[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04241402A - Permanent magnet - Google Patents

Permanent magnet

Info

Publication number
JPH04241402A
JPH04241402A JP3002677A JP267791A JPH04241402A JP H04241402 A JPH04241402 A JP H04241402A JP 3002677 A JP3002677 A JP 3002677A JP 267791 A JP267791 A JP 267791A JP H04241402 A JPH04241402 A JP H04241402A
Authority
JP
Japan
Prior art keywords
permanent magnet
rare earth
alloy
examples
curie temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3002677A
Other languages
Japanese (ja)
Other versions
JP3222482B2 (en
Inventor
Akihiko Tsudai
津田井 昭彦
Masashi Sahashi
政司 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP00267791A priority Critical patent/JP3222482B2/en
Publication of JPH04241402A publication Critical patent/JPH04241402A/en
Application granted granted Critical
Publication of JP3222482B2 publication Critical patent/JP3222482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0593Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of tetragonal ThMn12-structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a permanent magnet which has Th.Mn12 type crystal phase, where Curie temperature is improved without lowering magnetic property, for its main phase. CONSTITUTION:This permanent magnet is shown by the composition formula of RxMyAzFe100-x-y-z (R is at least one kind of element selected from rare earth elements including Y, M is at least one kind of element selected from Si, Cr, V, Mo, W, Ti, Zr, Hf, and A, and A is at least one kind of element selected from N and C, and by atom%, z is 4-20%, y is 20% or less, and z is 0.001-16%), and is constituted so that the main phase may have Th.Mn12 type crystal structure.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】〔発明の目的〕[Object of the invention]

【0002】0002

【産業上の利用分野】本発明は永久磁石に係り、従来の
Sm−Co系、Nd−Fe−B系の磁石と比較して磁気
特性を低下させることなくキュリー温度の改善を図った
永久磁石に関する。
[Industrial Application Field] The present invention relates to a permanent magnet, and the present invention relates to a permanent magnet that has an improved Curie temperature without deteriorating its magnetic properties compared to conventional Sm-Co-based or Nd-Fe-B-based magnets. Regarding.

【0003】0003

【従来の技術】従来から公知で量産化されている希土類
永久磁石としてSm−Co系磁石やNd−Fe−B系磁
石などがある。これらの磁石にはSm,Nd等の希土類
元素が特性発現成分として含有されている。すなわち希
土類元素は結晶場中における4f電子の挙動に由来する
非常に大きな磁気異方性をもたらし、これにより保磁力
の増大化が図られ、高性能な磁石が実現されている。こ
のような高特性磁石は、主としてスピーカー、モーター
、計測器等の電気機器に使用されている。
2. Description of the Related Art Conventionally known and mass-produced rare earth permanent magnets include Sm--Co magnets and Nd--Fe--B magnets. These magnets contain rare earth elements such as Sm and Nd as characteristic-producing components. That is, rare earth elements bring about extremely large magnetic anisotropy derived from the behavior of 4f electrons in a crystal field, which increases the coercive force and realizes a high-performance magnet. Such high-performance magnets are mainly used in electrical equipment such as speakers, motors, and measuring instruments.

【0004】しかしながら、希土類元素は一般に非常に
高価であり、上記のような高性能磁石の低コスト化を図
るためには、希土類元素の含有量を低減させることが必
要である。
However, rare earth elements are generally very expensive, and in order to reduce the cost of high-performance magnets as described above, it is necessary to reduce the content of rare earth elements.

【0005】このような希土類含有量を低減した高特性
の磁石材料として、最近ThMn12型の結晶構造を有
する1−12系希土類鉄系金属間化合物が注目されてい
る。この金属間化合物は、従来のSm2 Co17磁石
やNd2 Fe14B1 磁石を構成する金属間化合物
と比較して化学量論理希土類量が小さいため原料コスト
が安く、またFeの比率が相対的に高いため、大きな飽
和磁束密度Bsと高い最大エネルギー積(BH)max
 を有している。
Recently, 1-12 rare earth iron intermetallic compounds having a ThMn12 type crystal structure have attracted attention as magnetic materials with reduced rare earth content and high characteristics. Compared to the intermetallic compounds that constitute conventional Sm2Co17 magnets and Nd2Fe14B1 magnets, this intermetallic compound has a small stoichiometric rare earth content, so the raw material cost is low, and the Fe ratio is relatively high, so it has a large Saturation magnetic flux density Bs and high maximum energy product (BH) max
have.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
1−12系希土類鉄系金属間化合物で形成した永久磁石
は、キュリー温度(Tc)が、一般に約300℃と低く
高温条件下で使用される機器やモーターや計測器のよう
に温度に対する高い磁気安定性が要求される分野におい
て適用することは困難であるという問題点があった。
[Problems to be Solved by the Invention] However, permanent magnets formed from the above-mentioned 1-12 rare earth iron intermetallic compounds have a low Curie temperature (Tc) of about 300°C and are used under high-temperature conditions. The problem is that it is difficult to apply it to fields that require high magnetic stability against temperature, such as equipment, motors, and measuring instruments.

