JPH04212464A - Horizontal conductivity modulation type semiconductor device - Google Patents
Horizontal conductivity modulation type semiconductor deviceInfo
- Publication number
- JPH04212464A JPH04212464A JP3485891A JP3485891A JPH04212464A JP H04212464 A JPH04212464 A JP H04212464A JP 3485891 A JP3485891 A JP 3485891A JP 3485891 A JP3485891 A JP 3485891A JP H04212464 A JPH04212464 A JP H04212464A
- Authority
- JP
- Japan
- Prior art keywords
- region
- collector
- layer
- electrode
- conductivity type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 14
- 239000010410 layer Substances 0.000 claims description 59
- 239000002344 surface layer Substances 0.000 claims description 12
- 239000012535 impurity Substances 0.000 claims description 3
- 239000000758 substrate Substances 0.000 abstract description 31
- 238000002347 injection Methods 0.000 abstract description 4
- 239000007924 injection Substances 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract 2
- 239000000969 carrier Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005036 potential barrier Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/739—Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
- H01L29/7393—Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Bipolar Transistors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、横型の絶縁ゲート型バ
イポーラトランジスタ(以下IGBTと略す) のよう
に伝導度変調によってオン抵抗を小さくした横型伝導度
変調型半導体装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lateral conductivity modulation type semiconductor device, such as a lateral insulated gate bipolar transistor (hereinafter abbreviated as IGBT), in which on-resistance is reduced by conductivity modulation.
【0002】0002
【従来の技術】近年スイッチング素子として伝導度変調
を利用したMOSFETであるIGBTが注目されてい
る。IGBTはMOSFETと同様、入力インピーダン
スが高く、またバイポーラトランジスタと同様にオン抵
抗が低くできる。IGBTは、当初はたて型素子として
開発が進められ、最近になり横型のIGBTが開発され
るようになった。これは、たて型のIGBTは半導体基
板の表面と裏面との間に電流が流れるのに対し、横型の
IGBTは、両主電極およびゲートが半導体基板の一面
側のみを使って形成されるので、基板への組込みが簡単
で、素子のインテリジェント化のために同一基板に組込
まれる演算回路との接続が容易であることによる。2. Description of the Related Art In recent years, IGBTs, which are MOSFETs that utilize conductivity modulation, have been attracting attention as switching elements. Like a MOSFET, an IGBT has a high input impedance, and like a bipolar transistor, it can have a low on-resistance. IGBTs were initially developed as vertical elements, and recently horizontal IGBTs have been developed. This is because in a vertical IGBT, current flows between the front and back surfaces of the semiconductor substrate, whereas in a horizontal IGBT, both main electrodes and the gate are formed using only one side of the semiconductor substrate. This is due to the fact that it is easy to incorporate into a substrate, and it is easy to connect with an arithmetic circuit incorporated on the same substrate in order to make the device intelligent.
【0003】IGBTの特長は、高耐圧でも伝導度変調
により低いオン電圧が実現できることがあるが、その一
方でベース領域にオン時に共に多く充満している少数,
多数キャリアを、オフ状態に移行するためには除いて
しまわなければならず、そのため、電力用MOSFET
に比較すると、どうしてもスイッチング速度が遅いとい
う問題がある。図2は従来のRESURF (REDU
CED SURFACE FIELD)構造を有する横
型IGBTを示す。このIGBTにおいては、p− 基
板1の表面層内に選択的にp+ 埋込領域10が形成さ
れる。その上にn− 層2をエピタキシャル成長させて
いる。n− 層2の表面層内に選択的にpベース領域3
とnバッファ領域8が間隔を介して形成されている。p
ベース領域3の表面層内にはn+ エミッタ領域4が選
択的に形成されている。pベース領域3のn− 層2と
n+ エミッタ領域5ではさまれた表面部分はチャネル
領域7となる部分で、その上にゲート酸化膜5を介して
ゲート電極6が設けられる。そしてpベース領域3とn
+ エミッタ領域4とに共通に接触するエミッタ電極1
2がゲート電極6との間に絶縁膜11を介して設けられ
ている。また、nバッファ領域8の表面層には選択的に
p+ コレクタ領域9が形成され、その表面にコレクタ
電極13が設けられて三端子構造となっている。[0003] The feature of IGBT is that it can achieve a low on-voltage due to conductivity modulation even at a high withstand voltage, but on the other hand, a small number of
The majority carrier must be removed in order to transition to the off state, so the power MOSFET
The problem is that the switching speed is slow compared to . Figure 2 shows the conventional RESURF (REDU
This figure shows a horizontal IGBT having a CED (SURFACE FIELD) structure. In this IGBT, p+ buried regions 10 are selectively formed in the surface layer of p- substrate 1. An n- layer 2 is epitaxially grown thereon. Selective p base region 3 in the surface layer of n- layer 2
and n buffer regions 8 are formed at intervals. p
An n+ emitter region 4 is selectively formed in the surface layer of the base region 3. The surface portion of the p base region 3 sandwiched between the n- layer 2 and the n+ emitter region 5 becomes a channel region 7, and a gate electrode 6 is provided thereon with a gate oxide film 5 interposed therebetween. and p base region 3 and n
+ Emitter electrode 1 in common contact with emitter region 4
2 is provided between the gate electrode 6 and the insulating film 11. Further, a p+ collector region 9 is selectively formed in the surface layer of the n buffer region 8, and a collector electrode 13 is provided on the surface thereof, resulting in a three-terminal structure.
