[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04227925A - Production of polyoxyalkylene compound - Google Patents

Production of polyoxyalkylene compound

Info

Publication number
JPH04227925A
JPH04227925A JP13546091A JP13546091A JPH04227925A JP H04227925 A JPH04227925 A JP H04227925A JP 13546091 A JP13546091 A JP 13546091A JP 13546091 A JP13546091 A JP 13546091A JP H04227925 A JPH04227925 A JP H04227925A
Authority
JP
Japan
Prior art keywords
group
compound
alkylene oxide
initiator
organopolysiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13546091A
Other languages
Japanese (ja)
Other versions
JP3104756B2 (en
Inventor
Takashi Watabe
渡部 崇
Hiromitsu Takeyasu
弘光 武安
Shigeyuki Ozawa
小沢 茂幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP13546091A priority Critical patent/JP3104756B2/en
Publication of JPH04227925A publication Critical patent/JPH04227925A/en
Application granted granted Critical
Publication of JP3104756B2 publication Critical patent/JP3104756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyethers (AREA)
  • Silicon Polymers (AREA)

Abstract

PURPOSE:To obtain the title compound excellent in abrasion resistance, impact resistance, lubricity, water repellency, low-temperature properties, etc., by polymerizing an alkylene oxide through ring opening with an initiator having an organopolysiloxane as a basic skeleton in the presence of a specified catalyst. CONSTITUTION:A process for producing a polyoxyalkylene compound by polymerizing through ring opening an alkylene oxide with an initiator in the presence of a catalyst, wherein the initiator comprises an organopolysiloxane compound having an active hydrogen functional group reactive with the alkylene oxide [e.g. a compound of formula I or II (wherein X is 3-10 C hydrocarbyl having a functional group such as OH, SH or COOH which may have an ether bond or the like, R<1>, R<2>, R<3>, R<4>, R<5>, R<6> and R<7> are each 1-6 C hydrocarbyl; R<5> is 1-18 C hydrocarbyl ; and (n) is 0 or 1-200), and the catalyst comprises a compound metal cyanide complex (particularly desirably hexacyanocobalt zinc complex). Thus, a polyoxyalkylene compound having an organopolysiloxane skeleton can be obtained.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はオルガノポリシロキサン
残基を有するポリオキシアルキレン化合物の製造方法で
ある。 【0002】 【従来の技術】アルキレンオキシドが反応しうる活性水
素含有官能基を少なくとも1個有する開始剤にプロピレ
ンオキシドやエチレンオキシドのようなアルキレンオキ
シドを開環重合させて製造されるポリオキシアルキレン
化合物は、ポリウレタン工業で使用されるポリオール成
分や界面活性剤及びその原料等を初めとして工業的に有
用である。そのようなポリオキシアルキレン化合物は、
使用する開始剤により、多様な特徴を発現させることが
可能である。 【0003】開始剤としては水酸基を有する化合物が最
も一般的な化合物である。アルキレンオキシドを開環重
合させるための触媒としてはアルカリ金属水酸化物など
のアルカリ触媒が広く用いられている。アルカリ触媒は
、開始剤の水酸基やアルキレンオキシドが反応して新た
に生じる水酸基に反応してアルカリ金属アルコキシドと
なり、このアルカリ金属イオンが触媒として作用すると
考えられている。 【0004】オルガノポリシロキサンを基本骨格にもつ
開始剤にアルキレンオキシドを開環重合して得られるポ
リオキシアルキレン化合物は、各種原料、改質剤、添加
剤として使用でき、その用途において耐候、耐水性の向
上、タック低減、自己離型性向上などの特徴が期待され
る。しかしながら、オルガノポリシロキサンを基本骨格
にもつ開始剤のように疎水性が高い開始剤を使用した場
合、従来のアルカリ触媒は開始剤の活性水素含有官能基
にアルキレンオキシドが開環付加する反応が著しく不利
となる。 【0005】疎水性の高い開始剤にアルカリ触媒を添加
した場合、その開始剤とアルカリ触媒は容易に反応しな
い。そのため、開始剤の水酸基はアルカリ金属アルコキ
シドに変わりにくく、その水酸基にはアルキレンオキシ
ドが反応し難い。このため、アルカリ金属水酸化物など
のアルカリ触媒自体や存在する水が開始剤として働き易
くなり、疎水性の高い開始剤に結合していない形のポリ
オキシアルキレングリコールが副生してしまうというこ
とが起こる。また、アルカリ金属水酸化物の存在下、系
内を100 ℃以上の高温とするとオルガノポリシロキ
サンの分解反応が起こりやすいという問題もある。 【0006】 【発明が解決しようとする課題】本発明は、オルガノポ
リシロキサンを基本骨格にもつ開始剤にアルキレンオキ
シドを付加重合してポリオキシアルキレン化合物を製造
することを目的とするものである。 【0007】 【課題を解決するための手段】本発明は、オルガノポリ
シロキサンを基本骨格にもつ開始剤に複合金属シアン化
物錯体存在下アルキレンオキシドを開環重合してポリオ
キシアルキレン化合物を製造する方法に関する下記発明
である。 【0008】触媒存在下、開始剤にアルキレンオキシド
を開環重合させてポリオキシアルキレン化合物を製造す
る方法において、開始剤としてアルキレンオキシドが反
応しうる活性水素含有官能基を有するオルガノポリシロ
キサン化合物を使用し、触媒として複金属シアン化物錯
体を使用することを特徴とするポリオキシアルキレン化
合物の製造方法。 【0009】本発明における複合金属シアン化物錯体触
媒とは、2種以上の金属を含み、シアンイオンを一部又
は全部の配位子としてもつ錯体のことであり、アルキレ
ンオキシドの開環重合反応を触媒する能力のあるものを
いう。具体的には、例えば特公昭59−15336号公
報記載のヘキサシアノコバルト亜鉛−グライム錯体等の
ヘキサシアノコバルト亜鉛錯体、その他米国特許第 3
278457号、第 3278458号、第 3278
459号明細書等に記載されているような複合金属シア
ン化物錯体触媒がある。 【0010】この触媒はアルキレンオキシドの開環重合
に対し、高い触媒活性を示すことが知られている。しか
し従来、この触媒は、分子内にオルガノポリシロキサン
構造を有する疎水性の高い開始剤を用いてのアルキレン
オキシドの重合用の触媒としては知られていなかった。 【0011】本発明における複合金属シアン化物錯体は
、前記公知例に示されているように下記一般式(1) 
の構造を有すると考えられる。 M1a[ M2x (CN)y]b (H2 O)cR
d 【0012】ただし、M1 はZn(II)、Fe
(II)、Fe(III) 、Co(II)、Ni(I
I)、Al(III) 、Sr(II)、Mn(II)
、Cr(III) 、Cu(II)、Sn(II)、P
b(II)、Mo(IV)、Mo(VI)、W(IV)
、W(VI)などの金属イオンであり、M2 はFe(
II)、Fe(III) 、Co(II)、Co(II
I) 、Cr(II)、Cr(III) 、Mn(II
)、Mn(III) 、Ni(II)、V(IV)、V
(V) などの金属イオンであり、Rは有機配位子であ
る。a、b、xおよびyは金属の原子価と配位数により
変わる正の整数であり、cおよびdは金属の配位数によ
り変わる正の数である。 【0013】上記化学式で表わされる複合金属シアン化
物錯体において、M1 はZn(II)が好ましく、M
2 はFe(II)、Fe(III) 、Co(II)
,Co(III) などが好ましい。有機配位子として
は、例えばケトン、エーテル、アルデヒド、エステル、