【0007】本発明は上記の問題点を解決するためにな
されたものであり、磁気異方性を低下させることなくキ
ュリー温度の改善を図った永久磁石を提供することを目
的とする。〔発明の構成〕
The present invention was made to solve the above problems, and an object of the present invention is to provide a permanent magnet with improved Curie temperature without reducing magnetic anisotropy. [Structure of the invention]

【0008】[0008]

【課題を解決するための手段と作用】本発明者らは、高
価な希土類元素の使用量を極力抑制し、1−12系化合
物が有する磁気異方性を損うことなく、キュリー温度を
高めるべく鋭意研究を継続した結果、窒素および炭素の
少なくとも一方を所定量含有し、Th−Mn12型の結
晶構造を有する正方晶の希土類鉄系化合物を主相とする
永久磁石を形成したときに、キュリー温度を大幅に高め
ることが可能となるという知見を得て本願発明を完成し
た。
[Means and effects for solving the problem] The present inventors suppressed the amount of expensive rare earth elements used as much as possible and raised the Curie temperature without impairing the magnetic anisotropy of the 1-12 series compound. As a result of continuing intensive research, we found that when a permanent magnet containing a predetermined amount of at least one of nitrogen and carbon and having a main phase of a tetragonal rare earth iron compound having a Th-Mn12 type crystal structure was formed, the Curie The present invention was completed based on the knowledge that it is possible to significantly increase the temperature.

【0009】すなわち本発明に係る永久磁石は組成式R
xMyAzFe100−x−y−z (式中RはYを含
む希土類元素から選択された少なくとも1種の元素、M
はSi,Cr,V,Mo,W,Ti,Zr,Hfおよび
Alから選択された少なくとも1種の元素、AはNおよ
びCから選択された少なくとも1種の元素であり、原子
%でxが4〜20%、yが20%以下、zが0.001
〜16%である)で示され、主相がTh・Mn12型結
晶構造を有することを特徴とする。
That is, the permanent magnet according to the present invention has the composition formula R
xMyAzFe100-x-y-z (wherein R is at least one element selected from rare earth elements including Y, M
is at least one element selected from Si, Cr, V, Mo, W, Ti, Zr, Hf and Al, A is at least one element selected from N and C, and x is 4-20%, y is 20% or less, z is 0.001
~16%), and is characterized in that the main phase has a Th/Mn12 type crystal structure.

【0010】本発明に係る永久磁石において、組成を上
記のように限定した理由は下記の通りである。
The reason why the composition of the permanent magnet according to the present invention is limited as described above is as follows.

【0011】前記Rとしては、La,Ce,Pr,Nd
,Sm,Eu,Gd,Td,Dy,Ho,Er,Tm,
Yb,Luの希土類元素およびYが挙げられ、これらの
1種または2種以上の混合物が使用される。Rはいずれ
も材料に磁気異方性をもたらし、高い保磁力を付与する
ために4〜20原子%の範囲で添加される。
[0011] The R mentioned above is La, Ce, Pr, Nd.
, Sm, Eu, Gd, Td, Dy, Ho, Er, Tm,
Examples include rare earth elements Yb, Lu, and Y, and one or a mixture of two or more of these may be used. R is added in a range of 4 to 20 at % in order to bring magnetic anisotropy to the material and impart high coercive force.

【0012】Rの添加量が4原子%未満の場合にはα−
Fe等が大量に析出し保磁力(iHc)が大幅に低下し
てしまう。一方、Rの添加量が20原子%を超える場合
には、飽和磁束密度(Bs)が大幅に低下してしまうと
ともに、高価な希土類元素を多量に使用することになり
、製造コストの上昇を招来し、不利になってしまう。
[0012] When the amount of R added is less than 4 at %, α-
A large amount of Fe etc. precipitates and the coercive force (iHc) decreases significantly. On the other hand, if the amount of R added exceeds 20 atomic percent, the saturation magnetic flux density (Bs) will decrease significantly and a large amount of expensive rare earth elements will be used, leading to an increase in manufacturing costs. And you will be at a disadvantage.

