[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04247420A - Method for fixing rotary polygon mirror - Google Patents

Method for fixing rotary polygon mirror

Info

Publication number
JPH04247420A
JPH04247420A JP3359691A JP3359691A JPH04247420A JP H04247420 A JPH04247420 A JP H04247420A JP 3359691 A JP3359691 A JP 3359691A JP 3359691 A JP3359691 A JP 3359691A JP H04247420 A JPH04247420 A JP H04247420A
Authority
JP
Japan
Prior art keywords
polygon mirror
hole
rotating
rotating shaft
rotating polygon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3359691A
Other languages
Japanese (ja)
Inventor
Atsutomo Yoshizawa
吉澤 敦朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3359691A priority Critical patent/JPH04247420A/en
Publication of JPH04247420A publication Critical patent/JPH04247420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To eliminate the blurring of a rotary polygon mirror. CONSTITUTION:A hole 11d having difference in level is formed at the center of the polygon mirror 11 which is an almost polygonal prism in an optical deflection device. Besides, the shrinkage fitting of the hole 11d and a shaft 12 is executed. Such shrinkage fitting is executed under a state that the bottom surface 11c of the mirror 11 is made to press-contact with the bearing surface 12b of a flange 12a provided on the shaft 12.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、レーザー光源等からの
光束を偏向し、被照射体上を走査する光偏向装置におけ
る回転多面鏡の固定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for fixing a rotating polygon mirror in an optical deflection device that deflects a light beam from a laser light source or the like and scans an object to be irradiated.

【0002】0002

【従来の技術】図7はレーザー走査装置に用いられる光
偏向装置の構成図を示し、レーザードライバ1からの電
流によりレーザー素子2が発光駆動され、出射されたレ
ーザービームはコリメータレンズ系3を経て平行光束と
され、矢印方向Bに回転する回転多面鏡4により反射さ
れ、fθレンズ群5により感光体ドラム6上で結像し走
査を行う。このような装置において、回転多面鏡4は走
査のための偏向を高精度で行うために超高精度の平面を
持ち、消費電力を少なくするため軽量であることが必要
とされるため、反射面に酸化防止の金属蒸着膜を形成し
たアルミニウム合金が用いられている。
7 shows a configuration diagram of an optical deflection device used in a laser scanning device. A laser element 2 is driven to emit light by a current from a laser driver 1, and the emitted laser beam passes through a collimator lens system 3. The parallel light beam is reflected by the rotating polygon mirror 4 rotating in the direction of the arrow B, and is imaged on the photoreceptor drum 6 by the fθ lens group 5 for scanning. In such a device, the rotating polygon mirror 4 has an ultra-high precision plane in order to perform deflection for scanning with high precision, and is required to be lightweight in order to reduce power consumption. An aluminum alloy with a metal vapor-deposited film to prevent oxidation is used.

【0003】この回転多面鏡4は図8に示すように、す
き間嵌めの状態で回転軸7を中心に挿通し、回転軸7に
設けられた図示しないフランジにねじ8によりねじ止め
されている。つまり、回転多面鏡4に等角間隔で複数の
ねじ挿入孔を設け、ここに雄ねじ8を通し、回転軸7の
フランジに設けられた複数の雌ねじ部に螺合することに
より、雄ねじ8のねじ頭とフランジの間に回転多面鏡4
が挟持されている。
As shown in FIG. 8, the rotating polygon mirror 4 is inserted through the rotating shaft 7 in a clearance fit state and is fixed to a flange (not shown) provided on the rotating shaft 7 with a screw 8. That is, by providing a plurality of screw insertion holes at equal angular intervals in the rotating polygon mirror 4, passing the male screws 8 through the holes, and screwing them into the plurality of female threads provided on the flange of the rotating shaft 7, the screws of the male screws 8 can be screwed. Rotating polygon mirror 4 between head and flange
is being held.