アルコール、アミド、ニトリル、スルフィドなどがある
。 【0014】複合金属シアン化物錯体として特に好まし
いものは、ヘキサシアノコバルト亜鉛錯体である。また
、ヘキサシアノコバルト亜鉛錯体と他の複合金属シアン
化物錯体とを組み合わせた触媒も使用できる。組み合わ
せは、金属成分の組み合わせであっても、2種以上の触
媒の混合物であってもよい。 【0015】上記化学式で表わされる複合金属シアン化
物錯体は、金属塩M1 Ya ( M1、aは上述と同
様、YはM1 と塩を形成するアニオン) とポリシア
ノメタレート(塩)Ze[M2x (CN)y]f(M
2 、x、yは上述と同様。Zは水素、アルカリ金属、
アルカリ土類金属など。 e、fはZ、M2 の原子価と配位数により決まる正の
整数)のそれぞれの水溶液または水と有機溶剤の混合溶
媒の溶液を混合し、得られた複合金属シアン化物に有機
配位子Rを接触させた後、余分な溶媒および有機配位子
Rを除去することにより製造される。 【0016】ポリシアノメタレート(塩)Ze[M2x
 (CN)y]fは、Zには水素やアルカリ金属をはじ
めとする種々の金属を使用しうるが、リチウム塩、ナト
リウム塩、カリウム塩、マグネシウム塩、カルシウム塩
が好ましい。特に好ましくは通常のアルカリ金属塩、す
なわちナトリウム塩とカリウム塩である。金属塩として
は金属ハロゲン化物が好ましく、例えば塩化亜鉛等が適
当である。 【0017】本発明で開始剤として使用するアルキレン
オキシドが反応しうる活性水素含有官能基を有するオル
ガノポリシロキサン化合物は、分子内にアルキレンオキ
シドの重合開始点となる活性水素含有官能基を少なくと
も1個有するオルガノポリシロキサン化合物である。こ
の活性水素含有官能基は、水酸基、メルカプト基、1級
アミノ基、2級アミノ基、およびカルボキシル基等のア
ルキレンオキシドが反応しうる水素原子を1〜2個有す
る官能基である。 【0018】オルガノポリシロキサン化合物は、少なく
とも1個の有機基が結合したシロキサンの重合体であり
、その有機基の少なくとも1個が活性水素含有官能基を
有する有機基である。活性水素含有官能基を有する有機
基は分子の両末端の少なくともいずれかに存在してもよ
く、または分子鎖の中間に存在していてもよい。このオ
ルガノポリシロキサン化合物はオルガノジシロキサン化
合物などの低重合体であってもよい。重合単位の数の上
限は、特にはないが、500 、特に200 が好まし
い。 【0019】オルガノポリシロキサン化合物の両末端を
除くケイ素原子には2個の有機基が結合していることが
好ましい。活性水素含有官能基を有する有機基を除くこ
の有機基としては炭化水素基が好ましい。この炭化水素
基としてはアルキル基、アルケニル基、アリール基など
が好ましい。特に、炭素数4以下のアルキル基(以下低
級アルキル基ともいう)とフェニル基が好ましい。両末
端のケイ素原子には3個の有機基が結合していることが
好ましく、活性水素含有官能基を有する有機基を除くこ
の有機基としては上記のような炭化水素基が好ましい。 さらに3個の有機基の内の少なくとも1個は長鎖の炭化
水素基であってもよい。 【0020】活性水素含有官能基を有する有機基として
は、−OH,−SH,−NH2,−NHR4,−CO2
Hから選ばれる1種類以上の官能基を1又は複数個含む
炭素数3から10の炭化水素水素基が好ましい。また、
さらにエーテル結合、チオエーテル結合、アミノ結合等
の連結基を含んでいてもよい。特に、この有機基として
は活性水素含有官能基を1〜4個有することが好ましい
。また、オルガノポリシロキサン化合物としては、この
活性水素含有官能基を1〜10個有することが好ましい
。 【0021】具体的なこのオルガノポリシロキサン化合
物としては下記式(1) 〜(3) で表わされる化合
物が好ましい。 【0022】 【化4】 【0023】 【化5】 【0024】 【化6】 【0025】(式中Xは、−OH,−SH,−NH2,
−NHR10,−CO2H から選ばれる1種類以上の
官能基を1又は複数個含む炭素数3から10の炭化水素
基であり、エーテル結合、チオエーテル結合、アミノ結
合を含んでいてもよい。R1,R2,R3,R4,R6
,R7,R8,R10は各々同一あるいは異なる炭素数
1から6の炭化水素基である。R5, R9は炭素数1
から18の炭化水素基である。nは0あるいは1〜20
0 の整数、mは1〜10の整数である。) 【0026】R1とR2はそれぞれ低級アルキル基、特
にメチル基が好ましい。R3〜R10 はそれぞれ低級
アルキル基が好ましい。Xとしては、例えばヒドロキシ
アルキル基、ジヒドロキシアルキル基、ヒドロキシアル
コキシ置換アルキル基、メルカプトアルキル基、アミノ
アルキル基、N−アミノアルキル置換アミノアルキル基
、カルボキシアルキル基などが好ましい。 【0027】本発明における開環重合反応に使用できる
アルキレンオキシドは、複合金属シアン化物錯体触媒に
より重合できるものが全て挙げられる。具体的には、例
えばエチレンオキシド、プロピレンオキシド、1−ブテ
ンオキシド、2−ブテンオキシド、イゾブテンオキシド
、1−ヘキセンオキシド、シクロヘキセンオキシド、フ
ェニルグリシジルエーテル、アリルグリシジルエーテル
、スチレンオキシドなどがある。 【0028】特に好ましいアルキレンオキシドは、エチ
レンオキシド、プロピレンオキシド、1−ブテンオキシ
ド、2−ブテンオキシド、イソブテンオキシドなどの炭
素数2〜4のアルキレンオキシドである。アルキレンオ
キシドは2種以上併用することができ、その場合、2種
以上のアルキレンオキシドは混合して反応させることも
でき、別々に順次反応させることもできる。 【0029】実際の重合反応は、開始剤と複合金属シア
ン化物錯体とアルキレンオキシドの混合物を窒素雰囲気
下で、重合反応温度条件に加熱すればよい。この時、ア
ルキレンオキシドは一括して添加しても、また、反応の
進行を確認しながら少しずつ添加してもよい。また、前
記のように2種以上のアルキレンオキシドを重合する場
合、その添加方法によりブロック共重合体やランダム共
重合体も自由に製造できる。すなわち、2種以上のアル
キレンオキシドの混合物を添加すればランダム共重合体
が、また、2種以上のアルキレンオキシドを1種類ずつ
各々の重合反応が終了した後、別のアルキレンオキシド
を加える様にすればブロック共重合体が製造できる。 【0030】重合反応温度は20〜180 ℃が適当で
あり、好ましくは60℃から 130℃が採用される。 この重合反応は、溶媒を使用しても使用しなくても可能
である。溶媒を使用した場合、溶媒は、反応終了後反応
混合物から留去することにより回収できる。 【0031】本発明で使用できる溶媒としてはエーテル
系、炭化水素系、ハロゲン化炭化水素系、ケトン系、ア
ミド系、エステル系の溶媒が挙げられるが、特にエーテ
ル系、ケトン系の溶媒が好ましい。具体的には、テトラ
ヒドロフラン、ジエチルエーテル、1,2−ジメトキシ
エタン、1,2−ジメトキシプロパン、ジエチレングリ
コールジメチルエーテル、メチルテトラヒドロフラン、
ジオキサン、アセトン、メチルエチルケトンなどが挙げ
られる。 【0032】本発明においては、複合金属シアン化物錯
体触媒が、活性水素含有官能基に配位しやすいため、従
来のアルカリ金属水酸化物を触媒として用いるアルキレ
ンオキシドの開環重合では困難な、高い疎水性をもつオ
ルガノポリシロキサン構造を分子内に有する開始剤を使
用する場合でも容易にアルキレンオキシドの重合が行な
えると考えられる。また、本発明における複合金属シア
ン化物錯体触媒ではオルガノポリシロキサンの分解反応
は起こらない。 【0033】 【実施例】以下実施例により本発明を具体的に説明する
が本発明はこれら実施例に限定されるものではない。 【0034】[実施例1]下記式(4)で表わされる分
子量約1800のα,ω−ビス[3−(2−ヒドロキシ
エトキシ)プロピル]ポリジメチルシロキサン 500
gとヘキサシアノコバルト亜鉛−グライム錯体0.1g
をオートクレーブに入れ、窒素雰囲気下、内温を 10
0℃に加熱し、プロピレンオキシド1.5kg を内温
が 120℃を超えないように導入しながら反応させた
。プロピレンオキシド導入完了後さらに同温度で1時間
撹拌したのち未反応モノマーを減圧下留去し、やや白濁
した油状物2.5kgを得た。 【0035】生成物はGPC分析で原料のポリジメチル
シロキサンと異なる単一ピークを示し、その水酸基価は
12.9mgKOH/g であった。得られた油状物は
25℃で3ケ月保存後も分離を生じなかった。 【0036】 【化7】 【0037】[実施例2]1−(3− メルカプトプロ
ピル)−1,1,3,3,3− ペンタメチルジシロキ
サン25gをテトラヒドロフン25gに溶かし、ヘキサ
シアノコバルト亜鉛−グライム錯体0.05g を添加
し、オートクレーブに入れた。 さらにプロピレンオキシド50gを加え、窒素雰囲気下
 100℃に加熱したところ発熱反応を起こした。発熱
終了後さらに30分間100 ℃に加熱してから、減圧
下未反応モノマーを脱気し、油状物74.8g を得た
。生成物はGPC分析で単一ピークを示した。 【0038】[実施例3]平均分子量 876のα,ω
−ビス(3−メルトカプトプロピル)−ポリジメチルシ
ロキサン 100gとテトラヒドフラン 100gの混
合物にヘキサシアノコバルト亜鉛−グライム錯体0.0
2g を加え、オートクレーブ中で、窒素雰囲気下10
0 ℃に加熱した。オートクレーブにプロピレンオキシ
ド 300g とエチレンオキシド 100gの混合物
を内温が 120℃を超えないように少しずつ導入した
。モノマー導入終了後さらに1時間加熱してから減圧下
溶媒を留去し、油状物 498g を得た。 【0039】生成物のGPC分析は単一ピークを示し、
水酸基価は26.5mgKOH/g であった。得られ
た油状物は25℃で3ケ月保存後も分離を生じなかった
。 【0040】[実施例4]平均分子量 800のα,ω
−ビス(3−アミノプロピル)−ポリジメチルシロキサ
ン25gとプロピレンオキシド5gの混合物をオートク
レーブ中 120℃で2時間加熱した。未反応モノマー
を脱気し室温に冷却後、ヘキサシアノコバルト亜鉛−グ
ライム錯体0.01gとテトラヒドロフラン50gを加
え、窒素雰囲気下プロピレンオキシド50gを内温が 
120℃を超えないように少しずつ導入した。モノマー