【0013】M元素としてはSi,Cr,V,Mo,W
,Ti,Zr,HfおよびAlから選択される1種また
は2種以上の混合物が使用される。本来希土類元素Rお
よびFeのみでは安定した結晶構造は形成し得ないが、
上記M元素を20原子%以下の範囲で添加することによ
り、安定したThMn12型の結晶構造を有する希土類
鉄系の正方晶化合物を形成することができる。なお、M
元素は微量の添加で、上記の効果を現わすものであるが
、0.1原子%以上が好ましい。
[0013] M elements include Si, Cr, V, Mo, and W.
, Ti, Zr, Hf and Al, or a mixture of two or more thereof is used. Originally, a stable crystal structure cannot be formed only with the rare earth elements R and Fe, but
By adding the M element in an amount of 20 atomic % or less, a rare earth iron-based tetragonal compound having a stable ThMn12 type crystal structure can be formed. In addition, M
The above-mentioned effect can be obtained even if the element is added in a trace amount, but it is preferably 0.1 atomic % or more.

【0014】M元素の添加量が20原子%を超えると、
飽和磁束密度(Bs)が大幅に低下してしまうため、M
元素の添加量は20原子%以下に設定される。
[0014] When the amount of M element added exceeds 20 atomic %,
Since the saturation magnetic flux density (Bs) will decrease significantly, M
The amount of the element added is set to 20 atomic % or less.

【0015】またCおよびNの少なくとも一方から成る
A元素はキュリー温度(Tc)の向上に有効な元素であ
る。すなわちCおよびNはFeのバンド構造に変調を与
え、特にd電子の磁気分極の増加およびd電子スピン間
の交換相互作用をもたらし、究極的にキュリー温度(T
c)の増加に有効である。しかしながら16原子%を超
える固溶が困難であり、それ以上の過量の添加は結晶構
造の不安定化を招くため、16原子%を超える添加は不
適である。一方、0.001原子%以下では、キュリー
温度(Tc)の改善効果が顕著ではないため、A元素の
添加量は0.001〜16原子%の範囲に設定される。
Element A, which is composed of at least one of C and N, is an effective element for improving the Curie temperature (Tc). In other words, C and N modulate the band structure of Fe, causing an increase in the magnetic polarization of d electrons and an exchange interaction between d electron spins, ultimately increasing the Curie temperature (T
c) is effective in increasing. However, it is difficult to form a solid solution in an amount exceeding 16 at %, and addition of an excessive amount beyond this leads to instability of the crystal structure, so it is unsuitable to add more than 16 at %. On the other hand, if the amount is 0.001 atomic % or less, the effect of improving the Curie temperature (Tc) is not significant, so the amount of element A added is set in the range of 0.001 to 16 atomic %.

【0016】またFeの一部をFe以外のCo−Ni等
の遷移金属で置換することにより、磁石のキュリー温度
をさらに改善し、また保磁力を増大させることができる
。しかしながら、50原子%以上の鉄を置換すると、飽
和磁束密度等の磁気特性の低下が顕著となるため、その
置換量は原子分率でFeの50%以下とすることが望ま
しい。また高価なCoの使用量を可及的に抑制するため
にも、置換量は上記範囲内とすることが好ましい。
Furthermore, by substituting a part of Fe with a transition metal other than Fe, such as Co--Ni, the Curie temperature of the magnet can be further improved and the coercive force can be increased. However, if 50 atomic % or more of iron is substituted, magnetic properties such as saturation magnetic flux density will be significantly deteriorated, so it is desirable that the amount of substitution be 50% or less of Fe in terms of atomic fraction. Furthermore, in order to suppress the amount of expensive Co used as much as possible, the amount of substitution is preferably within the above range.

【0017】次に本発明に係る永久磁石の製造方法につ
いて説明する。
Next, a method for manufacturing a permanent magnet according to the present invention will be explained.

【0018】まず、A元素としてCを単独に添加する場
合、所定量のFe,R,M,A元素をアーク溶解等の方
法で溶解し、さらに鋳造して所定組成を有する合金を調
製する。
First, when C is added alone as the A element, predetermined amounts of Fe, R, M, and A elements are melted by a method such as arc melting, and then cast to prepare an alloy having a predetermined composition.

【0019】一方A元素としてNを単独に添加する場合
またはNおよびCを複合的に添加する場合には、まずN
成分を除いた成分から成る合金を上記の方法により調製
した後に、調製した合金を、粒径1mm以下、好ましく
は0.5mm以下となるように粉砕する。その後、粉砕
物を20〜1500TorrのN2 雰囲気下において
300〜1000℃で加熱処理して粉砕物にN2 を吸
蔵せしめて所定組成の合金を製造する。この場合、必要
に応じてN2 を吸蔵処理する前に、溶解合金を500
〜1000℃で熱処理し、溶体化しておいてもよい。
On the other hand, when adding N alone as element A or when adding N and C in combination, first add N.
After preparing an alloy consisting of the components excluding the components by the above method, the prepared alloy is pulverized to a particle size of 1 mm or less, preferably 0.5 mm or less. Thereafter, the pulverized material is heat-treated at 300 to 1000 DEG C. in an N2 atmosphere of 20 to 1500 Torr to absorb N2 into the pulverized material, thereby producing an alloy of a predetermined composition. In this case, the molten alloy should be heated to
It may be heat-treated at ~1000°C to form a solution.