【0004】このような固定方法は強度的に優れており
、回転多面鏡4が大型の場合や、高速回転を行う場合に
も回転軸7とのずれを生じない。
[0004] Such a fixing method is superior in terms of strength, and even when the rotating polygon mirror 4 is large in size or rotates at high speed, no deviation from the rotating shaft 7 occurs.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上述の従
来例では、回転多面鏡4が高速回転によって生じた熱な
どにより熱膨張すると、ねじ8で固定された部分を中心
として内側に膨張して、回転軸7に当接し付勢すること
になる。この付勢力により、回転多面鏡4の回転中心が
ずれるため走査位置ずれが生じ、またバランス調整が崩
れるため、振動が発生して記録画像品位を著しく低下す
る。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional example, when the rotating polygon mirror 4 thermally expands due to heat generated by high-speed rotation, it expands inward around the portion fixed by the screw 8, and the rotation is interrupted. It comes into contact with the shaft 7 and biases it. This biasing force causes the center of rotation of the rotating polygon mirror 4 to shift, resulting in a scanning position shift, and also disrupts balance adjustment, causing vibrations and significantly deteriorating the quality of recorded images.

【0006】本発明の目的は、上述の欠点を解消し、温
度の変化に拘らず回転多面鏡の位置精度が低下しない回
転多面鏡の固定方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for fixing a rotating polygon mirror that eliminates the above-mentioned drawbacks and does not reduce the positional accuracy of the rotating polygon mirror regardless of temperature changes.

【0007】[0007]

【課題を解決するための手段】上述の目的を達成するた
めの本発明に係る光偏向装置は、回転軸に設けたフラン
ジに当接させることにより回転多面鏡の回転軸方向の位
置決めを行う場合において、前記回転多面鏡を焼き嵌め
によって前記回転軸に固定したことを特徴とするもので
ある。
[Means for Solving the Problems] In order to achieve the above-mentioned object, an optical deflection device according to the present invention positions a rotating polygon mirror in the direction of the rotation axis by bringing it into contact with a flange provided on the rotation axis. The rotating polygon mirror is fixed to the rotating shaft by shrink fitting.

【0008】[0008]

【作用】上述の構成を有する回転多面鏡の固定方法によ
れば、回転多面鏡を焼き嵌めによって取り付けているた
め、温度変化によって回転多面鏡の回転軸が移動する虞
れがない。
[Operation] According to the method for fixing a rotating polygon mirror having the above-described structure, since the rotating polygon mirror is attached by shrink fitting, there is no possibility that the rotation axis of the rotating polygon mirror will shift due to temperature changes.

【0009】[0009]

【実施例】本発明を図1〜図5に図示の実施例に基づい
て詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail based on the embodiments shown in FIGS. 1 to 5.

【0010】図1は固定前の回転多面鏡と回転軸の分解
斜視図を示し、アルミニウム製の高さの低い略角柱体で
ある多面鏡11が、鉄製の回転軸12に焼き嵌めされる
前の形状を示している。多面鏡11は複数の側面11a
が平面鏡であり、上面11bから下面11cにかけて段
差のある孔11dが形成されている。回転軸12には中
程にフランジ12aが設けられ、フランジ12aの上側
の座面12bは中心軸に垂直な平面となっている。
FIG. 1 shows an exploded perspective view of the rotating polygon mirror and rotating shaft before fixation, and the polygon mirror 11, which is a low-height, substantially prismatic body made of aluminum, is shrink-fitted to the rotating shaft 12 made of iron. It shows the shape of. The polygon mirror 11 has a plurality of side surfaces 11a.
is a plane mirror, and a stepped hole 11d is formed from the upper surface 11b to the lower surface 11c. A flange 12a is provided in the middle of the rotating shaft 12, and a seating surface 12b on the upper side of the flange 12a is a plane perpendicular to the central axis.

