでのビーム
長が変動する事はない。そしてこの状態で第2のミラー
ブロック25を加工ヘッド22の移動速度に対し1/2
の移動速度でX軸方向に追従移動させる事により発振器
18より加工ヘッド22に至る光路長が常に一定になり
、これにより同一被切断材20の切断作業中は安定した
切断加工が可能となる。In this state, by oscillating a laser beam from the laser oscillator 21, the oscillator 18 mounted on the main frame 11, the first mirror block 15, and the deflection mirror 16 are all positioned during the cutting operation. It is fixed, so the beam length until it is guided to the deflection mirror does not change. In this state, the second mirror block 25 is moved to 1/2 of the moving speed of the processing head 22.
By following the movement in the X-axis direction at a moving speed of , the optical path length from the oscillator 18 to the processing head 22 is always constant, which enables stable cutting during cutting of the same workpiece 20.
【0017】尚、光路長変更手段は第1のミラーブロッ
ク15を用いないで、ミラーブロック25と加工ヘッド
22の設定距離を変化させる方法でも可能である。It should be noted that the optical path length changing means may be a method of changing the set distance between the mirror block 25 and the processing head 22 without using the first mirror block 15.
【図1】本発明を説明するための、入射ビーム径と集束
ビーム径を夫々横軸と縦軸に取った収差グラフ図である
。FIG. 1 is an aberration graph diagram showing the incident beam diameter and the focused beam diameter on the horizontal and vertical axes, respectively, for explaining the present invention.
【図2】本発明の実施例に係わるレーザ加工装置の構成
平面図である。FIG. 2 is a configuration plan view of a laser processing apparatus according to an embodiment of the present invention.
【図3】本発明の基本構成図で、被切断材の肉厚とビー
ム径との関係を示し、(A)が厚板加工の場合、(B)
が薄板加工の場合を示す。FIG. 3 is a basic configuration diagram of the present invention, showing the relationship between the wall thickness of the material to be cut and the beam diameter, where (A) is for thick plate processing, (B)
shows the case of thin plate processing.
15 第1の反転ミラー体 18 レーザ発振器 25 第2の反転ミラー体 22 加工ヘッド 15 First inversion mirror body 18 Laser oscillator 25 Second inversion mirror body 22 Processing head
Claims (4)
れたレーザビームを、該ヘッド内の集光レンズ系により
集束させながら被切断材上に導き、所望形状の切断を行
うレーザ切断方法において、前記被切断材の少なくとも
肉厚に対応する変数を基に、ヘッド内の集光レンズ系に
導かれるレーザビームの拡がり角(発散角)を利用して
、その光路長を変化させることにより、入射ビーム径を
可変させる事を特徴とするレーザ切断方法1. A laser cutting method in which a laser beam guided from a laser oscillator into a processing head is guided onto a material to be cut while being focused by a condensing lens system in the head to cut a desired shape, comprising: Based on a variable corresponding to at least the thickness of the material to be cut, the angle of divergence of the laser beam guided to the condensing lens system in the head is used to change the optical path length. Laser cutting method characterized by variable beam diameter
前記肉厚とほぼ反比例的にレーザビームの拡がり角
(発散角)を利用して、その光路長を変化させることに
より、入射ビーム径を無段階若しくは段階的に可変させ
る事を特徴とする請求項1記載のレーザ切断方法[Claim 2]
Claim characterized in that the diameter of the incident beam is varied steplessly or stepwise by changing the optical path length using a divergence angle (divergence angle) of the laser beam in substantially inverse proportion to the wall thickness. Laser cutting method described in 1.
れたレーザビームを、該ヘッド内の集光レンズ系により
集束させながら被切断材上に導き、所望形状の切断を行
う加工装置において、前記被切断材の少なくとも肉厚に
対応する変数を基に、前記レーザ発振器より加工ヘッド
までの光路長を可変させる事を特徴とするレーザ加工装
置3. A processing device for cutting a desired shape by guiding a laser beam guided into a processing head from a laser oscillator onto a material to be cut while being focused by a condensing lens system within the head. A laser processing device characterized in that the optical path length from the laser oscillator to the processing head is varied based on a variable corresponding to at least the thickness of the material to be cut.
