[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04224044A - Production of high strength mold for precision casting - Google Patents

Production of high strength mold for precision casting

Info

Publication number
JPH04224044A
JPH04224044A JP2405916A JP40591690A JPH04224044A JP H04224044 A JPH04224044 A JP H04224044A JP 2405916 A JP2405916 A JP 2405916A JP 40591690 A JP40591690 A JP 40591690A JP H04224044 A JPH04224044 A JP H04224044A
Authority
JP
Japan
Prior art keywords
mold
slurry
precision casting
filler
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2405916A
Other languages
Japanese (ja)
Inventor
Katsumi Iijima
飯島 活巳
Tadami Ishida
忠美 石田
Akira Yoshinari
明 吉成
Minoru Morikawa
穣 森川
Hideyo Kodama
英世 児玉
Katsuo Wada
和田 克夫
Hiroyuki Matsuzaki
裕之 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi Ltd
Original Assignee
Tohoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Hitachi Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2405916A priority Critical patent/JPH04224044A/en
Publication of JPH04224044A publication Critical patent/JPH04224044A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To provide a mold improving high temp. creep strength and having a little high temp. deformation by blending binder to filler having the specific grain distribution to form slurry, alternately coating this slurry and fine grain refractory on surface of a pattern and sintering. CONSTITUTION:The above filler is composed of Al2O3 grains having grain diameter in the range of 0.5-40mum and this grain distribution satisfies the equation. This filler is blended into the binder of a colloidal silica at 60 to 90% ratio to form above slurry. This slurry and the fine grain refractory are alternately coated on the surface of pattern and sintered. The filler contains at least one kind among TiO2, MgO, ZrO2, etc., and the grain size distribution is satisfied as the above. The fine grain refractory is composed of at least one kind of Al2O3, TiO3, MgO, etc. By this method, as the mold improving the high temp. creep strength and having a little high temp. deformation is provided, unidirectional solidifying allay and single alloy are cast by using this mold.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、超耐熱合金により形成
される精密鋳造品、特に一方向凝固合金あるいは単結晶
合金を製造するのに好適な精密鋳造用高強度鋳型の製造
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high-strength precision casting mold suitable for manufacturing precision castings made of super heat-resistant alloys, particularly directionally solidified alloys or single crystal alloys.

【0002】0002

【従来の技術】従来、ガスタービン用初段動翼は、クリ
ープ強度等の高温強度に優れた超耐熱合金よりなる精密
鋳造品が適用されていた。その鋳型は、鋳込み温度及び
時間がそれぞれ1400〜1500℃、10〜20分で
ある普通鋳造において適性な高温特性を有するZrO2
系粒子(ZrO2,SiO2)がフィラーに、またスタ
ッコと呼ばれる細粒耐火物にムライト(3Al2O3,
2SiO2)が適用されていた。しかし、ガスタービン
の発電効率を改善するためのガス温度を約1500℃に
高めた高温ガスタービンプラントが計画されている。同
ガスタービン動翼材料は、高温強度を高めるため、従来
の普通鋳造により製造された多結晶材料に代って結晶の
成長方向が遠心応力の発生方向と一致した一方向凝固合
金もしくは、結晶粒界を含まない単結晶合金を適用する
必要がある。一方向凝固合金及び単結晶合金の鋳込みは
、普通鋳造に比べ、大きな熱勾配を付与させる等により
結晶を一方に整列させる。そこで、鋳型の環境は高温で
かつ長時間となり、鋳込み時の鋳型変形の抑制及び溶湯
と鋳型との反応を防止するべく、従来の鋳型に比べさら
に高温強度に優れた鋳型を適用する必要がある。そのた
めの技術として、特開昭61−46346号公報に記載
されるように、Al2O3粉とコロイダルシリカとによ
り形成されるスラリーと、ZrO2等とを交互に繰返し
塗布した鋳型及びその製造法が提案されている。
BACKGROUND OF THE INVENTION Conventionally, first-stage rotor blades for gas turbines have been precision cast products made of super heat-resistant alloys that have excellent high-temperature strength such as creep strength. The mold is made of ZrO2, which has suitable high-temperature properties for normal casting, where the casting temperature and time are 1400-1500°C and 10-20 minutes, respectively.
System particles (ZrO2, SiO2) are used as fillers, and mullite (3Al2O3,
2SiO2) was applied. However, a high-temperature gas turbine plant is being planned in which the gas temperature is increased to approximately 1500° C. in order to improve the power generation efficiency of the gas turbine. In order to increase high-temperature strength, this gas turbine rotor blade material is made of a directionally solidified alloy in which the crystal growth direction matches the direction of centrifugal stress generation, or a crystal grain It is necessary to apply a single crystal alloy that does not contain fields. Casting of unidirectionally solidified alloys and single crystal alloys aligns the crystals in one direction by applying a larger thermal gradient than in normal casting. Therefore, the mold environment is high and for a long time, and in order to suppress mold deformation during pouring and prevent reactions between the molten metal and the mold, it is necessary to use a mold that has even better high-temperature strength than conventional molds. . As a technique for this purpose, as described in JP-A-61-46346, a mold in which a slurry formed from Al2O3 powder and colloidal silica, ZrO2, etc. is alternately and repeatedly coated, and a method for manufacturing the same have been proposed. ing.