【0020】次にこうして得た合金を、平均粒径が1〜
50μmまで微粉砕した後に、得られた原料粉末を所定
の金型に充填し、400〜1000℃の温度条件下でホ
ットプレスを行ない、一体化焼結する。このとき原料粉
末を予め磁場配向させることにより、より異方性が高い
永久磁石が得られる。また、得られた焼結体を熱間加工
して異方性を発現させることも可能である。なお上記ホ
ットプレス処理は、一旦合金内に吸蔵されたN成分の散
逸を防止するために、N2 ガス雰囲気中で実施するこ
とが望ましいが、N成分を含有しない合金系においては
、Arガスなどの不活性ガス中または真空中で実施して
も差支えない。
Next, the alloy thus obtained has an average grain size of 1 to 1.
After being finely pulverized to 50 μm, the obtained raw material powder is filled into a predetermined mold, hot pressed at a temperature of 400 to 1000° C., and integrally sintered. At this time, by preliminarily orienting the raw material powder in a magnetic field, a permanent magnet with higher anisotropy can be obtained. It is also possible to hot-work the obtained sintered body to develop anisotropy. The above hot press treatment is preferably carried out in an N2 gas atmosphere in order to prevent the dissipation of the N component once occluded in the alloy. It may be carried out in an inert gas or vacuum.

【0021】さらにホットプレス処理して得られた焼結
体を、温度300〜900℃で0.1〜5時間熱処理す
ることにより保磁力の増加を図ることができる。
[0021] Furthermore, the coercive force can be increased by heat-treating the sintered body obtained by hot pressing at a temperature of 300 to 900°C for 0.1 to 5 hours.

【0022】本発明に係る永久磁石は上記のように所定
の組成物を溶解、鋳造、粉砕、焼結熱処理して製造され
る他に、原料の混合粉末を相互に固相反応させて合金化
する方法によっても製造することが可能であり、以下に
その製造方法について説明する。
The permanent magnet according to the present invention is manufactured by melting, casting, pulverizing, and heat-sintering the predetermined composition as described above, and also by making the mixed powder of the raw materials react in solid phase with each other to form an alloy. It can also be manufactured by a method, and the manufacturing method will be explained below.

【0023】まずA元素としてCを単独に添加する場合
には、所定量のR,Fe,M,A成分を含有する粉末の
混合体を固相反応させて合金化する。固相反応を起こす
方法としては、例えば遊星ボールミル、回転式ボールミ
ル、アトライタ、振動ボールミル、スクリュー式ボール
ミル等に原料混合体を投入し、粉末粒子を機械的に合金
化するメカニカルアロイング法などが採用できる。
First, when adding C alone as the A element, a mixture of powders containing predetermined amounts of R, Fe, M, and A components is alloyed by solid phase reaction. As a method for causing a solid phase reaction, for example, a mechanical alloying method is adopted in which a raw material mixture is introduced into a planetary ball mill, a rotary ball mill, an attritor, a vibrating ball mill, a screw ball mill, etc., and the powder particles are mechanically alloyed. can.

【0024】このメカニカルアロイング法によれば原料
粉末粒子が薄片状に粉砕され、その薄片が相互に面接触
した部位で異種原子が相互に拡散することにより、原料
混合体が均質に一体化される。
[0024] According to this mechanical alloying method, raw material powder particles are crushed into flakes, and the raw material mixture is homogeneously integrated by dispersing different types of atoms in the areas where the flakes are in surface contact with each other. Ru.

【0025】またA成分としてNを含有させる場合には
上記の固相反応を、N2 ガス雰囲気中で行ない、原料
混合体中にN2 ガスを吸蔵させることによって所定の
組成を有する合金粉末を調製することができる。
[0025] When N is included as the A component, the solid phase reaction described above is carried out in an N2 gas atmosphere to occlude N2 gas in the raw material mixture, thereby preparing an alloy powder having a predetermined composition. be able to.