【0011】図2は図1に示した主要部の断面図であり
、回転軸12に多面鏡11を嵌合した状態を示している
。多面鏡11の中心の孔11dは中心軸方向の長さつま
り厚さがtであり、その下半分の長さt/2の部分は内
側面が回転軸12と密着しており、上半分の長さt/2
の部分は内径がそれより大きくされている。また、多面
鏡11の下面11cは回転軸12の底面12bに密接し
ている。
FIG. 2 is a sectional view of the main part shown in FIG. 1, showing a state in which the polygon mirror 11 is fitted onto the rotating shaft 12. The hole 11d at the center of the polygon mirror 11 has a length t in the central axis direction, that is, a thickness t, and the inner surface of the lower half of the hole 11d having a length of t/2 is in close contact with the rotating shaft 12, and the upper half of the hole 11d has a length of t/2. length t/2
The inner diameter of the part is larger than that. Further, the lower surface 11c of the polygon mirror 11 is in close contact with the bottom surface 12b of the rotating shaft 12.

【0012】このような状態は次のようにして形成する
。回転軸12の直径は常温25℃において20(公差+
0.010〜+0.015)mmで、多面鏡11の下半
分つまり小さい方の内径は20(公差−0.005〜±
0)mmであり、線膨張係数は回転軸12が1.2×1
0−5/℃で、多面鏡11が2.3×10−5/℃であ
る。 常温では、回転軸12は多面鏡11の孔11dより太い
ため入らないが、多面鏡11を100℃に熱すると75
℃の昇温によって、内径が20×75×2.3×10−
5=0.0345(mm)だけ膨張する。
[0012] Such a state is formed as follows. The diameter of the rotating shaft 12 is 20 (tolerance +
0.010 to +0.015) mm, and the inner diameter of the lower half of the polygon mirror 11, that is, the smaller one, is 20 (tolerance -0.005 to ±
0) mm, and the coefficient of linear expansion is 1.2×1 for the rotating shaft 12.
0-5/°C, and the polygon mirror 11 has a temperature of 2.3×10-5/°C. At room temperature, the rotating shaft 12 cannot fit in because it is thicker than the hole 11d of the polygon mirror 11, but when the polygon mirror 11 is heated to 100°C,
By increasing the temperature by ℃, the inner diameter becomes 20 x 75 x 2.3 x 10-
Expands by 5=0.0345 (mm).

【0013】つまり、孔11dの内径が20(公差+0
.0295〜+0.0345)mmとなり、この状態で
回転軸12を挿入し、多面鏡11の下面11cを回転軸
12のフランジ12aの座面12bに密接させる。この
ようにして、焼き嵌めした多面鏡11と回転軸12は、
使用により温度が仮に27℃昇温しても、回転軸12の
直径が20(公差+0.017〜+0.022)mmで
、孔11dの内径が20(公差+0.008〜+0.0
13)mmとなって、抜けることはない。
In other words, the inner diameter of the hole 11d is 20 (tolerance +0)
.. 0295 to +0.0345) mm, and in this state, the rotating shaft 12 is inserted, and the lower surface 11c of the polygon mirror 11 is brought into close contact with the seating surface 12b of the flange 12a of the rotating shaft 12. In this way, the shrink-fitted polygon mirror 11 and rotation shaft 12 are
Even if the temperature rises by 27°C due to use, the diameter of the rotating shaft 12 is 20 (tolerance +0.017 to +0.022) mm, and the inner diameter of the hole 11d is 20 (tolerance +0.008 to +0.0 mm).
13) mm and will not come out.

【0014】また、多面鏡11は下面11cを基準面と
し、反射面11aと孔11dの内面を削り出すため、加
工精度によって孔11dと下面11cの直角度が決まる
。高精度の加工においては加工する長さが短く面積が小
さい方が有利なため、孔11dの回転軸12に当接する
部分の長さを短くしたことにより、加工精度が高くなる
Furthermore, since the polygon mirror 11 uses the lower surface 11c as a reference surface and cuts the reflecting surface 11a and the inner surface of the hole 11d, the perpendicularity between the hole 11d and the lower surface 11c is determined by the machining accuracy. In high-precision machining, it is advantageous to have a short length to be machined and a small area, so by shortening the length of the portion of the hole 11d that abuts the rotating shaft 12, the machining accuracy can be increased.

【0015】具体的には、従来では直角度が例えば6μ
mであったものが4μmとなり、向上している。同時に
、高精度加工に要する時間が短縮され、加工機の寿命が
延びるという利点もある。更に、孔11dの当接部の長
さを短くしたことにより、多面鏡11の孔11dの近傍
が稍々変形し易くなり、下面11cを座面12bに圧着
させて焼き嵌めを行うことにより、下面11cと孔11
dの直角度に殆ど影響されずに、下面11cと座面12
bを密着させることができる。このため、図3に示すよ
うに孔11dが角度αだけ直角から傾いている場合に、
図4に示すように下面11cがフランジ12aの端に当
接して、座面12bと平行にならないという状況を避け
ることができる。
Specifically, in the past, the perpendicularity was, for example, 6μ.
m, but now it is 4 μm, which is an improvement. At the same time, it also has the advantage of shortening the time required for high-precision machining and extending the life of the processing machine. Furthermore, by shortening the length of the abutting part of the hole 11d, the vicinity of the hole 11d of the polygon mirror 11 becomes slightly deformed, and by shrink-fitting the lower surface 11c to the seat surface 12b, Lower surface 11c and hole 11
The lower surface 11c and the seat surface 12 are almost unaffected by the perpendicularity of d.
b can be brought into close contact with each other. Therefore, when the hole 11d is inclined from the right angle by the angle α as shown in FIG.
As shown in FIG. 4, it is possible to avoid a situation where the lower surface 11c comes into contact with the end of the flange 12a and is not parallel to the seat surface 12b.

【0016】なお、第1の実施例においては孔11dの
回転軸12に密着する部分は、孔11dの下からt/2
の部分としたが、この長さは短いほど良く、その位置も
図5に示すように孔11dの中央部近傍であっても、ま
た図6に示すように上から一定の長さの部分であっても
支障はない。ただし、多面鏡11が回転駆動する際に、
多面鏡11に対して滑りを生じない程度の保持力を発生
するだけの長さが必要であることは云うまでもない。
In the first embodiment, the portion of the hole 11d that is in close contact with the rotating shaft 12 is t/2 from the bottom of the hole 11d.
However, the shorter the length, the better, and the position may be near the center of the hole 11d as shown in Figure 5, or at a certain length from above as shown in Figure 6. There is no problem even if there is. However, when the polygon mirror 11 is rotationally driven,
Needless to say, the length must be long enough to generate enough holding force to prevent the polygon mirror 11 from slipping.

【0017】[0017]

【発明の効果】以上説明したように本発明に係る回転多
面鏡の固定方法によれば、回転多面鏡の中心軸が温度変
化によってずれることがないため、偏向された光束に振
れが生ずることがない。
[Effects of the Invention] As explained above, according to the method for fixing a rotating polygon mirror according to the present invention, the central axis of the rotating polygon mirror does not shift due to temperature changes, so that deflected light beams are prevented from being deflected. do not have.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】固定前の分解斜視図である。FIG. 1 is an exploded perspective view before fixing.

【図2】第1の実施例による固定後の断面図である。FIG. 2 is a sectional view after fixing according to the first embodiment.

【図3】孔が傾いて形成された場合の多面鏡の断面図で
ある。
FIG. 3 is a cross-sectional view of a polygon mirror in which holes are formed at an angle.

【図4】孔が傾いて形成された多面鏡を回転軸に取付け
た場合の断面図である。
FIG. 4 is a cross-sectional view of a polygon mirror with inclined holes attached to a rotating shaft.

【図5】第2の実施例のよる断面図である。FIG. 5 is a cross-sectional view of the second embodiment.

【図6】第3の実施例による断面図である。FIG. 6 is a cross-sectional view according to a third embodiment.

【図7】光偏向装置の配置図である。FIG. 7 is a layout diagram of a light deflection device.

【図8】従来例の多面鏡の平面図である。FIG. 8 is a plan view of a conventional polygon mirror.