導入終了後さらに1時間加熱してから減圧下溶媒と未反
応モノマーを留去し、油状物75.1g を得た。生成
物のGPC分析は単一ピークを示し、水酸基価は95.
0mgKOH/g であった。 【0041】[実施例5]下記式(5)で表わされる平
均分子量2000のα−メチル−ω−3−(2,2−ビ
ス(ヒドロキシメチル)ブトキシ)プロピルポリジメチ
ルシロキサン50gとヘキサシアノコバルト亜鉛−グラ
イム錯体0.02g をオートクレーブに入れ、窒素雰
囲気下 100℃に加熱した。プロピレンオキシド 1
00g と1−ブテンオキシド30gの混合物を内温が
 120℃を超えないように少しずつ導入し反応させた
。アルキレンオキシド導入終了後さらに同温度で1時間
加熱し、未反応モノマーを脱気し油状物 180g を
得た。 【0042】生成物のGPC分析は単一ピークを示し、
水酸基価は14.5mgKOH/g であった。得られ
た油状物は25℃で3ケ月保存後も分離を生じなかった
。 【0043】 【化8】 【0044】[実施例6]下記式(6)で表わされる、
分子量5000、水酸基価27mgKOH/g のα,
ω−ビスメチルポリジメチルシリルオキシ−ポリメチル
−3−(2−ヒドロキシエトキシ)プロピルシロキサン
50gとヘキサシアノコバルト亜鉛−グライム錯体0.
02g をオートクレーブに入れ、窒素雰囲気下 10
0℃に加熱した。プロピレンオキシド150gを内温が
 120℃を超えないように少しずつ導入し反応させた
。プロピレンオキシド導入終了後さらに同温度で1時間
加熱し、未反応モノマーを脱気し、油状物200gを得
た。 【0045】生成物のGPC分析は単一ピークを示し、
水酸基価は7.0mgKOH/gであった。得られた油
状物は25℃で3ケ月保存後も分離を生じなかった。 【0046】 【化9】 【0047】 【発明の効果】本発明によって従来のアルカリ触媒では
製造が困難であったオルガノポリシロキサン骨格を有す
るポリオキシアルキレン化合物の製造が可能となった。 特に、は、耐摩耗性、潤滑性、撥水性等の界面特性や、
耐衝撃性、低温特性等の機械特性に優れることが期待で
き、エラストマー、シーリング剤、フォームの原料や、
樹脂の改質剤としての利用が考えられる。
DETAILED DESCRIPTION OF THE INVENTION [0001] The present invention is a method for producing polyoxyalkylene compounds having organopolysiloxane residues. [0002] A polyoxyalkylene compound is produced by ring-opening polymerization of an alkylene oxide such as propylene oxide or ethylene oxide with an initiator having at least one active hydrogen-containing functional group with which the alkylene oxide can react. It is industrially useful as a polyol component, a surfactant, and its raw material used in the polyurethane industry. Such polyoxyalkylene compounds are
Depending on the initiator used, it is possible to develop various characteristics. The most common initiator is a compound having a hydroxyl group. Alkali catalysts such as alkali metal hydroxides are widely used as catalysts for ring-opening polymerization of alkylene oxides. In the alkali catalyst, the hydroxyl group or alkylene oxide of the initiator reacts with the hydroxyl group newly generated to form an alkali metal alkoxide, and this alkali metal ion is thought to act as a catalyst. [0004] Polyoxyalkylene compounds obtained by ring-opening polymerization of alkylene oxide with an initiator having an organopolysiloxane as a basic skeleton can be used as various raw materials, modifiers, and additives, and have excellent weather resistance and water resistance in their uses. It is expected to have features such as improvement in hardness, reduced tack, and improved self-releasing properties. However, when a highly hydrophobic initiator such as an initiator with an organopolysiloxane as its basic skeleton is used, conventional alkaline catalysts exhibit a significant ring-opening addition reaction of alkylene oxide to the active hydrogen-containing functional group of the initiator. It will be disadvantageous. [0005] When an alkali catalyst is added to a highly hydrophobic initiator, the initiator and the alkali catalyst do not easily react. Therefore, the hydroxyl group of the initiator is difficult to convert into an alkali metal alkoxide, and the alkylene oxide is difficult to react with the hydroxyl group. For this reason, the alkali catalyst itself such as alkali metal hydroxide and the existing water tend to act as initiators, and polyoxyalkylene glycol that is not bonded to the highly hydrophobic initiator is produced as a by-product. happens. Another problem is that if the temperature inside the system is raised to a high temperature of 100° C. or higher in the presence of an alkali metal hydroxide, the decomposition reaction of the organopolysiloxane is likely to occur. SUMMARY OF THE INVENTION The object of the present invention is to produce a polyoxyalkylene compound by addition polymerizing an alkylene oxide to an initiator having an organopolysiloxane as its basic skeleton. [Means for Solving the Problems] The present invention provides a method for producing a polyoxyalkylene compound by ring-opening polymerization of an alkylene oxide using an initiator having an organopolysiloxane as a basic skeleton in the presence of a composite metal cyanide complex. The following invention relates to [0008] In a method for producing a polyoxyalkylene compound by ring-opening polymerization of an alkylene oxide to an initiator in the presence of a catalyst, an organopolysiloxane compound having an active hydrogen-containing functional group with which the alkylene oxide can react is used as an initiator. and a method for producing a polyoxyalkylene compound, characterized in that a double metal cyanide complex is used as a catalyst. [0009] The multimetal cyanide complex catalyst in the present invention refers to a complex containing two or more metals and having cyanide ions as part or all of the ligands, and is capable of controlling the ring-opening polymerization reaction of alkylene oxide. A substance that has the ability to catalyze. Specifically, for example, hexacyanocobalt zinc complexes such as the hexacyanocobalt zinc-glyme complex described in Japanese Patent Publication No. 59-15336, and other hexacyanocobalt zinc complexes described in U.S. Patent No. 3