【0026】上記の固相反応によって調製した合金粉末
は温度300〜1000℃で0.02〜5時間熱処理を
施すことにより保磁力の大幅な増大を図ることができる
。この場合、吸蔵したN2 成分の散逸を防止するため
に熱処理はN2 ガス雰囲気下で実施することが望まし
い。なお、Nを含有しない合金系については、他の不活
性ガス中または真空中で処理しても差支えない。
The coercive force of the alloy powder prepared by the above-mentioned solid phase reaction can be significantly increased by subjecting it to heat treatment at a temperature of 300 to 1000° C. for 0.02 to 5 hours. In this case, in order to prevent the occluded N2 component from dissipating, it is desirable to perform the heat treatment in an N2 gas atmosphere. Note that alloy systems that do not contain N may be treated in another inert gas or in vacuum.

【0027】上記のような合金材を一体化するための熱
処理の代りにホットプレス処理を行なってもよい。この
ホットプレス処理を行なう場合においても、N2 成分
の散逸を防止するためにN2 ガス雰囲気で行なうこと
が望ましい。同様にN成分を含有させない合金系につい
は、他の不活性ガス中または真空中で処理することが可
能である。
[0027] Instead of the heat treatment for integrating the alloy materials as described above, hot pressing treatment may be performed. Even when performing this hot press treatment, it is desirable to perform it in an N2 gas atmosphere in order to prevent the N2 component from dissipating. Similarly, alloy systems that do not contain an N component can be treated in another inert gas or in vacuum.

【0028】このような熱処理の代りにホットプレス処
理を行なうことによって固相反応により得た合金をより
強固に一体化することができる。
[0028] By performing hot press treatment instead of such heat treatment, the alloy obtained by solid phase reaction can be more firmly integrated.

【0029】さらに、永久磁石の磁気特性をさらに改善
するために、ホットプレス処理にて形成した焼結体をさ
らに前記温度で熱処理してもよい。また焼結体に圧力を
加えて塑性加工を施すことにより磁気的配向をより高め
ることができる。
Furthermore, in order to further improve the magnetic properties of the permanent magnet, the sintered body formed by hot pressing may be further heat treated at the above temperature. Further, by applying pressure to the sintered body and subjecting it to plastic working, the magnetic orientation can be further enhanced.

【0030】上記2種類の製造方法以外にも、液体急冷
法によって所定組成の合金粉末を調製し、得られた粉末
を焼結して一体化して永久磁石とすることも可能である
。この場合、液体急冷法により、特に高い保磁力を有す
る合金粉末が得られ、磁気特性が優れた永久磁石とする
ことが可能である。
In addition to the above two manufacturing methods, it is also possible to prepare an alloy powder of a predetermined composition by a liquid quenching method, and then sinter and integrate the obtained powder to form a permanent magnet. In this case, by the liquid quenching method, an alloy powder having a particularly high coercive force can be obtained, and a permanent magnet with excellent magnetic properties can be obtained.

【0031】なお、上記熱処理後の合金からボンド磁石
を製造するには、粉末状の合金をエポキシ樹脂、ナイロ
ン系などの樹脂と混合した後、成型する方法が採用され
る。成型法としては、樹脂がエポキシ系の熱硬化性樹脂
である場合、圧縮成形後、100〜200℃の温度でキ
ュア処理を施し、ナイロン系の熱可塑性樹脂の場合、射
出成型を用いればよい。
[0031] In order to manufacture a bonded magnet from the above-mentioned heat-treated alloy, a method is employed in which a powdered alloy is mixed with an epoxy resin, a nylon resin, or the like, and then molded. As a molding method, when the resin is an epoxy-based thermosetting resin, curing treatment is performed at a temperature of 100 to 200° C. after compression molding, and when the resin is a nylon-based thermoplastic resin, injection molding may be used.

【0032】本発明に係る永久磁石は、正方晶の安定な
ThMn12型結晶構造を有する化合物相を主体として
おり、特にNおよびCの少なくとも一方を添加している
ため、キュリー温度(Tc)が高く、従来の2元系また
は3元系の化合物と比べて、極めて優れた磁気特性を発
揮する。
The permanent magnet according to the present invention is mainly composed of a compound phase having a stable tetragonal ThMn12 type crystal structure, and in particular, since at least one of N and C is added, the Curie temperature (Tc) is high. , exhibits extremely superior magnetic properties compared to conventional binary or ternary compounds.

【0033】[0033]

【実施例】次に本発明を以下の実施例に基づいてより具
体的に説明する。
EXAMPLES Next, the present invention will be explained in more detail based on the following examples.

【0034】実施例1〜3、比較例1〜3実施例1〜3
として高純度のSm,Ti,Si,Fe粉末を表1に示
す組成に調合して高周波溶解炉で溶解後、鋳型に注入し
て各インゴットを調製した。次に各インゴットをジェッ
トミルによって平均粒径150〜200μmの大きさに
粉砕した。次に得られた各合金粉末について750To
rrのN2 ガス雰囲気中で温度500℃で1時間の熱
処理を行なった。さらに各合金粉末を平均粒径3μmま
で微粉砕し、20KOeの磁場において配向させて圧粉
体を形成し、さらに各圧粉体を温度800℃、600T
orrのN2 ガス雰囲気中でホットプレス処理を行な
った。得られた各ホットプレス焼結体を温度600℃で
1時間600TorrN2 ガス雰囲気中で熱処理して
処理後の焼結体の残留磁束密度(Br)、保磁力(iH
c)、および最大エネルギー積(BH)max および
キュリー温度(Tc)を測定して、表1に示す結果を得
た。
Examples 1-3, Comparative Examples 1-3 Examples 1-3
High-purity Sm, Ti, Si, and Fe powders were mixed into the composition shown in Table 1, melted in a high-frequency melting furnace, and then poured into a mold to prepare each ingot. Next, each ingot was pulverized by a jet mill to an average particle size of 150 to 200 μm. Next, 750To for each alloy powder obtained
Heat treatment was performed at a temperature of 500° C. for 1 hour in an N2 gas atmosphere of rr. Furthermore, each alloy powder was finely pulverized to an average particle size of 3 μm, oriented in a magnetic field of 20 KOe to form a green compact, and each green compact was further pulverized at a temperature of 800°C and 600 T.
Hot press treatment was carried out in an N2 gas atmosphere of 0.05 mm. Each hot-pressed sintered body obtained was heat-treated at a temperature of 600°C for 1 hour in a 600-Torr N2 gas atmosphere to determine the residual magnetic flux density (Br) and coercive force (iH) of the sintered body after the treatment.
c), and the maximum energy product (BH) max and Curie temperature (Tc) were measured to obtain the results shown in Table 1.

【0035】一方、比較例1〜3として、実施例1〜3
で調製したインゴットを使用しN成分を吸蔵させない状
態で同様に磁石素体を調製し、その磁気特性を測定した
。すなわち、実施例1〜3で使用した各インゴットを平
均粒径3μmまで微粉砕し、得られた各粉末を20KO
eの磁場で配向させて圧粉体とした後に、800℃で4
00TorrのArガス雰囲気下でホットプレス処理を
行なった。次に得られた各焼結体を600℃で400T
orrArガス雰囲気下で1時間熱処理を施した後に、
磁気特性を測定したところ下記表1に示す結果を得た。
On the other hand, as Comparative Examples 1 to 3, Examples 1 to 3
A magnet body was prepared in the same manner using the ingot prepared in the above without occluding the N component, and its magnetic properties were measured. That is, each ingot used in Examples 1 to 3 was finely pulverized to an average particle size of 3 μm, and each of the obtained powders was pulverized to 20 KO
After being oriented in a magnetic field of e and made into a green compact, it was
Hot press treatment was performed in an Ar gas atmosphere of 00 Torr. Next, each obtained sintered body was heated to 400T at 600℃.
After heat treatment for 1 hour under orrAr gas atmosphere,
When the magnetic properties were measured, the results shown in Table 1 below were obtained.

【0036】〔以下余白〕[Margin below]

【0037】[0037]

【表1】[Table 1]

【0038】表1に示す結果から明らかなように実施例
1〜3によれば、磁石を構成する希土類鉄系正方晶化合
物がNによって安定化されるため、比較例1〜3と比較
して磁気特性が優れ、特にキュリー温度(Tc)が大幅
に改善されることが判明した。
As is clear from the results shown in Table 1, according to Examples 1 to 3, the rare earth iron-based tetragonal compound constituting the magnet is stabilized by N, and therefore, compared to Comparative Examples 1 to 3, It was found that the magnetic properties were excellent, and in particular, the Curie temperature (Tc) was significantly improved.

【0039】なお実施例1〜3および比較例1〜3で調
製した磁石素体の結晶構造をX線回析法により測定した
ところ、いずれもThMn12型の結晶構造が存在して
いることが確認された。
When the crystal structures of the magnet bodies prepared in Examples 1 to 3 and Comparative Examples 1 to 3 were measured by X-ray diffraction, it was confirmed that a ThMn12 type crystal structure existed in each case. It was done.

【0040】実施例4〜9 実施例4〜6として、平均粒径が0.5mmの希土類粉
末、平均粒径が5〜40μmの範囲にあるFe,Mo,
Si,Ti,C粉末をそれぞれ表2に示す組成に調合し
て原料混合体を調製し、得られた各原料混合体をボール
ミルに投入し、Arガス雰囲気中で60時間粉砕混合処
理して各原料粉末をメカニカルアロイによって合金化し
た。
Examples 4 to 9 As Examples 4 to 6, rare earth powder with an average particle size of 0.5 mm, Fe, Mo,
A raw material mixture was prepared by blending Si, Ti, and C powders to the compositions shown in Table 2, and each of the obtained raw material mixtures was put into a ball mill and pulverized and mixed for 60 hours in an Ar gas atmosphere. The raw material powder was alloyed by mechanical alloying.