【0004】このような三端子型横型IGBTでは、ゲ
ート・エミッタ間の電圧印加によりn+ エミッタ領域
からチャネル領域7を通ってn− 層2、nバッファ領
域8に電子電流が流入する。p+ コレクタ領域9とn
バッファ領域8によりp+ /nの電位障壁が形成され
ているが、nバッファ領域8に電子が蓄積することで、
そのp+ /n接合の電位降下をもたらし、p+ コレ
クタ領域9からnバッファ領域8に正孔が注入し、伝導
度変調がおこる。伝導度変調をおこしたnバッファ領域
8の少数キャリアである正孔は、p+ コレクタ領域9
をエミッタとし、nバッファ領域およびnバッファ領域
とp− 基板1とにはさまれたn− 層2をベースとし
、p− 基板1, p+ 埋込領域10およびpベース
領域3をコレクタとするpnpトランジスタがナローベ
ーストランジスタであるため、p− 基板1に流入し、
エミッタ電極12へ抜ける。そのため、p− 基板1上
部の正孔濃度が増加する。これによって、上記のn+
エミッタ領域4からnバッファ領域8に至る電子電流は
、、p−基板1の正孔によるクーロン力の増加に伴い、
n− 層2を通過する際p− 基板1の方に曲げられ、
n− 層2とp− 基板1の間に電子が蓄積することに
よってp−基板1とn− 層2による電位降下が低下す
るため、p− 基板1からn− 層2へ正孔の注入が起
こり、n− 層2のp− 基板1に近い部分で伝導度変
調が発生する。これによりn− 層2全体の抵抗率が低
下するため、p+ コレクタ領域9、nバッファ領域8
およびn− 層2, pベース領域3で形成されるpn
pトランジスタが駆動される。n− 層2全体で伝導度
変調が発生し、そのpnpトランジスタでは正孔はp+
コレクタ領域9からnバッファ領域8、n− 層2を
経てpベース領域3, エミッタ電極12と抜ける。エ
ミッタ電極12はpベース領域3とn+ エミッタ領域
4を電気的に短絡しているので、p+ コレクタ電極9
、nバッファ領域8、n− 層2、p− 基板1、p+
埋込領域10、nエミッタ領域4の4層からなる第一
の寄生サイリスタおよびp+ コレクタ領域9、nバッ
ファ領域8、n− 層2、pベース領域, n+ エミ
ッタ領域4の4層からなる第二の寄生サイリスタの動作
が阻止され、ゲート・エミッタ間電圧をゼロにすること
で素子をターンオフできる。In such a three-terminal lateral IGBT, an electron current flows from the n+ emitter region through the channel region 7 to the n− layer 2 and n buffer region 8 by applying a voltage between the gate and emitter. p+ collector region 9 and n
A potential barrier of p+/n is formed by the buffer region 8, but as electrons accumulate in the n buffer region 8,
A potential drop is brought about at the p+/n junction, holes are injected from the p+ collector region 9 into the n buffer region 8, and conductivity modulation occurs. Holes, which are minority carriers in the n buffer region 8 that caused conductivity modulation, are in the p+ collector region 9.
is the emitter, the base is the n- layer 2 sandwiched between the n-buffer region and the n-buffer region and the p- substrate 1, and the collector is the p- substrate 1, the p+ buried region 10, and the p-base region 3. Since the transistor is a narrow base transistor, the p- flows into the substrate 1,
It passes through to the emitter electrode 12. Therefore, the hole concentration above the p- substrate 1 increases. As a result, the above n+
The electron current from the emitter region 4 to the n-buffer region 8 increases as the Coulomb force due to holes in the p-substrate 1 increases.
When passing through the n- layer 2, it is bent toward the p- substrate 1,
As electrons accumulate between n- layer 2 and p- substrate 1, the potential drop between p- substrate 1 and n- layer 2 decreases, so holes are injected from p- substrate 1 to n- layer 2. conductivity modulation occurs in the portion of the n- layer 2 close to the p- substrate 1. As a result, the resistivity of the entire n- layer 2 decreases, so the p+ collector region 9 and the n buffer region 8
and pn formed by n- layer 2 and p base region 3
The p-transistor is driven. Conductivity modulation occurs throughout the n- layer 2, and in that pnp transistor, the holes become p+
From the collector region 9, it passes through the n buffer region 8, the n- layer 2, the p base region 3, and the emitter electrode 12. Since the emitter electrode 12 electrically shorts the p base region 3 and the n+ emitter region 4, the p+ collector electrode 9
, n buffer region 8, n- layer 2, p- substrate 1, p+
A first parasitic thyristor consists of four layers: a buried region 10 and an n emitter region 4, and a second parasitic thyristor consists of four layers: a p+ collector region 9, an n buffer region 8, an n- layer 2, a p base region, and an n+ emitter region 4. The operation of the parasitic thyristor is blocked, and the device can be turned off by reducing the gate-emitter voltage to zero.
【0005】[0005]
【発明が解決しようとする課題】三端子型横型IGBT
では、p+ コレクタ電極9, nバッファ領域8,
n− 層2, p− 基板1, p+ 埋込領域10よ
りなる第一のpnpトランジスタおよびp+コレクタ電
極9, nバッファ領域8, n− 層2, pベース
領域3よりなる第二のpnpトランジスタを並列駆動し
ているが、第二のトランジスタのn− 層2がワイドベ
ースになっているためと、第一のトランジスタのp−
基板の距離が長いために、オン電圧が高くなり、またタ
ーンオフ時間が遅く、スイッチング損失の増加を招く。
さらに、p+ コレクタ領域9から注入された正孔電流
が第一, 第二のトランジスタの双方においてエミッタ
電極12に集中するため、pベース領域3を通過する正
孔電流によりpベース領域に電位降下が生じ、n+ エ
ミッタ領域4とpベース領域3の電位障壁がなくなって
n+ エミッタ領域4からpベース領域3へ電子が注入
することで、いわゆるラッチアップが起こりやすい。こ
のため、素子の安全動作領域が狭くなり、定常なスイッ
チング動作ができないなどの問題がある。[Problem to be solved by the invention] Three-terminal horizontal IGBT
Then, p+ collector electrode 9, n buffer region 8,
A first pnp transistor consists of an n- layer 2, a p-substrate 1, a p+ buried region 10, and a second pnp transistor consists of a p+ collector electrode 9, an n buffer region 8, an n- layer 2, and a p base region 3. Although they are driven in parallel, this is because the n- layer 2 of the second transistor has a wide base, and the p-layer of the first transistor
The long substrate distance results in high on-voltage and slow turn-off time, leading to increased switching losses. Furthermore, since the hole current injected from the p+ collector region 9 concentrates on the emitter electrode 12 in both the first and second transistors, the hole current passing through the p base region 3 causes a potential drop in the p base region. As a result, the potential barrier between the n+ emitter region 4 and the p base region 3 disappears, and electrons are injected from the n+ emitter region 4 into the p base region 3, which tends to cause so-called latch-up. As a result, the safe operation area of the element becomes narrow, resulting in problems such as the inability to perform steady switching operations.
【0006】従って本発明の目的は、上記の問題を解決
し、オン電圧を低減し、ターンオフ時間が高速化してス
イッチング時間を小さくし、かつ安全動作領域を拡大し
た横型伝導度変調型半導体装置を提供することにある。Therefore, an object of the present invention is to provide a lateral conductivity modulation type semiconductor device which solves the above problems, reduces the on-state voltage, increases the turn-off time, reduces the switching time, and expands the safe operation area. It is about providing.
【0007】[0007]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明は第一導電型の第一層と、その上に積層さ
れた第二導電型の第二層と、その第二層の表面層内に選
択的に形成され第一層と第一導電型の領域によって連結
された第一導電型のベース領域と、そのベース領域の表
面層内に選択的に形成された第二導電型領域と、その第
二導電型領域と前記第二層の表面露出部にはさまれた前
記ベース領域の表面上に絶縁膜を介して設けられたゲー
ト電極と、前記第二導電型領域とベース領域に共通に接
触するエミッタ電極と、前記第二層の表面部に前記ベー
ス領域から離れて選択的に形成された第二導電型で第二
層より不純物濃度の高いバッファ領域と、そのバッファ
領域の表面層内に選択的に形成された第一導電型のコレ
クタ領域と、そのコレクタ領域に接触するコレクタ電極
とを有する横型伝導度変調型半導体装置において、第一
層に接触し、エミッタ電極に接続される副エミッタ電極
を備えたものとする。そして、コレクタ領域がバッファ
領域の表面露出部をはさみ、コレクタ電極がバッファ領
域の表面露出部およびコレクタ領域表面露出部に共通に
接触することも有効である。あるいは、コレクタ領域直
下のバッファ領域からコレクタ領域を貫通する第一導電
型のバッファ領域接続部とを備え、そのバッファ領域接
続部はコレクタ領域底部より表面に近づくにつれて広が
っており、その広がった部分の表面露出部にコレクタ領
域表面と共通にコレクタ電極が接触することも有効であ
る。また、それらの場合にコレクタ電極とバッファ層領
域表面露出部あるいはバッファ領域接続部との間に局部
的に絶縁膜が介在することが効果的である。[Means for Solving the Problems] In order to achieve the above object, the present invention comprises a first layer of a first conductivity type, a second layer of a second conductivity type laminated thereon, and a second layer of the second conductivity type laminated thereon. a base region of a first conductivity type selectively formed within the surface layer of the layer and connected to the first layer by a region of the first conductivity type; and a second conductivity type base region selectively formed within the surface layer of the base region. a conductivity type region, a gate electrode provided on the surface of the base region sandwiched between the second conductivity type region and the surface exposed portion of the second layer via an insulating film, and the second conductivity type region an emitter electrode in common contact with the base region; a buffer region of a second conductivity type and having a higher impurity concentration than the second layer selectively formed on the surface of the second layer away from the base region; In a lateral conductivity modulated semiconductor device having a collector region of a first conductivity type selectively formed in a surface layer of a buffer region and a collector electrode in contact with the collector region, an emitter It is assumed that a sub-emitter electrode is connected to the electrode. It is also effective for the collector region to sandwich the exposed surface portion of the buffer region, and for the collector electrode to commonly contact the exposed surface portion of the buffer region and the exposed surface portion of the collector region. Alternatively, the buffer region connecting portion of the first conductivity type extends from the buffer region immediately below the collector region to the collector region, and the buffer region connecting portion widens as it approaches the surface from the bottom of the collector region, and the widened portion It is also effective that the collector electrode is in common contact with the exposed surface portion of the collector region. Furthermore, in these cases, it is effective to locally interpose an insulating film between the collector electrode and the exposed portion of the surface of the buffer layer region or the connection portion of the buffer region.
【0008】[0008]
【作用】ゲート電極・エミッタ電極間への電圧印加の際
、第二導電型のバッファ領域にコレクタ領域から注入さ
れて伝導度変調を引き起こす少数キャリアにより、第一
導電型のコレクタ領域, 第二導電型のバッファ領域お
よび第二層ならびに第一導電型の第一層よりなるバイポ
ーラトランジスタが駆動され、第二導電型領域の少数キ
ャリアの電流は副エミッタ電極へ抜ける。そのトランジ
スタはナローベースであるため電流増幅率が高く、オン
電圧が低く、ターンオフ時間が速くなり、スイッチング
損失が低減する。また、従来と異なり半導体基板内でエ
ミッタ電極とコレクタ電極の間に二つのトランジスタが
並列駆動されないため、エミッタ電極への電流の集中が
なくなり、ラッチアップが起こりにくくなって安全動作
領域が拡大する。[Operation] When a voltage is applied between the gate electrode and the emitter electrode, minority carriers are injected from the collector region into the buffer region of the second conductivity type and cause conductivity modulation, causing the collector region of the first conductivity type to A bipolar transistor consisting of a buffer region and a second layer of the same type and a first layer of the first conductivity type is driven, and a current of minority carriers in the second conductivity type region flows to the sub-emitter electrode. Because the transistor is narrow-base, it has a high current amplification factor, low on-voltage, fast turn-off time, and reduced switching loss. Also, unlike in the past, two transistors are not driven in parallel between the emitter electrode and the collector electrode within the semiconductor substrate, so current concentration on the emitter electrode is eliminated, latch-up is less likely to occur, and the safe operating area is expanded.
【0009】さらに、スイッチング速度を速めるコレク
タショート構造も採用することもでき、その場合、コレ
クタ電極とバッファ領域露出部とを局部的に絶縁すると
、バッファ領域からコレクタ電極へ流れる電流の径路が
制約され、コレクタ領域に沿って流れる距離が長くなり
、少ない電流で大きな電位降下が発生するため、コレク
タ領域からのキャリアの注入が促進され、低電流領域に
おいても伝導度変調が発生する。また、バッファ領域を
表面に近づくにつれて広がってコレクタ領域を貫通する
接続部により表面に露出し、広がった部分の表面露出部
においてのみコレクタ電極に接触させることにより、バ
ッファ領域からコレクタ電極へ流れる電流のコレクタ領
域に沿って流れる距離は一層長くなる。Furthermore, it is also possible to adopt a collector short structure that increases the switching speed. In that case, if the collector electrode and the exposed portion of the buffer region are locally insulated, the path of the current flowing from the buffer region to the collector electrode is restricted. , the distance flowing along the collector region becomes longer, and a large potential drop occurs with a small current, which promotes carrier injection from the collector region and causes conductivity modulation even in the low current region. In addition, the buffer region expands as it approaches the surface and is exposed to the surface by a connection portion that penetrates the collector region, and by contacting the collector electrode only at the surface exposed portion of the expanded portion, the current flowing from the buffer region to the collector electrode can be reduced. The distance flowing along the collector region is longer.
【0010】0010
【実施例】図1は本発明の一実施例の横型IGBTを示
し、図2と共通の部分には同一の符号が付されている。
図2と異なる点は、p− 基板1の裏面に接触する基板
エミッタ電極 (副エミッタ電極)14 が設けられ、
エミッタ電極12と短絡されている点である。すなわち
、この素子は、ゲート電極6に端子G、エミッタ電極1
2に端子E1 、コレクタ電極13に端子C、基板エミ
ッタ電極14に端子E2 が接続された四端子型横型I
GBTである。このIGBTにおいて、従来のIGBT
と同様にゲート・エミッタ間の電圧印加により、n+
エミッタ領域4からチャネル領域7を通ってn− 層2
, nバッファ領域8に電子電流が流入する。p+ コ
レクタ領域9とnバッファ領域8の間にp+ /nの電
位降下が生じ、p+ コレクタ領域9からの正孔の注入
によりnバッファ領域8に伝導度変調が起こる。nバッ
ファ領域8に伝導度変調を起こす正孔により、p+ コ
レクタ領域9をエミッタ、nバッファ領域8およびn−
層2をベース、基板エミッタ電極14を備えるp−
基板1をコレクタとするpnpトランジスタが駆動され
、正孔はn− 層2, p− 層1,基板エミッタ電極
14と抜ける。このpnpトランジスタのベース領域は
nバッファ領域8とそれとp− 基板1との間にはさま
れたn− 層2とからなるため非常に小さく、ナローベ
ーストランジスタであるため、hfeが高い。従ってわ
ずかな電子電流でhfeがが高いナローベースのpnp
トランジスタを駆動するため、オン電圧が低く、オン時
に伝導度変調が発生し、キャリアの蓄積する領域が狭い
のでターンオフ時間が短くなる。図3はI−V特性で、
線31で示した従来の三端子型横型IGBTよりも線3
2で示すように低いオン電圧が得られる。図4は飽和電
圧とターンオフ時間の間のトレードオフ曲線で、三端子
型の場合の線41に比して四端子型の場合は線42のよ
うにターンオフ時間が短い方へずれる。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a horizontal IGBT according to an embodiment of the present invention, and parts common to those in FIG. 2 are given the same reference numerals. The difference from FIG. 2 is that a substrate emitter electrode (sub-emitter electrode) 14 that contacts the back surface of the p-substrate 1 is provided;
This point is short-circuited to the emitter electrode 12. That is, this element has a terminal G on the gate electrode 6 and an emitter electrode 1 on the gate electrode 6.
2, a terminal C is connected to the collector electrode 13, and a terminal E2 is connected to the substrate emitter electrode 14.
It is GBT. In this IGBT, conventional IGBT
Similarly, by applying a voltage between the gate and emitter, n+
From the emitter region 4 through the channel region 7 to the n- layer 2
, n An electron current flows into the buffer region 8. A potential drop of p+ /n occurs between p+ collector region 9 and n buffer region 8, and conductivity modulation occurs in n buffer region 8 due to hole injection from p+ collector region 9. Holes that cause conductivity modulation in the n-buffer region 8 cause the p+ collector region 9 to become an emitter, the n-buffer region 8 and the n-
layer 2 as base, p- with substrate emitter electrode 14;
A pnp transistor with the substrate 1 as its collector is driven, and holes pass through the n- layer 2, the p- layer 1, and the substrate emitter electrode 14. The base region of this pnp transistor is very small because it consists of an n buffer region 8 and an n- layer 2 sandwiched between it and a p- substrate 1, and since it is a narrow base transistor, hfe is high. Therefore, a narrow base pnp with high hfe with a small electron current
Since the transistor is driven, the on-voltage is low, conductivity modulation occurs when it is on, and the area where carriers accumulate is narrow, so the turn-off time is shortened. Figure 3 shows the IV characteristics.
line 3 than the conventional three-terminal horizontal IGBT shown by line 31.
As shown by 2, a low on-voltage can be obtained. FIG. 4 is a trade-off curve between saturation voltage and turn-off time, and the turn-off time shifts toward a shorter line 42 in the case of the four-terminal type compared to line 41 in the case of the three-terminal type.
【0011】また、p+ コレクタ領域9, nバッフ
ァ領域8およびn− 層2, pベース領域3よりなる
pnpトランジスタによる正孔電流はエミッタ電極12
に流入するが、p+ コレクタ領域9, nバッファ領
域8およびn− 層2, p− 基板1によりなるpn
pトランジスタによる正孔電流は、上述のように基板エ
ミッタ電極14へ抜けるため、エミッタ電極12への集
中が起こらず、ラッチアップが起こりにくい。従って図
5に示すように、三端子型では線51上の点で破壊して
いたのに対し、四端子型では線52上の点で破壊するの
で、破線50で示す安全動作領域が確保され、安全動作
領域が拡大する。Further, the hole current generated by the pnp transistor consisting of the p+ collector region 9, the n buffer region 8, the n− layer 2, and the p base region 3 flows through the emitter electrode 12.
The pn layer is formed by the p+ collector region 9, the n buffer region 8, the n− layer 2, and the p− substrate 1.
Since the hole current generated by the p-transistor flows to the substrate emitter electrode 14 as described above, it is not concentrated on the emitter electrode 12 and latch-up is less likely to occur. Therefore, as shown in FIG. 5, the three-terminal type breaks down at a point on the line 51, whereas the four-terminal type breaks down at a point on the line 52, so the safe operating area shown by the broken line 50 is secured. , the safe operating area expands.
【0012】図6は本発明の別の実施例を示し、従来よ
り知られたスイッチング速度を速める一般的手段として
のコレクタショート構造を採用している。すなわち、n
バッファ領域8の表面層内に選択的にp+ コレクタ領
域9が形成され、p+ コレクタ領域9とその中間部に
形成されたn+ コレクタ領域81に共通にコレクタ電
極13が接触し、コレクタショート構造になっている。
しかし、コレクタショート構造をもつ素子の伝導度変調
は、p+ コレクタ領域9直下のnバッファ領域8を流
れる電流による電位降下によりp+ /n接合が順バイ
アスすることにより発生するため、p+ コレクタ領域
9直下のnバッファ領域8の抵抗が低い場合には、低電
流領域では伝導度変調が発生しない。このためこのよう
な素子のI−V特性は、図3の線33に示すように非コ
レクタショート構造のIGBT特性32に比較して低電
流領域のオン電圧が非常に高くなり、通常使用する電流
領域でも充分オン電圧が低下しないと共に負性抵抗成分
を示すようになる。この負性抵抗は過渡オンロス等の損
失の増加を招くと共に、ノイズの発生原因となるなどの
問題があり、高周波駆動する際にも障害となる。FIG. 6 shows another embodiment of the present invention, which employs a collector short structure as a conventional means of increasing switching speed. That is, n
A p+ collector region 9 is selectively formed in the surface layer of the buffer region 8, and a collector electrode 13 is in common contact with the p+ collector region 9 and an n+ collector region 81 formed in the middle thereof, resulting in a collector short structure. ing. However, conductivity modulation in an element with a collector short structure occurs when the p+/n junction is forward biased due to a potential drop due to the current flowing through the n buffer region 8 directly under the p+ collector region 9. When the resistance of the n-buffer region 8 is low, conductivity modulation does not occur in the low current region. Therefore, as shown by line 33 in FIG. 3, the I-V characteristics of such an element have a much higher on-voltage in the low current region than the IGBT characteristics 32 with a non-collector short structure, and the normally used current Even in this region, the on-voltage does not drop sufficiently and a negative resistance component begins to appear. This negative resistance causes problems such as an increase in losses such as transient on-loss and causes noise generation, and also becomes an obstacle when driving at a high frequency.