No. 278457, No. 3278458, No. 3278
There are multimetal cyanide complex catalysts as described in No. 459 and the like. This catalyst is known to exhibit high catalytic activity for ring-opening polymerization of alkylene oxides. However, until now, this catalyst has not been known as a catalyst for polymerization of alkylene oxide using a highly hydrophobic initiator having an organopolysiloxane structure in the molecule. [0011] The multimetal cyanide complex in the present invention has the following general formula (1) as shown in the above-mentioned known examples.
It is thought to have the following structure. M1a[ M2x (CN)y]b (H2O)cR
d [0012] However, M1 is Zn(II), Fe
(II), Fe(III), Co(II), Ni(I
I), Al(III), Sr(II), Mn(II)
, Cr(III), Cu(II), Sn(II), P
b(II), Mo(IV), Mo(VI), W(IV)
, W(VI), etc., and M2 is Fe(
II), Fe(III), Co(II), Co(II
I), Cr(II), Cr(III), Mn(II
), Mn(III), Ni(II), V(IV), V
(V) is a metal ion such as, and R is an organic ligand. a, b, x and y are positive integers that vary depending on the valence and coordination number of the metal, and c and d are positive numbers that vary depending on the coordination number of the metal. In the multimetal cyanide complex represented by the above chemical formula, M1 is preferably Zn(II);
2 is Fe(II), Fe(III), Co(II)
, Co(III), etc. are preferred. Examples of organic ligands include ketones, ethers, aldehydes, esters,
These include alcohols, amides, nitriles, and sulfides. Particularly preferred as the multimetal cyanide complex is a zinc hexacyanocobalt complex. Further, a catalyst comprising a combination of a hexacyanocobalt zinc complex and another complex metal cyanide complex can also be used. The combination may be a combination of metal components or a mixture of two or more types of catalysts. The composite metal cyanide complex represented by the above chemical formula is composed of a metal salt M1 Ya (M1, a is the same as above, Y is an anion that forms a salt with M1) and a polycyanometalate (salt) Ze[M2x ( CN)y]f(M
2, x, y are the same as above. Z is hydrogen, alkali metal,
alkaline earth metals, etc. (e, f are positive integers determined by the valence and coordination number of Z and M2) or a solution of a mixed solvent of water and an organic solvent are mixed, and an organic ligand is added to the obtained composite metal cyanide. It is produced by contacting R and then removing excess solvent and organic ligand R. Polycyanometalate (salt) Ze[M2x
In (CN)y]f, various metals including hydrogen and alkali metals can be used for Z, but lithium salts, sodium salts, potassium salts, magnesium salts, and calcium salts are preferable. Particular preference is given to the customary alkali metal salts, ie the sodium and potassium salts. As the metal salt, metal halides are preferred, and zinc chloride and the like are suitable, for example. The organopolysiloxane compound having an active hydrogen-containing functional group with which the alkylene oxide can react, which is used as an initiator in the present invention, has at least one active hydrogen-containing functional group in the molecule that serves as a polymerization initiation point for the alkylene oxide. It is an organopolysiloxane compound with The active hydrogen-containing functional group is a functional group having 1 to 2 hydrogen atoms with which an alkylene oxide can react, such as a hydroxyl group, a mercapto group, a primary amino group, a secondary amino group, and a carboxyl group. The organopolysiloxane compound is a polymer of siloxane to which at least one organic group is bonded, and at least one of the organic groups is an organic group having an active hydrogen-containing functional group. The organic group having an active hydrogen-containing functional group may be present at at least one of both ends of the molecule, or may be present in the middle of the molecular chain. This organopolysiloxane compound may be a low polymer such as an organodisiloxane compound. There is no