【0003】0003

【発明が解決しようとする課題】従来の精密鋳造用高強
度鋳型の製造法にあっては、高温強度を得るための同特
性に優れた材料を選定しているものの、そのスラリー中
の粒子の粒径分布に関する検討がなされていない。この
ため、強度を得るため、スラリー中のフィラの添加割合
を増やす必要があるが、スラリーの粘度を適性化する制
約上、十分な強度を得られない点に問題があった。
[Problems to be Solved by the Invention] In the conventional manufacturing method of high-strength molds for precision casting, materials with excellent properties are selected to obtain high-temperature strength, but particles in the slurry Particle size distribution has not been studied. Therefore, in order to obtain strength, it is necessary to increase the proportion of filler added in the slurry, but there is a problem in that sufficient strength cannot be obtained due to constraints on optimizing the viscosity of the slurry.

【0004】本発明の目的は、スラリーの粘度を損なわ
ずに、高温強度を改善し、一方向凝固合金及び単結晶合
金を鋳造するのに優れた精密鋳造用高強度鋳型の製造法
を提供することにある。
An object of the present invention is to provide a method for manufacturing a high-strength mold for precision casting that improves high-temperature strength without impairing the viscosity of the slurry and is excellent for casting directionally solidified alloys and single-crystal alloys. There is a particular thing.

【0005】さらに他の目的は、同鋳型により製造され
た一方向凝固合金及び単結晶合金で形成されたブレード
を備えてなる発電用ガスタービンを提供することにある
[0005] Still another object is to provide a gas turbine for power generation comprising blades made of a directionally solidified alloy and a single crystal alloy manufactured by the same mold.

【0006】[0006]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る精密鋳造用高強度鋳型の製造法は、フ
ィラーに粘結材を配合してスラリーを形成し、スラリー
と細粒耐火物とを交互に模型表面に塗布して焼結する精
密鋳造用高強度鋳型の製造法において、フィラーは、粒
子の径が0.5〜40μmの範囲のAl2O3の粒子よ
りなり、かつその粒度分布が、
[Means for Solving the Problems] In order to achieve the above object, the method for manufacturing a high-strength mold for precision casting according to the present invention is to form a slurry by blending a binder with a filler, and to mix the slurry with fine particles. In a method for manufacturing a high-strength mold for precision casting in which a refractory is alternately applied to the model surface and sintered, the filler is made of Al2O3 particles with a particle diameter in the range of 0.5 to 40 μm, and The distribution is

【0007】[0007]

【数3】[Math 3]

【0008】CPFT:累積重量(%)D   :粒子
の径 Ds  :粒子の最小径 DL  :粒子の最大径 n   :0.1〜1 を満足し、このフィラーを60〜90%の配合率でコロ
イダルシリカの粘結材に配合させてスラリーを形成する
構成とする。
CPFT: Cumulative weight (%) D: Particle diameter Ds: Minimum particle diameter DL: Maximum particle diameter n: 0.1 to 1, and this filler is colloidal at a blending rate of 60 to 90%. The composition is such that it is mixed with a silica binder to form a slurry.

【0009】そしてフィラーは、TiO2,MgO,Z
rO2,HfO2,Y2O3,CaO,La2O3,C
eO2,BaO及びCr2O3のうち少なくとも一種を
含み、前記粒度分布を満足する構成である。
[0009]The filler is TiO2, MgO, Z
rO2, HfO2, Y2O3, CaO, La2O3, C
The structure includes at least one of eO2, BaO, and Cr2O3 and satisfies the above particle size distribution.

