[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0422030Y2 - - Google Patents

Info

Publication number
JPH0422030Y2
JPH0422030Y2 JP1986039850U JP3985086U JPH0422030Y2 JP H0422030 Y2 JPH0422030 Y2 JP H0422030Y2 JP 1986039850 U JP1986039850 U JP 1986039850U JP 3985086 U JP3985086 U JP 3985086U JP H0422030 Y2 JPH0422030 Y2 JP H0422030Y2
Authority
JP
Japan
Prior art keywords
waterway
valve
cooling water
temperature
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986039850U
Other languages
Japanese (ja)
Other versions
JPS62152020U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986039850U priority Critical patent/JPH0422030Y2/ja
Publication of JPS62152020U publication Critical patent/JPS62152020U/ja
Application granted granted Critical
Publication of JPH0422030Y2 publication Critical patent/JPH0422030Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Temperature-Responsive Valves (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、エンジン本体とラジエータとの間を
冷却水が循環可能に導出水路と導入水路で連結
し、前記導出水路と導入水路との間をバイパス水
路で連結し、導出水路の分岐部に開閉弁を設け、
導入水路の合流部にウオータポンプを設けたエン
ジン冷却水の温度制御装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention connects an engine body and a radiator with a lead-out waterway and an inlet waterway so that cooling water can circulate, and a are connected by a bypass waterway, and an on-off valve is installed at the branch of the outlet waterway.
The present invention relates to an engine cooling water temperature control device that includes a water pump at the confluence of introduction waterways.

[従来技術] かかる公知のエンジン冷却水の温度制御装置は
例えば第3図に示されているように、ウオータポ
ンプ30からの冷却水は導入水路25を通つてエ
ンジン本体を構成するシリンダブロツク21に流
入し、そしてやはりエンジン本体を構成するシリ
ンダヘツド22に流入し、エンジンブロツクおよ
びシリンダヘツド22を冷却する。そしてエンジ
ン本体で加熱された冷却水はサーモスタツト28
を通つて導出水路24からラジエータ23に流入
する。そしてラジエータ23で冷却された冷却水
はウオータポンプ30から導入水路25に圧送さ
れる。通常エンジン冷却水温度は例えば80℃〜86
℃に設計されており、その設定温度以下ではサー
モスタツト28は閉じており、したがつてシリン
ダヘツド22からの冷却水はサーモスタツト28
の分岐部27から分岐されたバイパス水路26を
通つてウオータポンプ30に吸込まれる。そして
冷却水温度が設定温度以上になると、サーモスタ
ツトがバイパス水路26を閉じるので冷却水はラ
ジエータ23に流れて冷却される。
[Prior Art] As shown in FIG. 3, for example, in this known engine cooling water temperature control device, cooling water from a water pump 30 is passed through an introduction waterway 25 to a cylinder block 21 constituting the engine body. It flows into the cylinder head 22, which also constitutes the engine body, and cools the engine block and the cylinder head 22. The cooling water heated by the engine body is then transferred to the thermostat 28.
It flows into the radiator 23 from the outlet waterway 24 through the outlet waterway 24 . The cooling water cooled by the radiator 23 is then pressure-fed to the introduction waterway 25 from the water pump 30. Normal engine coolant temperature is for example 80℃~86
℃, and below the set temperature, the thermostat 28 is closed, so that the cooling water from the cylinder head 22 flows through the thermostat 28.
The water is sucked into the water pump 30 through a bypass waterway 26 branched from a branch portion 27 of the water pump 30 . When the temperature of the cooling water exceeds the set temperature, the thermostat closes the bypass water passage 26, so that the cooling water flows to the radiator 23 and is cooled.

しかしながら、特に冬期や寒冷地ではこのよう
にバイパス水路を介して循環させると、バイパス
水路26とウオータポンプ30と導入水路25中
の冷却水も加熱しなければならず、そのためにエ
ンジン全体すなわちシリンダブロツク24やシリ
ンダヘツド22の加熱に時間がかかる。例えば本
出願人による実願昭59−140079号には外気音によ
つてバイパス水路の分岐部の開閉弁を制御し、も
つて暖機の促進とオーバーヒートの防止を行う技
術を提案した。
However, especially in winter or in cold regions, if the cooling water is circulated through the bypass waterway in this way, the cooling water in the bypass waterway 26, water pump 30, and introduction waterway 25 must also be heated. 24 and cylinder head 22 takes time. For example, Utility Model Application No. 59-140079 filed by the present applicant proposed a technique for controlling the opening/closing valve of a branch section of a bypass waterway using outside air sound, thereby promoting warm-up and preventing overheating.

しかしながら、暖機運転においては、基本的に
まずエンジン本体を暖機し、もつてエンジン本体
の冷却水温を所定の温度まで加熱すれば目的が達
成できるが、従来技術ではバイパス通路等の暖機
に不必要な冷却水も加熱していたので、どうして
も暖機時間が長くなつた。
However, in warm-up operation, the purpose can basically be achieved by first warming up the engine body and then heating the cooling water temperature of the engine body to a predetermined temperature, but with conventional technology, warming up the bypass passage etc. Since the cooling water was being heated unnecessarily, the warm-up time was inevitably longer.

また、実公昭48−44491号公報に記載された公
知技術では単に水温によつてサーモスタツトを開
閉するのみであるから、所定温度以上になると、
サーモスタツトが開となり、その結果、管路中の
冷却水がラジエータを通るので、暖機時間が長く
なる。そのために所定温度を高くすると、サーモ
スタツトが開となつたときに、冷えている管路中
の水が一時的にエンジンを急冷するので好ましく
ない。
In addition, in the known technology described in Japanese Utility Model Publication No. 48-44491, the thermostat is simply opened and closed depending on the water temperature, so when the temperature exceeds a predetermined temperature,
The thermostat opens and as a result the cooling water in the lines passes through the radiator, increasing the warm-up time. For this reason, if the predetermined temperature is increased, the cold water in the pipe will temporarily cool the engine rapidly when the thermostat is opened, which is undesirable.

[解決しようとする課題] したがつて、本考案の目的は、暖機時間を極力
短くでき、しかもエンジンが暖機された後に、冷
たい冷却水が急激にエンジンに流入することのな
いエンジンの冷却装置を提供するにある。
[Problem to be Solved] Therefore, the purpose of the present invention is to provide an engine cooling method that can shorten the warm-up time as much as possible and also prevent cold cooling water from suddenly flowing into the engine after the engine has been warmed up. We are in the process of providing equipment.

[課題を解決する手段] 本考案によれば、エンジン本体とラジエータと
の間に冷却水が循環可能に導出水路と導入水路で
連結し、前記導出水路と導入水路との間をバイパ
ス水路で連結し、前記導出水路の分岐部に開閉弁
を設け、前記導入水路の合流部にウオータポンプ
を設けたエンジン冷却水の温度制御装置におい、
前記バイパス水路にバルブとそのバルブを開閉す
るバルブの駆動手段とを設け、前記導出水路の分
岐部上流側に温度センサを設け、前記温度センサ
の検知温度に対応して前記バルブの駆動手段を制
御してバルブの開度を制御する制御装置を設けて
ある。
[Means for Solving the Problems] According to the present invention, the engine body and the radiator are connected by a lead-out waterway and an introduction waterway so that cooling water can circulate, and the lead-out waterway and the introduction waterway are connected by a bypass waterway. In the engine cooling water temperature control device, the engine cooling water temperature control device is provided with an on-off valve at a branch part of the outlet waterway and a water pump at a confluence part of the introduction waterway,
A valve and a valve driving means for opening and closing the valve are provided in the bypass waterway, a temperature sensor is provided on the upstream side of a branch part of the outlet waterway, and the valve driving means is controlled in response to the temperature detected by the temperature sensor. A control device is provided to control the opening degree of the valve.

[作用効果の説明] したがつて暖機運転を始めるときに、冷却水温
が低いので、シリンダヘツドからの導水水路の水
温は低く、温度センサはその低い水温を検知して
おり、バイパス水路のバルブは閉じている。そし
てサーモスタツトも従来例の如く閉じているの
で、導出水路は閉じた状態になつており、したが
つてシリンダブロツクおよびシリンダヘツド内の
冷却水は流れない。そのためにウオータポンプの
吐出水量は零であり、ウオータポンプの駆動馬力
も比較的に小さい。そしてエンジン本体が暖機さ
れて、サーモスタツトが開く温度より低い所定の
温度になると水温センサからの信号で制御装置は
バルブの駆動手段を動かしてバルブを水温に対応
して開くので、水温が低いときは小量しか流れな
い。したがつて、シリンダブロツクやシリンダヘ
ツドには初めは水量しか流れず、エンジン本体が
急冷されるという不都合を生じない。このように
して水温の上昇に伴つて次第にハルブが開くの
で、その循環系すなわちバイパス水路、ウオータ
ポンプ導入水路の水温が順次上昇する。
[Explanation of effects] Therefore, when starting warm-up operation, since the cooling water temperature is low, the water temperature in the water conduit from the cylinder head is low, and the temperature sensor detects this low water temperature, and the bypass water valve is activated. is closed. Since the thermostat is also closed as in the conventional case, the outlet waterway is in a closed state, so that the cooling water in the cylinder block and cylinder head does not flow. Therefore, the amount of water discharged by the water pump is zero, and the driving horsepower of the water pump is also relatively small. Then, when the engine body is warmed up and reaches a predetermined temperature lower than the temperature at which the thermostat opens, the control device receives a signal from the water temperature sensor and operates the valve drive means to open the valve in accordance with the water temperature, so the water temperature is low. Only a small amount of time flows. Therefore, only the amount of water flows into the cylinder block and cylinder head at first, and the problem of rapid cooling of the engine body does not occur. In this way, as the water temperature rises, the hull gradually opens, so the water temperature in the circulation system, that is, the bypass waterway and the water pump introduction waterway, rises one after another.

そしてこのように充分に暖機されてその循環系
の水温が充分に上昇すると、今度は従来の作動と
同様にサーモスタツトが開く。
When the temperature of the water in the circulation system rises sufficiently due to sufficient warming up, the thermostat opens as in conventional operation.

このように、暖機運転の初期にエンジン本体の
みの冷却水が加熱されるので、暖機時間が少なく
てすみ、またその間にウオータポンプの駆動馬力
も小さく、燃料消費量が少なくてよい。また冷却
水が循環しないので、摩擦損失も低減できる。
In this way, since the cooling water for only the engine body is heated at the beginning of warm-up operation, the warm-up time is short, and during that time, the driving horsepower of the water pump is also small, so fuel consumption can be reduced. Furthermore, since cooling water does not circulate, friction loss can also be reduced.

このように本考案によれば、バイパス水路に設
けたバルブが水温に応じて開閉するので、バイパ
ス水路、ウオータポンプおよび導入水路中の水が
次第に高温になるので、エンジンに悪影響がな
く、暖機運転を行うことができる。
As described above, according to the present invention, the valve installed in the bypass waterway opens and closes depending on the water temperature, so the water in the bypass waterway, water pump, and introduction waterway gradually becomes hotter, so there is no adverse effect on the engine and it is possible to warm up the engine. Able to drive.

さらに例えば低負荷時や低回転時に寒冷地で冷
却水温が低くなつたときにも同様に冷却水を循環
させないので、エンジン効率も向上し、いわゆる
オーバークールを防止できる。また通常の運転時
は、ラジエータを通つて冷却水が循環するので、
勿論オーバーヒートも生じない。
Furthermore, even when the coolant temperature is low in a cold region during low load or low rotation, for example, the coolant is not circulated, which improves engine efficiency and prevents so-called overcooling. Also, during normal operation, cooling water circulates through the radiator, so
Of course, no overheating occurs.

[実施例] 以下第1図を参照して本考案の実施例を説明す
る。第1図において1はエンジンブロツク、2は
シリンダヘツド、3は冷却用のラジエータであ
る。このシリンダヘツド2とラジエータ3との間
は、導出水路4と導入水路5とで連結されてお
り、冷却水が循環するようになつている。また前
記導出水路4と導入水路5との間は、バイパス水
路6で連結されており、ラジエータ3を冷却水が
迂回できるようになつている。このバイパス水路
6が接続してる導出水路4の分岐部7には、サー
モスタツトからなる開閉弁8が設けられており、
一方バイパス水路6が接続している導入水路5の
合流部9には、冷却水を循環せしめるためのウオ
ータ・ポンプ10が設けられている。
[Example] An example of the present invention will be described below with reference to FIG. In FIG. 1, 1 is an engine block, 2 is a cylinder head, and 3 is a cooling radiator. The cylinder head 2 and the radiator 3 are connected by an outlet waterway 4 and an introduction waterway 5, so that cooling water is circulated therebetween. Further, the outlet waterway 4 and the introduction waterway 5 are connected by a bypass waterway 6, so that cooling water can bypass the radiator 3. The branch part 7 of the outlet waterway 4 to which this bypass waterway 6 is connected is provided with an on-off valve 8 consisting of a thermostat.
On the other hand, a water pump 10 for circulating cooling water is provided at the junction 9 of the introduction waterway 5 to which the bypass waterway 6 is connected.

バイパス水路6には、その水路を開閉するため
の電磁バルブ11が設けられ、導出水路4の分岐
部7より上流側に配置された水温センサSの検知
結果に応じ制御装置12により駆動手段13を作
動させ、電磁バルブ11は開閉制御されている。
The bypass waterway 6 is provided with an electromagnetic valve 11 for opening and closing the waterway, and the drive means 13 is controlled by the control device 12 in accordance with the detection result of the water temperature sensor S disposed upstream of the branch part 7 of the outlet waterway 4. The solenoid valve 11 is controlled to open and close.

制御装置12は、第2図に示すように、水温セ
ンサSの検知水温Wが例えば20℃以下のとき電磁
バルブ11の開度θを零とし、その後次第に開
き、開閉弁8すなわちサーモスタツトの開く温度
(例えば80℃)より若干低い温度例えば70℃の時
電磁バルブ11の開度θを全開とするように、駆
動手段13を作動するようになつている。
As shown in FIG. 2, the control device 12 sets the opening degree θ of the electromagnetic valve 11 to zero when the detected water temperature W of the water temperature sensor S is, for example, 20° C. or lower, and then gradually opens the opening θ of the on-off valve 8, that is, the thermostat. When the temperature is slightly lower than the temperature (eg, 80°C), for example, 70°C, the driving means 13 is operated so that the opening degree θ of the electromagnetic valve 11 is fully opened.

したがつて暖機運転時には冷却水が循環せず、
そのためにエンジン本体の冷却水の温度上昇を促
進でき、暖機時間を短縮することができる。水温
が20℃以上になると、冷却水は少しづつ循環し、
バイパス水路や、ウオータポンプおよび導入水路
内の冷却水が加熱され、最後は半開閉弁(サーモ
スタツト)が開いてラジエータで冷却される。
Therefore, cooling water does not circulate during warm-up operation,
Therefore, the temperature of the cooling water in the engine body can be increased, and the warm-up time can be shortened. When the water temperature exceeds 20℃, the cooling water is circulated little by little.
Cooling water in the bypass waterway, water pump, and introduction waterway is heated, and finally a half-open/close valve (thermostat) is opened and cooled by a radiator.

[考案の効果] 以上の如く本考案によれば、下記のすぐれた効
果を奏する。
[Effects of the invention] As described above, the invention provides the following excellent effects.

(a) 暖機運転の初期にエンジンブロツクとシリン
ダヘツドとの冷却水が循環しないので、温度上
昇が早く、暖機時間が短縮する。
(a) Since cooling water does not circulate between the engine block and cylinder head at the beginning of warm-up, the temperature rises quickly and warm-up time is shortened.

(b) 所定温度以上になると、水温に応じてバイパ
ス水路のバルブが開くので、冷却水は少しずつ
循環するので、エンジンに悪影響がない。
(b) When the temperature exceeds a predetermined temperature, the bypass water valve opens according to the water temperature, so the cooling water is circulated little by little, so there is no adverse effect on the engine.

(c) そのためにエンジンの潤滑油は比較的に早く
粘度が適切な値となり、その後安定し、エンジ
ン各部の摩耗が少なく、馬力損失がなく燃費の
向上が達成できる。
(c) For this reason, the viscosity of the engine lubricating oil reaches the appropriate value relatively quickly, and then stabilizes, resulting in less wear on various parts of the engine, no loss of horsepower, and improved fuel efficiency.

(d) 特に寒冷地において低負荷時や低回転時(い
わゆるアイドル運転中)にバルブが閉じるので
オーバークールが防止できる。
(d) Overcooling can be prevented because the valve closes during low load or low rotation (so-called idling), especially in cold regions.

(e) 分岐部の上流側に設けた温度センサによりエ
ンジンの暖機を正確に把握できる。
(e) A temperature sensor installed upstream of the branch allows accurate determination of engine warm-up.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案を実施したエンジン冷却水の温
度制御装置の一実施例の概略構成図、第2図は電
磁弁の動作説明図、第3図は従来のエンジン冷却
水の温度制御装置の概略構成図である。 1……エンジンブロツク、2……シリンダヘツ
ド、3……ラジエータ、4……導出水路、5……
導入水路、6……バイパス水路、7,9……分岐
部、8……開閉弁(サーモスタツト)、10……
ウオータ・ポンプ、11……電磁バルブ、12…
…制御装置、13……駆動手段、S……水温セン
サ。
Fig. 1 is a schematic configuration diagram of an embodiment of an engine cooling water temperature control device embodying the present invention, Fig. 2 is an explanatory diagram of the operation of a solenoid valve, and Fig. 3 is a diagram of a conventional engine cooling water temperature control device. It is a schematic block diagram. 1... Engine block, 2... Cylinder head, 3... Radiator, 4... Outlet waterway, 5...
Introduction waterway, 6... Bypass waterway, 7, 9... Branch, 8... On-off valve (thermostat), 10...
Water pump, 11...Solenoid valve, 12...
...Control device, 13...Driving means, S...Water temperature sensor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] エンジン本体とラジエータとの間に冷却水が循
環可能に導出水路と導入水路で連結し、前記導出
水路と導入水路との間をバイパス水路で連結し、
前記導出水路の分岐部に開閉弁を設け、前記導入
水路の合流部にウオータポンプを設けたエンジン
冷却水の温度制御装置におい、前記バイパス水路
にバルブとそのバルブを開閉するバルブの駆動手
段とを設け、前記導出水路の分岐部上流側に温度
センサを設け、前記温度センサの検知温度に対応
して前記バルブの駆動手段を制御してバルブの開
度を制御する制御装置を設けたことを特徴とする
エンジン冷却水の温度制御装置。
The engine body and the radiator are connected by a lead-out waterway and an introduction waterway so that cooling water can circulate, and the lead-out waterway and the introduction waterway are connected by a bypass waterway,
In the engine cooling water temperature control device, an on-off valve is provided at a branch part of the outlet waterway, and a water pump is provided at a confluence part of the introduction waterway, and a valve and a valve driving means for opening and closing the valve are provided in the bypass waterway. A temperature sensor is provided on the upstream side of a branch part of the outlet waterway, and a control device is provided that controls the valve driving means in response to the temperature detected by the temperature sensor to control the opening degree of the valve. Engine cooling water temperature control device.
JP1986039850U 1986-03-20 1986-03-20 Expired JPH0422030Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986039850U JPH0422030Y2 (en) 1986-03-20 1986-03-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986039850U JPH0422030Y2 (en) 1986-03-20 1986-03-20

Publications (2)

Publication Number Publication Date
JPS62152020U JPS62152020U (en) 1987-09-26
JPH0422030Y2 true JPH0422030Y2 (en) 1992-05-20

Family

ID=30853407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986039850U Expired JPH0422030Y2 (en) 1986-03-20 1986-03-20

Country Status (1)

Country Link
JP (1) JPH0422030Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844491U (en) * 1971-09-29 1973-06-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844491U (en) * 1971-09-29 1973-06-09

Also Published As

Publication number Publication date
JPS62152020U (en) 1987-09-26

Similar Documents

Publication Publication Date Title
JP2712711B2 (en) Method and apparatus for cooling internal combustion engine
US6530347B2 (en) Cooling apparatus for liquid-cooled internal combustion engine
US20060162677A1 (en) Internal combustion engine coolant flow
JP2007107522A (en) Cooling system for combustion engine
JP3374715B2 (en) Cooling water circulation device for internal combustion engine
CN105697120A (en) Novel engine intelligent cooling system and control method based on split cooling and reversed cooling
JP2003172140A (en) Engine cooling system and method
US4513695A (en) Intercooler bypass return in an internal combustion engine
CA1143618A (en) Apparatus and method of heating cold engine
JPH0422030Y2 (en)
US4391407A (en) Vehicle cabin heater
JPH0341053Y2 (en)
JP2705389B2 (en) Engine cooling system
JPS5943967A (en) Water flow device for operation of heater in internal- combustion engine
JPH0347422A (en) Cooling method for internal combustion engine
JPH0730902Y2 (en) Engine cooling system
JPH1113471A (en) Engine cooling device
KR100227552B1 (en) Cooling device of forced circulation water cooling engine
JPH0326254Y2 (en)
JPS6320819Y2 (en)
JPS6121552Y2 (en)
JPH0324830Y2 (en)
JP2734695B2 (en) Internal combustion engine cooling system
JPS6319586Y2 (en)
US3937197A (en) Heating means for the intake system of a water-cooled combustion engine