particular upper limit to the number of polymerized units, but 500, particularly 200, is preferred. It is preferable that two organic groups are bonded to silicon atoms other than both ends of the organopolysiloxane compound. This organic group other than the organic group having an active hydrogen-containing functional group is preferably a hydrocarbon group. Preferred examples of the hydrocarbon group include an alkyl group, an alkenyl group, and an aryl group. Particularly preferred are alkyl groups having 4 or less carbon atoms (hereinafter also referred to as lower alkyl groups) and phenyl groups. It is preferable that three organic groups are bonded to the silicon atoms at both ends, and the above-mentioned hydrocarbon groups are preferable as the organic groups excluding the organic group having an active hydrogen-containing functional group. Furthermore, at least one of the three organic groups may be a long-chain hydrocarbon group. Examples of the organic group having an active hydrogen-containing functional group include -OH, -SH, -NH2, -NHR4, -CO2
A hydrocarbon group having 3 to 10 carbon atoms and containing one or more functional groups of one or more types selected from H is preferred. Also,
Furthermore, it may contain a linking group such as an ether bond, a thioether bond, or an amino bond. In particular, it is preferable that the organic group has 1 to 4 active hydrogen-containing functional groups. Moreover, it is preferable that the organopolysiloxane compound has 1 to 10 active hydrogen-containing functional groups. As specific organopolysiloxane compounds, compounds represented by the following formulas (1) to (3) are preferred. [Formula 4] [Formula 4] [Formula 4] [Formula 6] [Formula X is -OH, -SH, -NH2,
It is a hydrocarbon group having 3 to 10 carbon atoms and containing one or more functional groups of one or more types selected from -NHR10 and -CO2H, and may include an ether bond, a thioether bond, and an amino bond. R1, R2, R3, R4, R6
, R7, R8 and R10 are each the same or different hydrocarbon groups having 1 to 6 carbon atoms. R5 and R9 have 1 carbon number
18 hydrocarbon groups. n is 0 or 1 to 20
0 is an integer, m is an integer from 1 to 10. ) R1 and R2 are each preferably a lower alkyl group, particularly a methyl group. Each of R3 to R10 is preferably a lower alkyl group. As X, for example, a hydroxyalkyl group, a dihydroxyalkyl group, a hydroxyalkoxy-substituted alkyl group, a mercaptoalkyl group, an aminoalkyl group, an N-aminoalkyl-substituted aminoalkyl group, a carboxyalkyl group, etc. are preferable. The alkylene oxides that can be used in the ring-opening polymerization reaction of the present invention include all alkylene oxides that can be polymerized using a multimetal cyanide complex catalyst. Specific examples include ethylene oxide, propylene oxide, 1-butene oxide, 2-butene oxide, isobutene oxide, 1-hexene oxide, cyclohexene oxide, phenyl glycidyl ether, allyl glycidyl ether, and styrene oxide. Particularly preferred alkylene oxides are those having 2 to 4 carbon atoms, such as ethylene oxide, propylene oxide, 1-butene oxide, 2-butene oxide, and isobutene oxide. Two or more alkylene oxides can be used in combination, and in that case, the two or more alkylene oxides can be mixed and reacted, or can be reacted separately and sequentially. In the actual polymerization reaction, a mixture of an initiator, a multimetal cyanide complex, and an alkylene oxide may be heated under nitrogen atmosphere to the polymerization reaction temperature conditions. At this time, the alkylene oxide may be added all at once, or may be added little by little while checking the progress of the reaction. Furthermore, when two or more alkylene oxides are polymerized as described above, block copolymers and random copolymers can also be freely produced depending on the method of addition. In other words, a random copolymer can be obtained by adding a mixture of two or more alkylene oxides, or a random copolymer can be produced by adding a mixture of two or more alkylene oxides, one by one, after the polymerization reaction of each type is completed. block copolymers can be produced. The polymerization reaction temperature is suitably 20 to 180°C, preferably 60 to 130°C. This polymerization reaction can be carried out with or without a solvent. When a solvent is used, the solvent can be recovered by distilling it off from the reaction mixture after the reaction is complete. Solvents that can be used in the present invention include ether, hydrocarbon, halogenated hydrocarbon, ketone, amide, and ester solvents, with ether and ketone solvents being particularly preferred. Specifically, tetrahydrofuran, diethyl ether, 1,2-dimethoxyethane, 1,2-dimethoxypropane, diethylene glycol dimethyl ether, methyltetrahydrofuran,