【0010】またスラリーは、Dsが0.5〜10μm
,DLが10〜40μmで、かつ粘度が100〜200
0cPにより形成され、スラリーと細粒耐火物とを交互
に塗布した後、少なくとも1500℃の温度で予熱又は
焼成する構成でもよい。
[0010] Furthermore, the slurry has a Ds of 0.5 to 10 μm.
, DL is 10 to 40 μm, and viscosity is 100 to 200
It may be formed of 0 cP, and after alternately applying the slurry and the fine grain refractory, it may be preheated or fired at a temperature of at least 1500°C.

【0011】さらにスラリーを、第1層に塗布した後、
スラリーに細粒耐火物を混合させてその混合物を塗布す
る構成でもよい。
[0011] Furthermore, after applying the slurry to the first layer,
It may also be possible to mix a fine-grained refractory into a slurry and apply the mixture.

【0012】そしてスラリーを、第1層に塗布した後、
スラリーにその粒径分布が、
After applying the slurry to the first layer,
The particle size distribution of the slurry is

【0013】[0013]

【数4】[Math 4]

【0014】CPFT:累積重量(%)D   :粒子
の径 Ds  :粒子の最小径 DL  :粒子の最大径 n   :0.2〜3 を満足する細粒耐火物を混合させ、その混合物を塗布す
る構成でもよい。
[0014] CPFT: Cumulative weight (%) D: Particle diameter Ds: Minimum particle diameter DL: Maximum particle diameter n: Mix fine-grained refractories that satisfy the following: 0.2 to 3, and apply the mixture. It can also be a configuration.

【0015】また細粒耐火物は、Al2O3,TiO2
,MgO,ZrO2,HfO2,Y2O3,CaO,L
a2O3,CeO2,CeO3,BaO及びCr2O3
のうち少なくとも一種よりなる構成でもよい。
[0015] Further, fine grain refractories include Al2O3, TiO2
, MgO, ZrO2, HfO2, Y2O3, CaO, L
a2O3, CeO2, CeO3, BaO and Cr2O3
A configuration consisting of at least one of these may also be used.

【0016】さらに精密鋳造用高強度鋳型においては、
精密鋳造用高強度鋳型の製造法を用いて製造された構成
とする。
Furthermore, in high-strength molds for precision casting,
The structure is manufactured using a manufacturing method for high-strength molds for precision casting.

【0017】そして発電用ガスタービンにおいては、精
密鋳造用高強度鋳型により鋳造された一方向凝固合金又
は単結晶合金で形成されたブレードを備えてなる構成と
する。〔作用〕スラリーの粘度は、一般にフィラーと粘
結材との配合率により変化し、フィラーの増加とともに
粘度が増大することが知られている。しかし、粘度は図
3に示すように、フィラーA,Bの粒径分布にも依存し
て同一配合率に対するスラリーの粘度が、粒径分布の違
いによって著しく変化することが明らかとなった。図4
に、図3に示す実験に用いられた各フィラーA,Bの粒
径分布を示す。粘度の高いフィラーAは、フィラーBに
比べて粒径分布のばらつきが小さく、ほぼ粒径20μm
に集中して存在する。一方、フィラーBは粒径5〜30
μmの範囲でそれぞれの粒径がほぼ均一に分布している
[0017] The gas turbine for power generation is configured to include blades formed of a directionally solidified alloy or a single crystal alloy cast using a high-strength precision casting mold. [Operation] It is known that the viscosity of a slurry generally changes depending on the blending ratio of filler and caking agent, and that the viscosity increases as the amount of filler increases. However, as shown in FIG. 3, it has become clear that the viscosity also depends on the particle size distribution of fillers A and B, and the viscosity of the slurry for the same blending ratio changes significantly depending on the difference in particle size distribution. Figure 4
3 shows the particle size distribution of each filler A and B used in the experiment shown in FIG. Filler A, which has a high viscosity, has a smaller variation in particle size distribution than Filler B, and has a particle size of approximately 20 μm.
exist concentrated on. On the other hand, filler B has a particle size of 5 to 30
Each particle size is distributed almost uniformly in the μm range.