【符号の説明】[Explanation of symbols]

11  多面鏡 11a  鏡面 11c  底面 11d  透孔 12    回転軸 12a  フランジ 12b  座面 11 Polygon mirror 11a Mirror surface 11c bottom 11d Through hole 12 Rotation axis 12a Flange 12b Seat surface

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  回転軸に設けたフランジに当接させる
ことにより回転多面鏡の回転軸方向の位置決めを行う場
合において、前記回転多面鏡を焼き嵌めによって前記回
転軸に固定したことを特徴とする回転多面鏡の固定方法
1. In the case where the rotating polygon mirror is positioned in the direction of the rotation axis by abutting against a flange provided on the rotation shaft, the rotating polygon mirror is fixed to the rotation shaft by shrink fitting. How to fix a rotating polygon mirror.
【請求項2】  前記回転多面鏡の前記回転軸に焼き嵌
めした内側面の軸方向の長さを、前記回転多面鏡の厚さ
よりも短くした請求項1に記載の回転多面鏡の固定方法
2. The method of fixing a rotating polygon mirror according to claim 1, wherein the length in the axial direction of the inner surface shrink-fitted to the rotating shaft of the rotating polygon mirror is shorter than the thickness of the rotating polygon mirror.
JP3359691A 1991-02-01 1991-02-01 Method for fixing rotary polygon mirror Pending JPH04247420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3359691A JPH04247420A (en) 1991-02-01 1991-02-01 Method for fixing rotary polygon mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3359691A JPH04247420A (en) 1991-02-01 1991-02-01 Method for fixing rotary polygon mirror

Publications (1)

Publication Number Publication Date
JPH04247420A true JPH04247420A (en) 1992-09-03

Family

ID=12390872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3359691A Pending JPH04247420A (en) 1991-02-01 1991-02-01 Method for fixing rotary polygon mirror

Country Status (1)

Country Link
JP (1) JPH04247420A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000031618A1 (en) * 1998-11-20 2000-06-02 Fujitsu Limited Optical scanning type touch panel
JP2016075859A (en) * 2014-10-08 2016-05-12 大日本印刷株式会社 Optical scanner, optical module, illumination device, and projection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000031618A1 (en) * 1998-11-20 2000-06-02 Fujitsu Limited Optical scanning type touch panel
US6664952B2 (en) 1998-11-20 2003-12-16 Fujitsu Limited Optical scanning-type touch panel
EP1837740A2 (en) * 1998-11-20 2007-09-26 Fujitsu Limited Optical scanning-type touch panel
EP1837740A3 (en) * 1998-11-20 2008-07-02 Fujitsu Limited Optical scanning-type touch panel
JP2016075859A (en) * 2014-10-08 2016-05-12 大日本印刷株式会社 Optical scanner, optical module, illumination device, and projection device

Similar Documents

Publication Publication Date Title
US5491578A (en) Optics for passive scan angle doubling
US7679801B2 (en) Optical deflector, method of manufacturing optical deflector, optical scanning apparatus, and image forming apparatus
US4796965A (en) Optical scanning device
JPH04247420A (en) Method for fixing rotary polygon mirror
JPH03179420A (en) Optical apparatus
JP2008009285A (en) Optical scanner and its assembling method
JPH03177811A (en) Optical deflector
JP2001021822A (en) Optical scanning optical system and image forming device using the system
JPH04216514A (en) Laser beam generator
JPS61175617A (en) Semiconductor laser device
KR890005549A (en) Post-Objective Optical Deflector
JPH09288245A (en) Optical scanner
JPS5868015A (en) Optical system for high-speed scanning and recording
JPH10142547A (en) Optical scanning device
JPH08304722A (en) Multibeam scanning optical device
JPS61252524A (en) Laser emitting device
JP3152042B2 (en) Light source device
JPS6326806Y2 (en)
JPS6256920A (en) Optical scanning device
JPH02210318A (en) Scanning optical device and adjusting device therefor
JPH02269305A (en) Optical scanner
JP2006154391A (en) Deflection scanner
JPS5930513A (en) Rotary polyhedral mirror body
JPS5930511A (en) Rotating polyhedral mirror body
EP0600391A1 (en) Deflection scan apparatus