Examples include dioxane, acetone, and methyl ethyl ketone. In the present invention, since the multimetal cyanide complex catalyst easily coordinates with active hydrogen-containing functional groups, it is possible to achieve high It is believed that alkylene oxide can be easily polymerized even when an initiator having a hydrophobic organopolysiloxane structure in the molecule is used. Moreover, the decomposition reaction of organopolysiloxane does not occur in the multimetal cyanide complex catalyst of the present invention. [Examples] The present invention will be explained in detail with reference to Examples below, but the present invention is not limited to these Examples. [Example 1] α,ω-bis[3-(2-hydroxyethoxy)propyl]polydimethylsiloxane having a molecular weight of about 1800 and represented by the following formula (4) 500
g and hexacyanocobalt zinc-glyme complex 0.1 g
was placed in an autoclave under a nitrogen atmosphere, and the internal temperature was increased to 10
The reactor was heated to 0°C and reacted while introducing 1.5 kg of propylene oxide so that the internal temperature did not exceed 120°C. After the introduction of propylene oxide was completed, the mixture was further stirred at the same temperature for 1 hour, and unreacted monomers were distilled off under reduced pressure to obtain 2.5 kg of a slightly cloudy oil. The product showed a single peak different from that of the raw material polydimethylsiloxane in GPC analysis, and its hydroxyl value was 12.9 mgKOH/g. The resulting oil did not separate even after storage at 25°C for 3 months. [Example 2] 25 g of 1-(3-mercaptopropyl)-1,1,3,3,3-pentamethyldisiloxane was dissolved in 25 g of tetrahydrofurne, and zinc hexacyanocobalt- 0.05 g of glyme complex was added and placed in an autoclave. Furthermore, when 50 g of propylene oxide was added and heated to 100° C. under a nitrogen atmosphere, an exothermic reaction occurred. After the exotherm had ended, the mixture was further heated to 100° C. for 30 minutes, and unreacted monomers were degassed under reduced pressure to obtain 74.8 g of an oily substance. The product showed a single peak in GPC analysis. [Example 3] α, ω of average molecular weight 876
-0.0 g of hexacyanocobalt zinc-glyme complex in a mixture of 100 g of -bis(3-meltocaptopropyl)-polydimethylsiloxane and 100 g of tetrahydrofuran.
2g was added and heated in an autoclave under a nitrogen atmosphere for 10 minutes.
Heated to 0°C. A mixture of 300 g of propylene oxide and 100 g of ethylene oxide was gradually introduced into the autoclave so that the internal temperature did not exceed 120°C. After the monomer introduction was completed, the mixture was further heated for 1 hour, and then the solvent was distilled off under reduced pressure to obtain 498 g of an oily substance. GPC analysis of the product showed a single peak;
The hydroxyl value was 26.5 mgKOH/g. The resulting oil did not separate even after storage at 25°C for 3 months. [Example 4] α, ω of average molecular weight 800
A mixture of 25 g of -bis(3-aminopropyl)-polydimethylsiloxane and 5 g of propylene oxide was heated in an autoclave at 120 DEG C. for 2 hours. After degassing unreacted monomers and cooling to room temperature, 0.01 g of hexacyanocobalt zinc-glyme complex and 50 g of tetrahydrofuran were added, and 50 g of propylene oxide was heated under a nitrogen atmosphere until the internal temperature was reached.
The mixture was introduced little by little so as not to exceed 120°C. After the monomer introduction was completed, the mixture was further heated for 1 hour, and then the solvent and unreacted monomers were distilled off under reduced pressure to obtain 75.1 g of an oily substance. GPC analysis of the product showed a single peak, and the hydroxyl value was 95.
It was 0mgKOH/g. [Example 5] 50 g of α-methyl-ω-3-(2,2-bis(hydroxymethyl)butoxy)propyl polydimethylsiloxane having an average molecular weight of 2000 and represented by the following formula (5) and hexacyanocobalt zinc- 0.02 g of glyme complex was placed in an autoclave and heated to 100°C under a nitrogen atmosphere. Propylene oxide 1