【0018】Furnasによれば、粒径分布は一般に
、式(1)で整理できる。
According to Furnas, the particle size distribution can generally be summarized by equation (1).

【0019】[0019]

【数5】[Math 5]

【0020】……(1) ここで、CPFTは粒子径がD以下となる粒子の累積百
分率、Dsは最小の粒子径、DLは最大の粒子径、nは
指数である。式(1)を図4に示す各フィラーに適用す
れば、フィラーA及びBのnはそれぞれ5.6及び0.
7となり、粘度低下に有効なn値はフィラーの場合、0
.1から1であることが明らかとなった。
(1) Here, CPFT is the cumulative percentage of particles having a particle size of D or less, Ds is the minimum particle size, DL is the maximum particle size, and n is an index. If formula (1) is applied to each filler shown in FIG. 4, n of fillers A and B is 5.6 and 0.0, respectively.
7, and the effective n value for reducing viscosity is 0 for fillers.
.. It became clear that it was 1 to 1.

【0021】また、細粒耐火物からなる粘結材の強度σ
fは式(2)に従うことが知られている。
[0021] Also, the strength σ of the caking material made of fine-grained refractories
It is known that f follows equation (2).

【0022】[0022]

【数6】[Math 6]

【0023】 −αp σf/σ0=e ……(2) ここで、σ0及びαは定数、pは気孔率である。したが
って、pが小さいほどσfは高く優れた強度が得られる
。このpを小さくするには、やはり式(1)のnが関係
し、nが0.2〜3の範囲で高い強度が得られる。そこ
で、細粒耐火物の粒度分布(粒径分布)は特にnを0.
2〜3の範囲に限定するのが有効である。さらに、フィ
ラーの最小粒径が0.5μm以下の粒子は、強度向上が
期待できず、また最小粒径が10μm以上になるとスラ
リーの粘性が著しく損なわれること、また最大粒径が4
0μmを越えると粘性が高くなるから、粒子の最小粒径
及び最大粒径は、それぞれ0.5〜10μm及び10〜
40μmの範囲に制限すべきである。
-αp σf/σ0=e (2) Here, σ0 and α are constants, and p is the porosity. Therefore, the smaller p is, the higher σf is and excellent strength can be obtained. In order to reduce this p, n in formula (1) is also relevant, and high strength can be obtained when n is in the range of 0.2 to 3. Therefore, the particle size distribution (particle size distribution) of fine-grained refractories is particularly important when n is 0.
It is effective to limit it to a range of 2 to 3. Furthermore, if the filler has a minimum particle size of 0.5 μm or less, no improvement in strength can be expected, and if the minimum particle size exceeds 10 μm, the viscosity of the slurry will be significantly impaired, and if the maximum particle size is 4.
If it exceeds 0 μm, the viscosity increases, so the minimum and maximum particle diameters of the particles are 0.5 to 10 μm and 10 to 10 μm, respectively.
It should be limited to a range of 40 μm.

【0024】[0024]

【実施例】本発明の一実施例を図1を参照しながら説明
する。
[Embodiment] An embodiment of the present invention will be described with reference to FIG.

【0025】図1に示すように、鋳型No.1とNo.
11とは本発明の鋳型であり、鋳型No.111とNo
.1Vとは比較鋳型である。鋳型No.1は、フィラー
と細粒耐火物(スタッコ)の両方がAl2O3であり、
また、フィラーとバインダー(粘結材)との配合割合は
約80%で式(1)の指数nは約0.4であった。また
、フィラーの最小粒径及び最大粒径はそれぞれ約5μm
と30μmであり、スラリーの粘度は約800cPを示
した。
As shown in FIG. 1, mold No. 1 and no.
11 is the mold of the present invention, and mold No. 11 is the mold of the present invention. 111 and no
.. 1V is a comparative mold. Mold No. 1, both the filler and the fine refractory (stucco) are Al2O3,
Further, the blending ratio of filler and binder (caking agent) was about 80%, and the index n of formula (1) was about 0.4. In addition, the minimum particle size and maximum particle size of the filler are each approximately 5 μm.
and 30 μm, and the viscosity of the slurry was approximately 800 cP.

【0026】このスラリー中にワックス模型を浸漬した
後、細粒耐火物を散布し乾燥を約1時間行った。同様の
工程を7回繰返し鋳型を形成した後、高温状態でワック
ス模型を除去し、加熱炉内で焼成処理をした。焼成温度
は約1550℃とした。鋳型No.11は、スラリーと
して鋳型No.1と同じアルミナ系スラリーを、スタッ
コにはムライトを用い作製した。その工程は鋳型No.
1と同様である。なお、焼成処理は温度1450℃で実
施した。鋳型No.111のスラリー及びスタッコには
、鋳型No.1と同じアルミナ粒子を適用した。しかし
、スラリー中のフィラーとバインダーとの配合割合は約
70%で式(1)の指数nは5.6であった。また、フ
ィラーの最大粒子径及び最小粒子径はそれぞれ約15μ
mと25μmであり、この時の粘度は約800cPを示
した。
[0026] After the wax model was immersed in this slurry, fine-grained refractories were sprinkled on it and dried for about 1 hour. After repeating the same process seven times to form a mold, the wax model was removed at a high temperature and fired in a heating furnace. The firing temperature was approximately 1550°C. Mold No. 11 is mold No. 11 as a slurry. The same alumina slurry as in 1 was made using mullite for stucco. The process is based on mold No.
It is the same as 1. Note that the firing treatment was performed at a temperature of 1450°C. Mold No. The slurry and stucco of No. 111 were prepared using mold no. The same alumina particles as in 1 were applied. However, the blending ratio of filler and binder in the slurry was about 70%, and the index n in formula (1) was 5.6. In addition, the maximum particle size and minimum particle size of the filler are approximately 15 μm each.
m and 25 μm, and the viscosity at this time was approximately 800 cP.

【0027】前記のフィラー及びスタッコを用い、鋳型
No.1と同一の工程で鋳型No.111を作製した。 この時の焼成温度は約1550℃であった。鋳型No.
1Vはフィラーとしてジルコンを、スタッコにはムライ
トを用い、鋳型No.11と同一の手法で作製した。焼
成温度は約1450℃とした比較鋳型である。
Using the filler and stucco described above, mold No. Mold No. 1 in the same process as 1. 111 was produced. The firing temperature at this time was about 1550°C. Mold No.
1V uses zircon as a filler, mullite for stucco, and mold No. It was produced using the same method as No. 11. This is a comparison mold with a firing temperature of about 1450°C.

【0028】図2は、前記の4種類の鋳型のクリープ強
度を示す。試験は、1450℃で実施し、負荷応力を変
化させ、各応力におけるクリープ速度を測定した。なお
、試験は4点曲げクリープ試験装置で行った。本発明に
よる鋳型No.1とNo.11とは優れたクリープ強度
を示し、特に鋳型No.1は応力を約6Kgf/cm2
負荷しても、ほとんどクリープ変形が発生しないことが
明らかとなった。また、鋳型No.11は鋳型No.1
に比べ変形量は多いものの、比較鋳型に比べ変形量が約
1/10程度であることを示す。このように、本発明に
よる鋳型は優れた高温強度を有しており、鋳込み温度が
高く、かつ保持時間も長い一方向凝固合金及び単結晶合
金の鋳造に好適な鋳型を提供できる。また、Al2O3
はZrO2に比べて解離圧が低く、合金組成との反応も
少ないことが期待でき、この点でも比較鋳型より優れた
特性を有する。
FIG. 2 shows the creep strength of the four types of molds described above. The test was conducted at 1450°C, the applied stress was varied, and the creep rate at each stress was measured. The test was conducted using a four-point bending creep test device. Mold No. according to the present invention. 1 and no. 11 indicates excellent creep strength, especially mold No. 1 has a stress of about 6Kgf/cm2
It was found that almost no creep deformation occurred even under load. Also, mold No. 11 is mold No. 1
Although the amount of deformation is larger than that of the mold, the amount of deformation is about 1/10 of that of the comparative mold. As described above, the mold according to the present invention has excellent high-temperature strength, and can provide a mold suitable for casting directionally solidified alloys and single-crystal alloys that have a high casting temperature and a long holding time. Also, Al2O3
Compared to ZrO2, ZrO2 has a lower dissociation pressure and is expected to react less with the alloy composition, and has superior properties to the comparative molds in this respect as well.