【0041】次に得られた各合金粉末を成型金型に充填
し、Arガス雰囲気中で800℃でホットプレス処理し
て磁石素体を形成した。得られた各磁石素体の磁気特性
を実施例1〜3と同様に測定して表2に示す結果を得た
Next, each of the obtained alloy powders was filled into a mold and hot pressed at 800° C. in an Ar gas atmosphere to form a magnet body. The magnetic properties of each of the obtained magnet bodies were measured in the same manner as in Examples 1 to 3, and the results shown in Table 2 were obtained.

【0042】また実施例7〜9として各元素粉末を表2
に示す組成に調合して原料混合体を調製し、得られた各
原料混合体をボールミルに投入し、760TorrのN
2 ガス雰囲気下で180時間粉砕混合処理して各原料
粉末にN2 ガスを吸蔵させながら、メカニカルアロイ
によって合金化した。
[0042] Also, as Examples 7 to 9, each element powder is shown in Table 2.
A raw material mixture was prepared by blending the composition shown in , and each of the obtained raw material mixtures was put into a ball mill and heated at 760 Torr of N.
2. Pulverization and mixing treatment was performed for 180 hours in a gas atmosphere to allow each raw material powder to absorb N2 gas, while being alloyed by mechanical alloying.

【0043】次に得られた各合金粉末を成型金型に充填
し、600TorrのN2 ガス雰囲気中で800℃で
ホットプレス処理して磁石素体を形成した。そして得ら
れた各磁石素体の磁気特性を実施例4〜6と同様に測定
して下記表2に示す結果を得た。
Next, each of the obtained alloy powders was filled into a mold and hot-pressed at 800° C. in a 600 Torr N2 gas atmosphere to form a magnet body. The magnetic properties of each of the obtained magnet bodies were measured in the same manner as in Examples 4 to 6, and the results shown in Table 2 below were obtained.

【0044】[0044]

【表2】[Table 2]

【0045】表2に示す結果から明らかなように、実施
例4〜6においては結晶組成を安定化させキュリー温度
を高めるCが添加され、また実施例7〜9においてはC
およびNが複合的に添加されているため、いずれも磁気
特性が優れ、キュリー温度(Tc)が高い磁石が得られ
ている。
As is clear from the results shown in Table 2, in Examples 4 to 6, C was added to stabilize the crystal composition and raise the Curie temperature, and in Examples 7 to 9, C was added.
Since N and N are added in a composite manner, a magnet with excellent magnetic properties and a high Curie temperature (Tc) can be obtained.

【0046】[0046]

【発明の効果】以上説明の通り、本発明によれば、Nお
よびCの少なくとも一方を含む安定したThMn12型
結晶構造を有する希土類鉄系正方晶化合物を主相として
形成しているため、磁気特性を損うことなく、キュリー
温度が高い永久磁石を提供することができる。
As explained above, according to the present invention, since a rare earth iron-based tetragonal compound having a stable ThMn12 type crystal structure containing at least one of N and C is formed as the main phase, magnetic properties are improved. It is possible to provide a permanent magnet with a high Curie temperature without damaging the temperature.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  組成式RxMyAzFe100−x−
y−z (式中RはYを含む希土類元素から選択された
少なくとも1種の元素、MはSi,Cr,V,Mo,W
,Ti,Zr,HfおよびAlから選択された少なくと
も1種の元素、AはNおよびCから選択された少なくと
も1種の元素であり、原子%でxが4〜20%、yが2
0%以下、zが0.001〜16%である)で示され、
主相がTh・Mn12型結晶構造を有することを特徴と
する永久磁石。
[Claim 1] Compositional formula RxMyAzFe100-x-
y-z (wherein R is at least one element selected from rare earth elements including Y, M is Si, Cr, V, Mo, W
, Ti, Zr, Hf, and Al, A is at least one element selected from N and C, x is 4 to 20%, and y is 2
0% or less, z is 0.001 to 16%),
A permanent magnet characterized in that the main phase has a Th/Mn12 type crystal structure.
JP00267791A 1991-01-14 1991-01-14 Manufacturing method of permanent magnet Expired - Lifetime JP3222482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00267791A JP3222482B2 (en) 1991-01-14 1991-01-14 Manufacturing method of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00267791A JP3222482B2 (en) 1991-01-14 1991-01-14 Manufacturing method of permanent magnet