A mixture of 00 g and 30 g of 1-butene oxide was introduced little by little and reacted so that the internal temperature did not exceed 120°C. After the alkylene oxide was introduced, the mixture was further heated at the same temperature for 1 hour to remove unreacted monomers and obtain 180 g of an oily substance. GPC analysis of the product showed a single peak;
The hydroxyl value was 14.5 mgKOH/g. The resulting oil did not separate even after storage at 25°C for 3 months. [Example 6] Represented by the following formula (6),
α of molecular weight 5000, hydroxyl value 27mgKOH/g,
50 g of ω-bismethylpolydimethylsilyloxy-polymethyl-3-(2-hydroxyethoxy)propylsiloxane and 0.0 g of hexacyanocobalt zinc-glyme complex.
02g into an autoclave and under nitrogen atmosphere 10
Heated to 0°C. 150 g of propylene oxide was gradually introduced and reacted so that the internal temperature did not exceed 120°C. After the introduction of propylene oxide was completed, the mixture was further heated at the same temperature for 1 hour to remove unreacted monomers and obtain 200 g of an oily substance. GPC analysis of the product showed a single peak;
The hydroxyl value was 7.0 mgKOH/g. The resulting oil did not separate even after storage at 25° C. for 3 months. EFFECT OF THE INVENTION The present invention has made it possible to produce a polyoxyalkylene compound having an organopolysiloxane skeleton, which has been difficult to produce using conventional alkali catalysts. In particular, the interfacial properties such as wear resistance, lubricity, and water repellency,
It is expected to have excellent mechanical properties such as impact resistance and low-temperature properties, and can be used as a raw material for elastomers, sealants, foams, etc.
It can be considered to be used as a modifier for resins.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】触媒存在下、開始剤にアルキレンオキシド
を開環重合させてポリオキシアルキレン化合物を製造す
る方法において、開始剤としてアルキレンオキシドが反
応しうる活性水素含有官能基を有するオルガノポリシロ
キサン化合物を使用し、触媒として複金属シアン化物錯
体を使用することを特徴とするポリオキシアルキレン化
合物の製造方法。
Claim 1: An organopolysiloxane compound having an active hydrogen-containing functional group with which an alkylene oxide can react as an initiator in a method for producing a polyoxyalkylene compound by ring-opening polymerization of an alkylene oxide to an initiator in the presence of a catalyst. and a double metal cyanide complex as a catalyst.
【請求項2】活性水素含有官能基が、水酸基、メルカプ
ト基、1級アミノ基、2級アミノ基、およびカルボキシ
ル基から選ばれる官能基である、請求項1の製造方法。
2. The method according to claim 1, wherein the active hydrogen-containing functional group is a functional group selected from a hydroxyl group, a mercapto group, a primary amino group, a secondary amino group, and a carboxyl group.
【請求項3】オルガノポリシロキサン化合物が、下記化
学式(1)〜(3)で表される化合物の少なくとも1種
である、請求項1の製造方法。 【化1】 【化2】 【化3】 (式中Xは、−OH,−SH,−NH2,−NHR10
,−CO2Hから選ばれる1種類以上の官能基を1又は
複数個含む炭素数3から10の炭化水素基であり、エー
テル結合、チオエーテル結合、アミノ結合を含んでいて
もよい。R1,R2,R3,R4,R6,R7,R8,
R10は各々同一あるいは異なる炭素数1から6の炭化
水素基である。R5, R9は炭素数1から18の炭化
水素基である。nは0あるいは1〜200 の整数、m
は1〜10の整数である。)
3. The manufacturing method according to claim 1, wherein the organopolysiloxane compound is at least one compound represented by the following chemical formulas (1) to (3). [Chemical 1] [Chemical 2] [Chemical 3] (In the formula, X is -OH, -SH, -NH2, -NHR10
, -CO2H, and may contain an ether bond, a thioether bond, or an amino bond. R1, R2, R3, R4, R6, R7, R8,
R10's are each the same or different hydrocarbon group having 1 to 6 carbon atoms. R5 and R9 are hydrocarbon groups having 1 to 18 carbon atoms. n is 0 or an integer from 1 to 200, m
is an integer from 1 to 10. )
【請求項4】オルガノポリシロキサン化合物が、R1,
R2 がいずれもメチル基であるポリジメチルシロキサ
ン系化合物である、請求項3の製造方法。
4. The organopolysiloxane compound comprises R1,
4. The manufacturing method according to claim 3, wherein the polydimethylsiloxane compound is a polydimethylsiloxane compound in which each R2 is a methyl group.
【請求項5】Xが、ヒドロキシアルキル基、ジヒドロキ
シアルキル基、ヒドロキシアルコキシ置換アルキル基、
メルカプトアルキル基、アミノアルキル基、N−アミノ
アルキル置換アルキル基、あるいはカルボキシアルキル
基である、請求項3の製造方法。
5. X is a hydroxyalkyl group, a dihydroxyalkyl group, a hydroxyalkoxy-substituted alkyl group,
4. The production method according to claim 3, which is a mercaptoalkyl group, an aminoalkyl group, an N-aminoalkyl-substituted alkyl group, or a carboxyalkyl group.
【請求項6】アルキレンオキシドが、炭素数2〜4のア
ルキレンオキシドである、請求項1の製造方法。
6. The manufacturing method according to claim 1, wherein the alkylene oxide is an alkylene oxide having 2 to 4 carbon atoms.
JP13546091A 1990-05-11 1991-05-10 Method for producing polyoxyalkylene compound Expired - Fee Related JP3104756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13546091A JP3104756B2 (en) 1990-05-11 1991-05-10 Method for producing polyoxyalkylene compound