【0029】さらに、鋳型No.1に粒子径が約100
から200μmのアルミナからなる細粒耐火物をフィラ
ーに対し約30wt%添加したスラリーを作製し、鋳型
No.Vを作製した。その製造工程は鋳型No.1と同
様である。鋳型No.Vのクリープ速度は、応力0.2
5Kgf/cm2、温度1450℃において、約0.0
15mm/hであった。本強度は、鋳型No.1の強度
を上まわり、スラリー中に細粒耐火物を加えることによ
り強度を向上できることを示した。
Furthermore, mold No. 1 has a particle size of approximately 100
A slurry was prepared by adding about 30 wt % of fine-grained refractory made of alumina of 200 μm to the filler, and mold No. V was created. The manufacturing process uses mold No. It is the same as 1. Mold No. The creep rate of V is the stress 0.2
Approximately 0.0 at 5Kgf/cm2 and temperature 1450℃
The speed was 15 mm/h. This strength is based on mold No. The strength exceeded that of No. 1, indicating that the strength can be improved by adding fine-grained refractories to the slurry.

【0030】本発明によれば、高温クリープ強度を従来
鋳型に比較して約10倍向上できるため、高温変形の小
さい鋳型を提供することができる。このため、普通鋳造
法に比べ、鋳込み時の温度が高く、かつ保持時間も長い
Fe,Ni,Co基耐熱合金からなる一方向凝固及び単
結晶の鋳造に適用する鋳型に好適である。また、この一
方向凝固及び単結晶の製造によって、大型のガスタービ
ン用動翼を製造することが可能となり、ガス温度の上昇
により発電効率を飛躍的に向上することができる。
According to the present invention, the high-temperature creep strength can be improved by about 10 times compared to conventional molds, and therefore a mold with low high-temperature deformation can be provided. Therefore, compared to the normal casting method, the casting temperature is higher and the holding time is longer, making it suitable for molds that are applied to unidirectional solidification and single crystal casting made of Fe, Ni, and Co-based heat-resistant alloys. Moreover, this unidirectional solidification and production of single crystals makes it possible to produce large-sized gas turbine rotor blades, and by increasing the gas temperature, power generation efficiency can be dramatically improved.

【0031】そして、本鋳型は、高温強度が従来鋳型に
比べ著しく高く、高温下で使用される大型鋳造部材の製
造に好適である。また、金属間化合物等、さらに融点の
高い耐熱材料の一方向凝固合金及び単結晶合金の製造プ
ロセスへも適用可能である。
[0031] The present mold has significantly higher high-temperature strength than conventional molds, and is suitable for manufacturing large-sized cast members that are used at high temperatures. It is also applicable to the manufacturing process of unidirectionally solidified alloys and single crystal alloys of heat-resistant materials with higher melting points, such as intermetallic compounds.

【0032】[0032]

【発明の効果】本発明の精密鋳造用高強度鋳型の製造法
によれば、高温クリープ強度を向上し、かつ高温変形の
少ない鋳型を提供できるため、この鋳型を用いて一方向
凝固合金及び単結晶合金の鋳造が可能となり、これらの
合金で形成したブレードを備えて発電用ガスタービンの
発電効率を向上することができる。
Effects of the Invention According to the method of manufacturing a high-strength mold for precision casting of the present invention, it is possible to provide a mold with improved high-temperature creep strength and less high-temperature deformation. It becomes possible to cast crystalline alloys, and the power generation efficiency of power generation gas turbines can be improved by providing blades made of these alloys.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を示す鋳型及び比較鋳型を示
す図である。
FIG. 1 is a diagram showing a mold showing an example of the present invention and a comparative mold.

【図2】本発明の鋳型のクリープ強度を示すグラフであ
る。
FIG. 2 is a graph showing the creep strength of the mold of the present invention.

【図3】フィラーとコロイダルシリカとの配合率の変化
に伴う粘度の変化を示すグラフである。
FIG. 3 is a graph showing changes in viscosity with changes in the blending ratio of filler and colloidal silica.