Publications (2)

Publication Number Publication Date
JPH04241402A true JPH04241402A (en) 1992-08-28
JP3222482B2 JP3222482B2 (en) 2001-10-29

Family

ID=11535938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00267791A Expired - Lifetime JP3222482B2 (en) 1991-01-14 1991-01-14 Manufacturing method of permanent magnet

Country Status (1)

Country Link
JP (1) JP3222482B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100993A (en) * 1992-09-21 1994-04-12 Fuji Elelctrochem Co Ltd Permanent magnet material
JPH06100994A (en) * 1992-09-21 1994-04-12 Fuji Elelctrochem Co Ltd Permanent magnet material
US5403407A (en) * 1993-04-08 1995-04-04 University Of Delaware Permanent magnets made from iron alloys
US5750044A (en) * 1994-07-12 1998-05-12 Tdk Corporation Magnet and bonded magnet
JP2011003662A (en) * 2009-06-17 2011-01-06 Toyota Motor Corp Permanent magnet and method of manufacturing the same
WO2013164202A1 (en) * 2012-05-02 2013-11-07 Robert Bosch Gmbh Magnetic material, use thereof and method for producing same
CN107785140A (en) * 2016-08-24 2018-03-09 株式会社东芝 Ferromagnetic material, permanent magnet, electric rotating machine and vehicle
EP3534382A1 (en) * 2018-02-28 2019-09-04 Daido Steel Co.,Ltd. Sm-fe-n magnet material and sm-fe-n bonded magnet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10490325B2 (en) * 2016-08-24 2019-11-26 Kabushiki Kaisha Toshiba Magnetic material, permanent magnet, rotary electrical machine, and vehicle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100993A (en) * 1992-09-21 1994-04-12 Fuji Elelctrochem Co Ltd Permanent magnet material
JPH06100994A (en) * 1992-09-21 1994-04-12 Fuji Elelctrochem Co Ltd Permanent magnet material
US5403407A (en) * 1993-04-08 1995-04-04 University Of Delaware Permanent magnets made from iron alloys
US5750044A (en) * 1994-07-12 1998-05-12 Tdk Corporation Magnet and bonded magnet
JP2011003662A (en) * 2009-06-17 2011-01-06 Toyota Motor Corp Permanent magnet and method of manufacturing the same
WO2013164202A1 (en) * 2012-05-02 2013-11-07 Robert Bosch Gmbh Magnetic material, use thereof and method for producing same
CN104520945A (en) * 2012-05-02 2015-04-15 罗伯特·博世有限公司 Magnetic material, use thereof and method for producing same
JP2015523462A (en) * 2012-05-02 2015-08-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Magnetic material, its use and method for producing said magnetic material
CN107785140A (en) * 2016-08-24 2018-03-09 株式会社东芝 Ferromagnetic material, permanent magnet, electric rotating machine and vehicle
EP3534382A1 (en) * 2018-02-28 2019-09-04 Daido Steel Co.,Ltd. Sm-fe-n magnet material and sm-fe-n bonded magnet
US11742121B2 (en) 2018-02-28 2023-08-29 Daido Steel Co., Ltd. Sm—Fe—N magnet material and Sm—Fe—N bonded magnet

Also Published As

Publication number Publication date
JP3222482B2 (en) 2001-10-29

Similar Documents

Publication Publication Date Title
CA1336551C (en) Anisotropic magnetic powder and magnet thereof and method of producing same
JPS63232301A (en) Magnetic anisotropic bond magnet, magnetic powder used therefor, and manufacture thereof
JPH0531807B2 (en)
US5658396A (en) Magnetic material
US5480495A (en) Magnetic material
US5549766A (en) Magnetic material
JP3222482B2 (en) Manufacturing method of permanent magnet
JPS6393841A (en) Rare-earth permanent magnet alloy
JPH0685369B2 (en) Permanent magnet manufacturing method
JPH0551656B2 (en)
JPH0518242B2 (en)
JPS62198103A (en) Rare earth-iron permanent magnet
JP3247508B2 (en) permanent magnet
JPH05226123A (en) Magnetic material
JPH0831626A (en) Rare earth magnetic powder, permanent magnet thereof, and manufacture of them
JP3768553B2 (en) Hard magnetic material and permanent magnet
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JP3386552B2 (en) Magnetic material
JP3178848B2 (en) Manufacturing method of permanent magnet
JP3053187B2 (en) Manufacturing method of permanent magnet
JPS609104A (en) Permanent magnet
JPS62291903A (en) Permanent magnet and manufacture of the same
JPS6318603A (en) Permanent magnet
JPH044384B2 (en)
JPH01127643A (en) Manufacture of rare earth magnetic material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10