無段階若しくは段階的に可変させる事を特徴とする請求
項3記載のレーザ加工装置4. The laser processing apparatus according to claim 3, wherein the optical path length is varied steplessly or stepwise in substantially inverse proportion to the wall thickness.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03098351A JP3084780B2 (en) | 1991-01-31 | 1991-01-31 | Laser processing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03098351A JP3084780B2 (en) | 1991-01-31 | 1991-01-31 | Laser processing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04253584A true JPH04253584A (en) | 1992-09-09 |
JP3084780B2 JP3084780B2 (en) | 2000-09-04 |
Family
ID=14217476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03098351A Expired - Lifetime JP3084780B2 (en) | 1991-01-31 | 1991-01-31 | Laser processing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3084780B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1600242A2 (en) * | 2004-05-26 | 2005-11-30 | Yamazaki Mazak Corporation | Reflector-mirror drive shaft controller for laser beam machine |
US7528343B2 (en) * | 2005-06-21 | 2009-05-05 | Fameccanica. Data S.P.A. | Laser treatment of sanitary products |
CN110429463A (en) * | 2019-08-09 | 2019-11-08 | 莆田学院 | A method of improving Laser Output Beam stability |
US10675708B2 (en) | 2016-08-11 | 2020-06-09 | Trumpf Werkzeugmaschinen Gmbh + Co. Kg | Method for laser cutting with optimized gas dynamics |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4409354B2 (en) | 2004-05-07 | 2010-02-03 | 日酸Tanaka株式会社 | Laser processing machine |
-
1991
- 1991-01-31 JP JP03098351A patent/JP3084780B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1600242A2 (en) * | 2004-05-26 | 2005-11-30 | Yamazaki Mazak Corporation | Reflector-mirror drive shaft controller for laser beam machine |
US7205502B2 (en) * | 2004-05-26 | 2007-04-17 | Yamazaki Mazak Corporation | Reflector-mirror drive shaft controller for laser beam machine |
EP1600242A3 (en) * | 2004-05-26 | 2008-10-01 | Yamazaki Mazak Corporation | Reflector-mirror drive shaft controller for laser beam machine |
US7528343B2 (en) * | 2005-06-21 | 2009-05-05 | Fameccanica. Data S.P.A. | Laser treatment of sanitary products |
US10675708B2 (en) | 2016-08-11 | 2020-06-09 | Trumpf Werkzeugmaschinen Gmbh + Co. Kg | Method for laser cutting with optimized gas dynamics |
EP3315243B1 (en) | 2016-08-11 | 2021-09-15 | TRUMPF Werkzeugmaschinen GmbH + Co. KG | Method for laser cutting with optimized gas dynamics |
DE102016215019C5 (en) | 2016-08-11 | 2023-04-06 | Trumpf Werkzeugmaschinen Gmbh + Co. Kg | Process for laser cutting with optimized gas dynamics |
CN110429463A (en) * | 2019-08-09 | 2019-11-08 | 莆田学院 | A method of improving Laser Output Beam stability |
CN110429463B (en) * | 2019-08-09 | 2021-01-12 | 莆田学院 | Method for improving stability of output light beam of laser |
Also Published As
Publication number | Publication date |
---|---|
JP3084780B2 (en) | 2000-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101784364B (en) | Method for material removal and device for carrying out said method | |
JP5520819B2 (en) | Material processing method using laser irradiation and apparatus for performing the same | |
JP4199820B2 (en) | Laser processing apparatus and laser processing method | |
US11292082B2 (en) | Method of laser processing of a metallic material with high dynamic control of the movement axes of the laser beam along a predetermined processing path, as well as a machine and a computer program for the implementation of said method | |
FR2375964A1 (en) | Producing radiation line focus on moving workpiece - esp. for automatically welding layered or tubular synthetic film | |
JPS6293095A (en) | Laser beam machine | |
JPH0647575A (en) | Optical scanning type laser beam machine | |
JPH04253584A (en) | Laser beam cutting method and laser beam machining apparatus | |
JPH0757427B2 (en) | Laser cutting machine | |
JP2006150433A (en) | Laser beam machining apparatus | |
JP2000084689A (en) | Laser beam machining device | |
CN112823075B (en) | Laser processing machine and laser processing method | |
JPH03138092A (en) | Laser beam machine | |
JP5021258B2 (en) | Laser groove processing method | |
JP2005319477A (en) | Laser beam machine | |
US7205502B2 (en) | Reflector-mirror drive shaft controller for laser beam machine | |
US11697176B2 (en) | Laser machining apparatus and laser machining method | |
SU1738559A1 (en) | Device for laser treatment of materials | |
JPH03184687A (en) | Laser beam machining apparatus | |
RU2283738C1 (en) | Device for laser working | |
JPH04187393A (en) | Laser beam machine | |
JPH02255292A (en) | Laser processing device | |
JP3357170B2 (en) | Laser processing machine | |
JPH06277867A (en) | Laser beam machine | |
SU1756075A1 (en) | Method of laser cutting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080707 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090707 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100707 Year of fee payment: 10 |