【図4】フィラーの粒径に関する累積重量割合を示すグ
ラフである。
FIG. 4 is a graph showing the cumulative weight percentage with respect to filler particle size.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】  フィラーに粘結材を配合してスラリー
を形成し、該スラリーと細粒耐火物とを交互に模型表面
に塗布して焼結する精密鋳造用高強度鋳型の製造法にお
いて、前記フィラーは、粒子の径が0.5〜40μmの
範囲のAl2O3粒子よりなり、かつその粒度分布が、
【数1】 CPFT:累積重量(%) D   :粒子の径 Ds  :粒子の最小径 DL  :粒子の最大径 n   :0.1〜1 を満足し、このフィラーを60〜90%の配合率でコロ
イダルシリカの前記粘結材に配合させて前記スラリーを
形成することを特徴とする精密鋳造用高強度鋳型の製造
法。
1. A method for manufacturing a high-strength mold for precision casting, in which a binder is mixed with a filler to form a slurry, and the slurry and a fine-grained refractory are alternately applied to the surface of a model and sintered. The filler consists of Al2O3 particles with a particle diameter in the range of 0.5 to 40 μm, and the particle size distribution is as follows:
[Equation 1] CPFT: Cumulative weight (%) D: Particle diameter Ds: Minimum particle diameter DL: Maximum particle diameter n: Satisfies 0.1 to 1, and contains this filler at a blending rate of 60 to 90%. A method for producing a high-strength mold for precision casting, comprising mixing colloidal silica with the caking agent to form the slurry.
【請求項2】  フィラーは、TiO2,MgO,Zr
O2,HfO2,Y2O3,CaO,La2O3,Ce
O2,BaO及びCr2O3のうち少なくとも一種を含
み、前記粒度分布を満足することを特徴とする請求項1
記載の精密鋳造用高強度鋳型の製造法。
Claim 2: The filler is TiO2, MgO, Zr
O2, HfO2, Y2O3, CaO, La2O3, Ce
Claim 1, characterized in that it contains at least one of O2, BaO and Cr2O3, and satisfies the particle size distribution.
The method for manufacturing the high-strength mold for precision casting described above.
【請求項3】  スラリーは、Dsが0.5〜10μm
,DLが10〜40μmで、かつ粘度が100〜200
0cPにより形成され、前記スラリーと細粒耐火物とを
交互に塗布した後、少なくとも1500℃の温度で予熱
又は焼成することを特徴とする請求項1又は2記載の精
密鋳造用高強度鋳型の製造法。
Claim 3: The slurry has a Ds of 0.5 to 10 μm.
, DL is 10 to 40 μm, and viscosity is 100 to 200
3. The production of a high-strength mold for precision casting according to claim 1 or 2, wherein the slurry and the fine-grained refractory are alternately applied and then preheated or fired at a temperature of at least 1500°C. Law.
【請求項4】  スラリーを、第1層に塗布した後、該
スラリーに細粒耐火物を混合させてその混合物を塗布す
ることを特徴とする請求項1又は2記載の精密鋳造用高
強度鋳型の製造法。
4. The high-strength mold for precision casting according to claim 1 or 2, wherein after applying the slurry to the first layer, a fine grain refractory is mixed with the slurry and the mixture is applied. manufacturing method.
【請求項5】  スラリーを、第1層に塗布した後、前
記スラリーにその粒径分布が、 【数2】 CPFT:累積重量(%) D   :粒子の径 Ds  :粒子の最小径 DL  :粒子の最大径 n   :0.2〜3 を満足する細粒耐火物を混合させ、その混合物を塗布す
ることを特徴とする請求項1又は2記載の精密鋳造用高
強度鋳型の製造法。
5. After applying the slurry to the first layer, the particle size distribution of the slurry is as follows: [Formula 2] CPFT: Cumulative weight (%) D: Particle diameter Ds: Minimum particle diameter DL: Particle The method for manufacturing a high-strength mold for precision casting according to claim 1 or 2, characterized in that fine-grained refractories satisfying a maximum diameter n of 0.2 to 3 are mixed and the mixture is applied.
【請求項6】  細粒耐火物は、Al2O3,TiO2
,MgO,ZrO2,HfO2,Y2O3,CaO,L
a2O3,CeO2,CeO3,BaO及びCr2O3
のうち少なくとも一種よりなることを特徴とする請求項
1,2,3,4又は5のいずれか1項記載の精密鋳造用
高強度鋳型の製造法。
[Claim 6] The fine grain refractory is Al2O3, TiO2
, MgO, ZrO2, HfO2, Y2O3, CaO, L
a2O3, CeO2, CeO3, BaO and Cr2O3
The method for manufacturing a high-strength mold for precision casting according to any one of claims 1, 2, 3, 4, or 5, characterized in that the mold is made of at least one of the following.
【請求項7】  請求項1〜6のいずれか1項記載の精
密鋳造用高強度鋳型の製造法を用いて製造された精密鋳
造用高強度鋳型。
7. A high-strength mold for precision casting manufactured using the method for manufacturing a high-strength mold for precision casting according to any one of claims 1 to 6.
【請求項8】  請求項7記載の精密鋳造用高強度鋳型
により鋳造された一方向凝固合金又は単結晶合金で形成
されたブレードを備えてなることを特徴とする発電用ガ
スタービン。
8. A gas turbine for power generation, comprising blades made of a directionally solidified alloy or a single crystal alloy cast by the high-strength precision casting mold according to claim 7.
JP2405916A 1990-12-25 1990-12-25 Production of high strength mold for precision casting Pending JPH04224044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2405916A JPH04224044A (en) 1990-12-25 1990-12-25 Production of high strength mold for precision casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2405916A JPH04224044A (en) 1990-12-25 1990-12-25 Production of high strength mold for precision casting

Publications (1)

Publication Number Publication Date
JPH04224044A true JPH04224044A (en) 1992-08-13

Family

ID=18515539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2405916A Pending JPH04224044A (en) 1990-12-25 1990-12-25 Production of high strength mold for precision casting

Country Status (1)

Country Link
JP (1) JPH04224044A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349472A (en) * 2004-05-12 2005-12-22 Snecma Moteurs Lost wax casting method using contact layer
JP2010017752A (en) * 2008-07-14 2010-01-28 Itochu Ceratech Corp Stucco material for producing mold for precision casting, and mold for precise casting using the same
JP2013031882A (en) * 2012-11-15 2013-02-14 Itochu Ceratech Corp Back-up stucco material for manufacturing mold for precision casting, method of manufacturing the back-up stucco material, and mold for precision casting obtained by using the back-up stucco material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349472A (en) * 2004-05-12 2005-12-22 Snecma Moteurs Lost wax casting method using contact layer
JP2010017752A (en) * 2008-07-14 2010-01-28 Itochu Ceratech Corp Stucco material for producing mold for precision casting, and mold for precise casting using the same
JP2013031882A (en) * 2012-11-15 2013-02-14 Itochu Ceratech Corp Back-up stucco material for manufacturing mold for precision casting, method of manufacturing the back-up stucco material, and mold for precision casting obtained by using the back-up stucco material

Similar Documents

Publication Publication Date Title
US4196769A (en) Ceramic shell mold
US3933190A (en) Method for fabricating shell molds for the production of superalloy castings
JP6106751B2 (en) Calcium titanate-containing mold composition and method for casting titanium and titanium aluminide alloy
US4664172A (en) Method for production of investment shell mold for grain-oriented casting of super alloy
JPH01202337A (en) Alumina base core containing yttria
JPS6045973B2 (en) Normal solidification casting method for superalloys
CN109304424B (en) Modified silicon oxide powder and preparation method thereof, ceramic core and preparation method thereof
CN102990006A (en) Shell for titanium and titanium alloy precision casting and preparation method thereof
US5335717A (en) Oxidation resistant superalloy castings
US4026344A (en) Method for making investment casting molds for casting of superalloys
US3743003A (en) Making investment shell molds inhibited against reaction with molten reactive and refractory casting metals
US3981352A (en) Metal casting mold with bonded particle filter
US4557316A (en) Method for manufacture of investment shell mold suitable for casting grain-oriented super alloy
JPS5997735A (en) Casting of metallic article
JPH04224044A (en) Production of high strength mold for precision casting
EP0016127B1 (en) Ceramic shell mold
US4188450A (en) Shell investment molds embodying a metastable mullite phase in its physical structure
EP0179649A2 (en) Ceramic materials
JPH01500020A (en) Slurry for forming a shell mold, method for manufacturing a shell mold using the same, shell mold using the method, and casting method using the mold
JP2016501131A (en) Composition of ceramic layers for making molds and other products
RU2098220C1 (en) Mixture and method for manufacturing casting ceramic cores
JPH09155503A (en) Mold for precision casting and method thereof
JPH04339538A (en) Production of mold for precision casting
JP4786080B2 (en) Dental rapid heating phosphate investment
JP2016055327A (en) Precision casting mold manufacturing slurry composition, and manufacturing method therefor