【0013】図7はこの点を改善した実施例で、図6と
異なる点の一つは、p+ コレクタ領域9の形状で、深
い方で広く、表面に近い方で狭くなっている。このよう
なp+コレクタ領域9は、図6と同様に分離したp+
領域9を形成後、その中間部の表面から不純物をp+
領域よりも浅く拡散させてn− バッファ領域8と同程
度の抵抗のn− 層82を形成し、さらにその表面層を
低抵抗のn+ コンタクト層83とすることにより形成
される。異なる点の他の一つは、n+ コンタクト層8
3の表面上に絶縁膜15が残されていることである。こ
の絶縁膜15は、ゲート酸化膜5のパターニングの時に
その一部を残しておくことにより容易に形成される。FIG. 7 shows an embodiment that improves this point. One difference from FIG. 6 is the shape of the p+ collector region 9, which is wider in the deeper region and narrower in the region closer to the surface. Such a p+ collector region 9 is a separated p+ collector region 9 as in FIG.
After forming region 9, impurities are removed from the intermediate surface of p+
It is formed by forming an n- layer 82 having a resistance similar to that of the n- buffer region 8 by diffusing it to a depth shallower than that of the n-buffer region 8, and further forming an n+ contact layer 83 having a low resistance on its surface layer. Another difference is that the n+ contact layer 8
The insulating film 15 remains on the surface of 3. This insulating film 15 is easily formed by leaving a portion of the gate oxide film 5 when patterning it.
【0014】このようなIGBTにおいては、電圧印加
によりn+ エミッタ領域4からチャネル領域7を通っ
てn− 層2に流入した電子電流は、p+ コレクタ領
域9直下の抵抗の低いnバッファ領域8を通過する。コ
レクタ電極13は一部絶縁されているので、電位の低い
n+ コンタクト層83まで電子電流が流れるため、p
+コレクタ領域9に沿って流れる距離が長くなり、少な
い電流で大きな電位降下が発し、低電流領域においても
伝導度変調が生ずる。さらに伝導度変調が大きくなり、
n−層2が低抵抗化すると、電流はn+ コンタクト層
83に沿って流れなくなるため、伝導度変調の正帰還が
おこりやすく、図3の線33に示すような負性抵抗が発
生しにくくなり、オン時のロスの低減が達せられる。し
かし、図6に示した実施例でn+ コレクタ領域81と
コレクタ電極13の間に局部的に絶縁膜15を設けるだ
けでも、負性抵抗発生の防止に効果がある。In such an IGBT, an electron current flowing from the n+ emitter region 4 through the channel region 7 into the n− layer 2 due to voltage application passes through the low resistance n buffer region 8 directly under the p+ collector region 9. do. Since the collector electrode 13 is partially insulated, an electron current flows to the n+ contact layer 83, which has a low potential.
+The distance flowing along the collector region 9 becomes longer, a large potential drop occurs with a small current, and conductivity modulation occurs even in the low current region. Furthermore, the conductivity modulation becomes larger,
When the resistance of the n- layer 2 is reduced, current no longer flows along the n+ contact layer 83, so positive feedback due to conductivity modulation is likely to occur, and negative resistance as shown by line 33 in FIG. 3 is less likely to occur. , a reduction in loss during on-time can be achieved. However, in the embodiment shown in FIG. 6, simply providing the insulating film 15 locally between the n+ collector region 81 and the collector electrode 13 is effective in preventing the generation of negative resistance.
【0015】以上nチャネル横型IGBTについて説明
したが、導電型を入れ換えたpチャネル横型IGBTに
おいても上記特性が得られることは明らかである。また
、横型MOS制御サイリスタ (MCT) のような他
の横型伝導度変調型半導体装置においても実施できる。Although the n-channel lateral IGBT has been described above, it is clear that the above characteristics can also be obtained in a p-channel lateral IGBT in which the conductivity types are switched. It can also be implemented in other lateral conductivity modulated semiconductor devices such as lateral MOS controlled thyristors (MCTs).