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP12011290 1990-05-11
JP2-120112 1990-05-11
JP13546091A JP3104756B2 (en) 1990-05-11 1991-05-10 Method for producing polyoxyalkylene compound

Publications (2)

Publication Number Publication Date
JPH04227925A true JPH04227925A (en) 1992-08-18
JP3104756B2 JP3104756B2 (en) 2000-10-30

Family

ID=26457739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13546091A Expired - Fee Related JP3104756B2 (en) 1990-05-11 1991-05-10 Method for producing polyoxyalkylene compound

Country Status (1)

Country Link
JP (1) JP3104756B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096192A (en) * 2001-09-20 2003-04-03 Nippon Unicar Co Ltd Polyoxyalkylene-modified polysiloxane of high purity and its production method
JP2008174749A (en) * 2007-01-17 2008-07-31 Bayer Material Science Llc Polyether-polysiloxane polyol
JP2009138192A (en) * 2007-11-28 2009-06-25 Evonik Goldschmidt Gmbh Method for producing polyether alcohol in the presence of dmc catalyst by using si-h-containing compound as additive
JP2010018799A (en) * 2008-06-27 2010-01-28 Evonik Goldschmidt Gmbh NOVEL POLYETHER SILOXANE-CONTAINING ALKOXYLATED PRODUCT BY DIRECT ALKOXYLATION OF ORGANICALLY MODIFIED alpha,omega-DIHYDROXY SILOXANE IN THE PRESENCE OF DOUBLE METAL CYANIDE (DMC) CATALYST, AND PROCESS FOR PRODUCING THE SAME
JP2021522382A (en) * 2018-04-25 2021-08-30 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Process for preparing hydroxyl-functionalized polyether polysiloxane block copolymers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3829505A (en) 1970-02-24 1974-08-13 Gen Tire & Rubber Co Polyethers and method for making the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096192A (en) * 2001-09-20 2003-04-03 Nippon Unicar Co Ltd Polyoxyalkylene-modified polysiloxane of high purity and its production method
JP2008174749A (en) * 2007-01-17 2008-07-31 Bayer Material Science Llc Polyether-polysiloxane polyol
KR101468220B1 (en) * 2007-01-17 2014-12-03 바이엘 머티리얼싸이언스 엘엘씨 Polyether-polysiloxane polyols
JP2009138192A (en) * 2007-11-28 2009-06-25 Evonik Goldschmidt Gmbh Method for producing polyether alcohol in the presence of dmc catalyst by using si-h-containing compound as additive
JP2010018799A (en) * 2008-06-27 2010-01-28 Evonik Goldschmidt Gmbh NOVEL POLYETHER SILOXANE-CONTAINING ALKOXYLATED PRODUCT BY DIRECT ALKOXYLATION OF ORGANICALLY MODIFIED alpha,omega-DIHYDROXY SILOXANE IN THE PRESENCE OF DOUBLE METAL CYANIDE (DMC) CATALYST, AND PROCESS FOR PRODUCING THE SAME
JP2021522382A (en) * 2018-04-25 2021-08-30 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Process for preparing hydroxyl-functionalized polyether polysiloxane block copolymers

Also Published As

Publication number Publication date
JP3104756B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
EP0485637B1 (en) Process for producing polyoxyalkylene compound
US5032671A (en) Preparation of lactone polymers using double metal cyanide catalysts
US5652329A (en) Polyurethane foam-supported double metal cyanide catalysts for polyether polyol synthesis
JP2858947B2 (en) Lactone polymerization of yttrium and rare earth catalysts.
JPS61218632A (en) Polyalkylene oxide having unsaturated group at molecular end and narrow molecular weight distribution
JPH0613604B2 (en) Process for producing polyalkylene oxide containing unsaturated group at molecular end
JPH0372527A (en) Manufacture of polyalkylene oxide derivative
HU221060B1 (en) Polyether-containing, improved double metal cyanide catalysts, process for producing thereof and process for producing epoxid polymer in present of said catalists
JP5698344B2 (en) Poly (alkylene carbonate) and various polymer block or graft copolymers
US7101823B2 (en) Method for preparing metal cyanide catalyst complexes using partially miscible complexing agents
JP2007211082A (en) Method for producing polyoxymethylene-polyoxyalkylene block copolymer
EP2152778B1 (en) Highly active catalysts for alkylene oxide polymerization
US5426081A (en) Polyurethane foam-supported double metal cyanide catalysts for polyol synthesis
KR101909320B1 (en) Process for making polyether alcohols having oxyethylene units by polymerization of ethylene carbonate in the presence of double metal cyanide catalysts
EP1340780A1 (en) Metal catalyst for ring-opening polymerization of heterocyclic compound
JPH04227925A (en) Production of polyoxyalkylene compound
JP5624324B2 (en) Process for producing polyalkylene oxide
JP2019519650A (en) Process for producing polyether diol
JP3068890B2 (en) Method for producing polyethers
CN111925508B (en) Preparation method of polycaprolactone and product thereof
JP2999789B2 (en) Method for producing polyethers
EP1751212A1 (en) Process for the preparation of polyether polyols
JP3134877B2 (en) Method for producing fluorinated hydrocarbon group-containing polyoxyalkylene polymer
JPH0459825A (en) Production of polyether
US3311570A (en) Polymers and copolymers of 1, 1, 1-trihalo-3, 4-epoxybutanes

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070901

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees