JPH0423406Y2 - - Google Patents
Info
- Publication number
- JPH0423406Y2 JPH0423406Y2 JP1986147553U JP14755386U JPH0423406Y2 JP H0423406 Y2 JPH0423406 Y2 JP H0423406Y2 JP 1986147553 U JP1986147553 U JP 1986147553U JP 14755386 U JP14755386 U JP 14755386U JP H0423406 Y2 JPH0423406 Y2 JP H0423406Y2
- Authority
- JP
- Japan
- Prior art keywords
- cage
- fish
- anode
- cathode structure
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 241000251468 Actinopterygii Species 0.000 claims description 18
- 239000013535 sea water Substances 0.000 claims description 12
- 238000009360 aquaculture Methods 0.000 claims description 9
- 244000144974 aquaculture Species 0.000 claims description 9
- 239000004020 conductor Substances 0.000 claims description 6
- 239000012212 insulator Substances 0.000 claims description 2
- 238000005260 corrosion Methods 0.000 description 11
- 230000007797 corrosion Effects 0.000 description 9
- 241001600434 Plectroglyphidodon lacrymatus Species 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 241001474374 Blennius Species 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 238000004210 cathodic protection Methods 0.000 description 2
- 239000012777 electrically insulating material Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 235000014653 Carica parviflora Nutrition 0.000 description 1
- 241000243321 Cnidaria Species 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Farming Of Fish And Shellfish (AREA)
Description
【考案の詳細な説明】
〔産業上の利用分野〕
本考案は、沿岸養殖漁業において、ぶり、はま
ち等の人工養殖用として使用する養殖生簀に関す
る。[Detailed description of the invention] [Field of industrial application] The present invention relates to an aquaculture cage used for artificially cultivating yellowtail, yellowtail, etc. in coastal aquaculture fisheries.
従来、生簀材としてナイロン網がよく用いられ
ていたが、時として強い外波などにより網があお
られ、生簀内の魚が傷められることから、最近は
固形の鋼製金網がよく用いられるようになつた。
Traditionally, nylon nets were often used as fish cage materials, but the nets are sometimes agitated by strong external waves, damaging the fish in the cages, so recently solid steel wire mesh has become more popular. Summer.
この金網には、海水中の塩分などによる腐食を
防ぐため、亜鉛めつきを施したり、さらにこの亜
鉛めつきがはげかかつた時点で、亜鉛、アルミニ
ウムなどの陽極材を金網の外周に設け、該金網
(鉄)との間の電位差を利用して防食電流を陽極
材からの腐食電流によつて供給する電気防食(流
電陽極法)も行なわれている。 This wire mesh is galvanized to prevent corrosion due to salt in the seawater, and when the galvanization begins to peel off, an anode material such as zinc or aluminum is placed around the outer periphery of the wire mesh. Electrolytic protection (current anode method) is also carried out in which a corrosion protection current is supplied from an anode material by utilizing the potential difference between the wire mesh (iron) and the metal mesh (iron).
しかし、上記のような種々の耐食手段を施して
も金網の寿命は、亜鉛メツキの場合で1〜2年、
さらに電気防食を追加しても2〜3年程度であつ
た。また金網に海藻類などの海中生物が付着して
目詰り状態になり、生簀内の環境が悪化するとい
う問題があつた。
However, even with the various anti-corrosion measures mentioned above, the lifespan of wire mesh is only 1 to 2 years in the case of galvanized steel.
Furthermore, even if cathodic protection was added, it would only take about 2 to 3 years. There was also the problem that marine organisms such as seaweed adhered to the wire mesh, clogging it and deteriorating the environment inside the cage.
本考案は、このような問題点を解決し、海水中
にほぼ無尽蔵に含まれているカルシウム、マグネ
シウムなどの鉱物質を低レベルの電気エネルギー
を用いて金網などの芯線の表面に析出、累積さ
せ、種々の耐久性のある殻構造物を造り得るコー
ラルプロセス(電着法)の用途開発の一環として
考案されたもので、陽極囲繞構造体と陰極構造体
との間に海水を介して電気分解を発生させるよう
にした養殖生簀を提供することを目的とする。 The present invention solves these problems by depositing and accumulating minerals such as calcium and magnesium, which are almost inexhaustibly contained in seawater, on the surface of core wires such as wire mesh using low-level electrical energy. This was devised as part of the development of the application of the coral process (electrodeposition method), which can create various durable shell structures. The purpose of the present invention is to provide an aquaculture cage that allows the generation of
かかる目的達成のため、本考案の養殖生簀は、
海上又は陸上に設置される直流電源装置と、海面
上に浮上させる浮体と、浮体から海水中に吊り下
げられる生簀本体と、陰極構造体とからなる養殖
生簀であつて、生簀本体を導電性材料からなる網
状の陽極囲繞構造体で形成するとともに生簀本体
の近傍に導電性材料からなる陰極構造体を、絶縁
体を介して配置させ、生簀本体の外周面積を陰極
構造体の外周面積よりも大きくするとともに、生
簀本体を直流電源装置の陽極に、陰極構造体を直
流電源装置の陰極に、それぞれ微弱電流を通電可
能に接続してなることを特徴とする。
In order to achieve this purpose, the aquaculture cage of the present invention:
An aquaculture cage consisting of a DC power supply installed on the sea or on land, a floating body floated above the sea surface, a fish cage body suspended from the floating body in seawater, and a cathode structure, the fish cage body being made of a conductive material. At the same time, a cathode structure made of a conductive material is placed in the vicinity of the cage main body via an insulator, and the outer peripheral area of the cage main body is larger than the outer peripheral area of the cathode structure. In addition, the cage main body is connected to the anode of the DC power supply device, and the cathode structure is connected to the cathode of the DC power supply device, respectively, so that a weak current can be passed therethrough.
上述の構成によれば、陽極囲繞構造体と陰極構
造体との間に直流電源装置から通電すると、陽極
囲繞構造体は酸性雰囲気となり塩素ガス等を発生
し、陽極囲繞構造体に海中生物が付着されるのが
防止される。また陰極構造体の表面には、海水中
のカルシウム、マグネシウムを主成分とする耐食
被膜が形成される。
According to the above configuration, when electricity is supplied from the DC power supply between the anode surrounding structure and the cathode structure, the anode surrounding structure becomes an acidic atmosphere and generates chlorine gas, etc., and marine life adheres to the anode surrounding structure. be prevented from being Further, a corrosion-resistant coating containing calcium and magnesium contained in seawater as main components is formed on the surface of the cathode structure.
以下、本考案を図面に示す実施例に基づいて説
明する。
Hereinafter, the present invention will be explained based on embodiments shown in the drawings.
養殖生簀1は、浮体2と、陽極囲繞構造体3と
陰極構造体5とからなる生簀6と、直流電源装置
の一例たる太陽電池7と、を備えている。 The aquaculture cage 1 includes a floating body 2, a fish cage 6 including an anode surrounding structure 3 and a cathode structure 5, and a solar cell 7 which is an example of a DC power supply device.
浮体2は、例えば断面円形のリング状に形成さ
れ、海面8上に浮くようになつており、係留索9
により海底に設置された複数のコンクリートブロ
ツク10に係留されている。陽極囲繞構造体3
は、カーボン繊維等の導電性材料で例えば筒状
に、かつ網状に上下方向に幅をもつて形成されて
おり、その外周面の直径は、浮体2の内周面の直
径より小さく設定されている。また陽極囲繞構造
体3の上部は、浮体2の内周面に挿入され、一部
を海面8上に露出させるようにして浮体2に、電
気絶縁材で形成された複数の連結部12により一
体的に固定されている。なお、陽極囲繞構造体
は、少なくとも海藻の付着しやすい海面から水深
10m位までの範囲に位置されるように、上下方向
の幅が決定される。 The floating body 2 is formed into a ring shape with a circular cross section, for example, and is adapted to float on the sea surface 8.
It is moored to a plurality of concrete blocks 10 installed on the seabed. Anode surrounding structure 3
is formed of a conductive material such as carbon fiber, for example, in a cylindrical shape and a net shape with a width in the vertical direction, and the diameter of the outer circumferential surface is set smaller than the diameter of the inner circumferential surface of the floating body 2. There is. Further, the upper part of the anode surrounding structure 3 is inserted into the inner circumferential surface of the floating body 2 and is integrally connected to the floating body 2 by a plurality of connecting parts 12 made of an electrically insulating material so as to expose a part above the sea surface 8. is fixed. Note that the anode surrounding structure should be located at least at a depth from the sea surface where seaweed tends to adhere.
The vertical width is determined so that it can be located within a range of up to 10 meters.
陰極構造体5は鋼線等の導電性材料で形成され
た有底の筒状の金網13からなつており、その外
周面の直径は、陽極囲繞構造体3の外周面の直径
とほぼ同一に設定されている。そして陰極構造体
5の頂面は、陽極囲繞構造体2の底面に所定の間
隔をおいて電気絶縁材からなる複数の連結片15
により取付けられている。このようにして陽極囲
繞構造体3と陰極構造体5とにより、陽極囲繞構
造体3の頂面側、即ち上方を開口した箱形状の生
簀6が形成される。 The cathode structure 5 is made of a bottomed cylindrical wire mesh 13 made of a conductive material such as steel wire, and the diameter of its outer circumferential surface is approximately the same as the diameter of the outer circumferential surface of the anode surrounding structure 3. It is set. The top surface of the cathode structure 5 is connected to the bottom surface of the anode surrounding structure 2 by a plurality of connecting pieces 15 made of electrically insulating material at predetermined intervals.
It is installed by In this way, the anode surrounding structure 3 and the cathode structure 5 form a box-shaped fish cage 6 that is open on the top surface side of the anode surrounding structure 3, that is, the upper side.
太陽電池7は、最寄りの陸上又は浮体2上など
に設置されており、太陽光による光起電力により
直流のごく微弱な電気を発生するもので、太陽電
池7の陽極は陽極囲繞構造体3に、陰極は陰極構
造体5に導線16によりそれぞれ接続されてい
る。 The solar cell 7 is installed on the nearest land or on the floating body 2, and generates very weak DC electricity by photovoltaic force from sunlight.The anode of the solar cell 7 is installed on the anode surrounding structure 3. , the cathodes are connected to the cathode structure 5 by conductive wires 16, respectively.
つぎに、本考案の実施例の作用を説明する。 Next, the operation of the embodiment of the present invention will be explained.
昼間における太陽電池7にて発生したごく微弱
な直流電流は、陽極側の陽極囲繞構造体3から海
水を介して陰極側の陰極構造体5に向つて流れる
ので、従来海水中の陰極構造体5の母材である金
網13の表面に形成された腐食の原因であつた極
部電池が消滅し腐食電流が流れなくなる。従つ
て、金網13は電気防食(外部電源方式)される
と同時に、金網13の裸鋼線の表面には、海水中
のカルシウム、マグネシウムを主成分とする非常
にち密で海水に対して耐食性の大なる微量の鉱物
質がゆるやかに累積される。 A very weak direct current generated in the solar cell 7 during the daytime flows from the anode surrounding structure 3 on the anode side to the cathode structure 5 on the cathode side via the seawater. The electrode battery that was the cause of the corrosion formed on the surface of the wire mesh 13, which is the base material of the metal mesh 13, disappears, and the corrosion current stops flowing. Therefore, the wire mesh 13 is cathodic-protected (externally powered), and at the same time, the surface of the bare steel wire of the wire mesh 13 is coated with a highly dense and corrosion-resistant seawater-resistant material containing calcium and magnesium in seawater as its main components. Large trace amounts of mineral matter are slowly accumulated.
つまり、太陽エネルギーの得られない夜間を除
き金網13の裸鋼線には、海水の腐蝕作用が極小
に押えられた状態での良好な耐食被膜の形成が行
なわれる。もし、太陽電池7からの余分な光起電
力をたくわえる蓄電装置(図示せず)を追加すれ
ば、昼夜を通して防食並びに被膜形成作用を継続
させることができる。 That is, except at night when solar energy is not available, a good corrosion-resistant coating is formed on the bare steel wires of the wire mesh 13 in a state where the corrosive action of seawater is kept to a minimum. If a power storage device (not shown) is added to store excess photovoltaic power from the solar cell 7, the anticorrosion and film forming effects can be continued throughout the day and night.
このようにして、生簀6の設置場所にもよる
が、約1年後には、例えば5mm角の網目を形成す
る直径3mmの裸鋼線上に、厚さ1.5mmの防食被膜
が形成されるので、従来の亜鉛メツキ法に電気防
食法を追加した場合の金網寿命2〜3年のに比
べ、ほぼ10年以上に及ぶ長期の耐用が見込まれ
る。 In this way, depending on the installation location of the fish tank 6, after about one year, for example, a 1.5 mm thick anti-corrosion coating will be formed on the 3 mm diameter bare steel wire forming a 5 mm square mesh. Compared to the 2-3 year life expectancy of wire mesh when adding cathodic protection to the conventional galvanizing method, it is expected to have a long service life of approximately 10 years or more.
またこの金網13は、海面の飛沫帯や潮汐帯を
十分にカバーする上方幅をもつた陽極囲繞構造体
3の下方に水没して配置されているので、流木な
どの衝突、破損から回避できるが、もしなんらか
の外力による防食被膜の破損にあたつても、通電
によつて新しい被膜をつくることにより容易に破
損部を修復することができる。また金網13に
は、生物にとつてなじみの良いカルシウム、マグ
ネシウムなどのアルカリ性イオンが集まることか
ら、ぶり、はまちなどの育成に好適な人工養殖場
が得られる。 In addition, since the wire mesh 13 is submerged below the anode surrounding structure 3, which has an upper width that sufficiently covers the splash zone and tidal zone of the sea surface, it can be avoided from being hit by or damaged by driftwood, etc. Even if the anticorrosion coating is damaged by some external force, the damaged portion can be easily repaired by forming a new coating by applying electricity. Furthermore, since the wire mesh 13 collects alkaline ions such as calcium and magnesium, which are well-accepted by living things, an artificial fish farm suitable for raising yellowtail, yellowtail, etc. can be obtained.
一方陽極囲繞構造体3は、太陽電池7からの通
電中は、その表面が酸性雰囲気となり塩素ガス等
を発生するので、海中生物が陽極囲繞構造体3の
表面に付着することがなく、従つて生簀6は、目
詰りのない常に良好な環境状態に保たれる。また
陽極囲繞構造体3はカーボン繊維で形成されてい
るので、海水に対しての耐食性が極めて大であ
り、特に腐食しやすく、かつ海中生物が付着しや
すい陽極囲繞構造体3の上部は海面8上に露出し
ている。 On the other hand, when the anode surrounding structure 3 is energized by the solar cell 7, its surface becomes an acidic atmosphere and generates chlorine gas, etc., so that marine organisms do not adhere to the surface of the anode surrounding structure 3. The fish tank 6 is always kept in a good environmental condition without clogging. Furthermore, since the anode surrounding structure 3 is made of carbon fiber, it has extremely high corrosion resistance against seawater. exposed above.
なお、上記実施例では、陽極囲繞構造体3の下
部開放端に有底の陰極構造体5が取付けられた構
造になつているが、第2図に示すように、陽極囲
繞構造体30を有底に形成し、この構造体30の
上部開口の外周に電気絶縁材40を介して浮体2
0を固定し、この浮体20に陰極構造体50を設
ける構成としてもよい。 In the above embodiment, the bottomed cathode structure 5 is attached to the lower open end of the anode surrounding structure 3, but as shown in FIG. The floating body 2 is formed on the bottom and the floating body 2 is formed on the outer periphery of the upper opening of this structure 30 via an electrical insulating material 40.
0 may be fixed and the cathode structure 50 may be provided on the floating body 20.
この実施例によれば、生簀本体に陽極電流が流
れるので、全体的に海藻の付着を防止することが
でき、従来のように定期的な生簀の入れ換えや、
付着海藻の洗浄作業を大幅に軽減することができ
る。 According to this embodiment, since an anode current flows through the main body of the fish cage, it is possible to prevent seaweed from attaching to the whole fish tank, and it is possible to prevent the fish cage from being replaced regularly as in the conventional method.
The work of cleaning adherent seaweed can be greatly reduced.
さらに、本考案は、海中に設置される漁網、例
えば定置網、さし網にも適用可能である。 Furthermore, the present invention is also applicable to fishing nets installed in the sea, such as stationary nets and purse nets.
上述のとおり、本考案によれば、海水中に配置
された陽極囲繞構造体と陰極構造体間の電気分解
により陽極囲繞構造体は酸性雰囲気となるので、
海中生物が生簀に付着することなく、目詰まりが
起らないから、海水置換が良好に行なわれ、ぶ
り、はまち等の養殖に好適な環境が常に保持され
る。また陰極構造体に耐食被膜が形成されるの
で、生簀の耐久性が大幅に向上する。
As mentioned above, according to the present invention, the anode surrounding structure becomes an acidic atmosphere due to electrolysis between the anode surrounding structure and the cathode structure placed in seawater.
Since sea creatures do not adhere to the cage and clogging does not occur, seawater replacement is performed well, and an environment suitable for cultivating yellowtail, yellowtail, etc. is always maintained. Furthermore, since a corrosion-resistant coating is formed on the cathode structure, the durability of the fish tank is greatly improved.
第1図は本考案に係る養殖生簀の斜視図、第2
図は他の実施例を示す断面図である。
1……養殖生簀、2……浮体、3……陽極囲繞
構造体、5……陰極構造体、6……生簀、7……
直流電源装置の一例たる太陽電池、8……海面。
Figure 1 is a perspective view of the aquaculture cage according to the present invention, Figure 2
The figure is a sectional view showing another embodiment. 1... Aquaculture fish cage, 2... Floating body, 3... Anode surrounding structure, 5... Cathode structure, 6... Fish cage, 7...
A solar cell is an example of a DC power supply, 8...sea surface.
Claims (1)
面上に浮上させる浮体と、前記浮体から海水中に
吊り下げられる生簀本体と、陰極構造体とからな
る養殖生簀であつて、前記生簀本体を導電性材料
からなる網状の陽極囲繞構造体で形成するととも
に該生簀本体の近傍に導電性材料からなる陰極構
造体を、絶縁体を介して配置させ、前記生簀本体
の外周面積を前記陰極構造体の外周面積よりも大
きくするとともに、前記生簀本体を前記直流電源
装置の陽極に、前記陰極構造体を前記直流電源装
置の陰極に、それぞれ微弱電流を通電可能に接続
してなることを特徴とする養殖生簀。 An aquaculture cage consisting of a DC power supply device installed on the sea or on land, a floating body floated on the sea surface, a fish cage body suspended in seawater from the floating body, and a cathode structure, the fish cage body being electrically conductive. A net-shaped anode surrounding structure made of a conductive material is formed, and a cathode structure made of a conductive material is disposed near the cage main body with an insulator interposed therebetween. The fish culture is made larger than the outer circumferential area, and the fish cage main body is connected to the anode of the DC power supply device, and the cathode structure is connected to the cathode of the DC power supply device so that a weak current can be passed thereto. Fish tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986147553U JPH0423406Y2 (en) | 1986-09-26 | 1986-09-26 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986147553U JPH0423406Y2 (en) | 1986-09-26 | 1986-09-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6353262U JPS6353262U (en) | 1988-04-09 |
JPH0423406Y2 true JPH0423406Y2 (en) | 1992-06-01 |
Family
ID=31061024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1986147553U Expired JPH0423406Y2 (en) | 1986-09-26 | 1986-09-26 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0423406Y2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI283162B (en) * | 2005-12-16 | 2007-07-01 | Univ Nat Taiwan Ocean | Method and system to inhibit ocean organisms by using conductive rubber coating |
JP5922332B2 (en) * | 2011-02-18 | 2016-05-24 | エム・エムブリッジ株式会社 | Offshore structure |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54141294A (en) * | 1978-04-14 | 1979-11-02 | Toshiba Ray O Vac | Protecting apparatus for fishing tool |
JPS5541817U (en) * | 1978-09-08 | 1980-03-18 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5916372U (en) * | 1982-07-23 | 1984-01-31 | 浜口計器工業株式会社 | power supply |
-
1986
- 1986-09-26 JP JP1986147553U patent/JPH0423406Y2/ja not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54141294A (en) * | 1978-04-14 | 1979-11-02 | Toshiba Ray O Vac | Protecting apparatus for fishing tool |
JPS5541817U (en) * | 1978-09-08 | 1980-03-18 |
Also Published As
Publication number | Publication date |
---|---|
JPS6353262U (en) | 1988-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6157150B2 (en) | Spawning reef and artificial fish reef | |
US5344531A (en) | Prevention method of aquatic attaching fouling organisms and its apparatus | |
JPH0423406Y2 (en) | ||
JPS61238982A (en) | Corrosion preventing method for wire net for crawl | |
JP2520779B2 (en) | Anticorrosion and antifouling method for underwater steel structures | |
JP2003080260A (en) | Water or soil quality improving method and system | |
JP4652221B2 (en) | Koji growing device and kite growing structure | |
CN113841648A (en) | Artificial reef body for electrically stimulating growth of hermatypic coral | |
JPS6312567B2 (en) | ||
JP4942422B2 (en) | Coral cultivation structure | |
JP4438158B2 (en) | Antifouling method for concrete structure and antifouling device for seawater conduit of concrete structure | |
JPS6054626A (en) | Steel cage type fish bank | |
CN218734155U (en) | Corrosion-resistant water solar power generation system | |
JP4126513B2 (en) | Antifouling method and antifouling device by electrocoating | |
JPH0752167Y2 (en) | Replaceable energizing antifouling cover for offshore structures | |
TW302413B (en) | Construction method for the corrosion prevention of steel plate piles or steel pipe piles by external electric current | |
KR20240103224A (en) | Apparatus for preventing settlement and corrosion of steel fishing reefs for improving fishing environment using electricity from offshore wind farms | |
JP2009203527A (en) | Corrosion prevention method for steel structure, and anode for forming electrodeposited coating | |
JPS63258291A (en) | Method for preventing floating light buoy from deposit of creature | |
JP2003189758A (en) | Preserve for fish farming | |
JP5922332B2 (en) | Offshore structure | |
JPH11323868A (en) | Arrangement structure of electrode in electrochemical antifouling method | |
JP2000308432A (en) | Anticorrosion-treated marine structure made of copper or copper alloy and corrosion-preventing method for marine structure made of copper or copper alloy | |
JPH05123079A (en) | Underwater fence | |
Murai et al. | Aluminum, Galvanic Anodes |