【0016】[0016]
【発明の効果】本発明によれば、RESURF構造でエ
ミッタ電極,コレクタ電極の設けられる側の第二導電型
の第二層の下に存在する第一導電型の第一層にも副エミ
ッタ電極を設け、エミッタ電極と接続することにより、
コレクタ電極, エミッタ電極間でナローベースバイポ
ーラトランジスタの駆動が可能となり、このトランジス
タはhfeが高いためオン電圧が低くなり、伝導度変調
が発生する領域が狭いためターンオフ時間が短くなり、
スイッチング時のパワー損失の低減を図ることができる
。また並列の二つのトランジスタの一方の電流を副エミ
ッタ電極に逃がすため、チャネル領域の隣りのエミッタ
領域に接触するエミッタ電極への電流の集中が防止され
、安全動作領域の拡大した横型伝導度変調型半導体装置
を得ることができた。According to the present invention, in the RESURF structure, the first layer of the first conductivity type that exists under the second layer of the second conductivity type on the side where the emitter electrode and the collector electrode are provided also has a sub-emitter electrode. By providing and connecting to the emitter electrode,
It is possible to drive a narrow base bipolar transistor between the collector electrode and the emitter electrode, and this transistor has a high hfe, so the on-voltage is low, and the area where conductivity modulation occurs is narrow, so the turn-off time is shortened.
Power loss during switching can be reduced. In addition, since the current of one of the two transistors in parallel is released to the sub-emitter electrode, the concentration of current to the emitter electrode that contacts the emitter region next to the channel region is prevented, and the safe operation area is expanded. We were able to obtain a semiconductor device.
【0017】さらにコレクタショート構造を採用するこ
とにより一層スイッチング時のパワー損失を減らすこと
が可能で、その場合、コレクタ電極とバッファ領域との
接触面積を制約することにより、素子の面積を大幅に増
加することなく低電流領域でもコレクタ領域からのキャ
リア注入による伝導度変調を起こしやすくすることがで
きた。これにより、通常使用する電流領域での低オン電
圧化が得られると共に、ノイズ発生等の問題のある負性
抵抗特性が起こりにくくなり、オン時のパワーロスを低
減した横型伝導度変調型MOSFET、中でも特に一般
的な横型IGBTを得ることができた。Furthermore, by adopting a collector short structure, it is possible to further reduce power loss during switching, and in that case, by restricting the contact area between the collector electrode and the buffer region, the area of the element can be significantly increased. We were able to make conductivity modulation more likely to occur due to carrier injection from the collector region even in the low current region without having to do so. As a result, it is possible to obtain a low on-voltage in the normally used current range, and it is also less likely to cause problematic negative resistance characteristics such as noise generation. In particular, we were able to obtain a commonly used horizontal IGBT.
【図1】本発明の一実施例の横型IGBTの要部断面図
[Fig. 1] A sectional view of a main part of a horizontal IGBT according to an embodiment of the present invention.
【図2】従来の横型IGBTの要部断面図[Figure 2] Cross-sectional view of main parts of a conventional horizontal IGBT
【図3】本発
明の一実施例および従来例の横型IGBTの電流・電圧
特性線図[Fig. 3] Current/voltage characteristic diagrams of lateral IGBTs according to an embodiment of the present invention and a conventional example
【図4】本発明の一実施例および従来例の横型IGBT
のターンオフ時間と飽和電圧のトレードオフ線図[Fig. 4] Horizontal IGBT according to an embodiment of the present invention and a conventional example
Trade-off diagram of turn-off time and saturation voltage
【図5
】本発明の一実施例のIGBTの安全動作領域線図[Figure 5
] Safe operating area diagram of IGBT according to an embodiment of the present invention
【図6】本発明の別の実施例の横型IGBTの要部断面
図FIG. 6 is a sectional view of a main part of a horizontal IGBT according to another embodiment of the present invention.
【図7】本発明のさらに別の実施例の横型IGBTの要
部断面図FIG. 7 is a sectional view of a main part of a horizontal IGBT according to still another embodiment of the present invention.
1 p− 基板 2 n− 層 3 pベース領域 4 n+ エミッタ領域 5 ゲート酸化膜 6 ゲート電極 7 チャネル領域 8 nバッファ領域 9 p+ コレクタ領域 10 p+ 埋込領域 12 エミッタ電極 13 コレクタ電極 14 基板エミッタ電極 15 絶縁膜 83 コンタクト層 1 p- board 2 n- layer 3 P base region 4 n+ emitter region 5 Gate oxide film 6 Gate electrode 7 Channel area 8 N buffer area 9 p+ collector area 10 p+ embedding area 12 Emitter electrode 13 Collector electrode 14 Substrate emitter electrode 15 Insulating film 83 Contact layer
Claims (5)
第二導電型の第二層と、その第二層の表面層内に選択的
に形成され第一層と第一導電型の領域によって連結され
た第一導電型のベース領域と、そのベース領域の表面層
内に選択的に形成された第二導電型領域と、その第二導
電型領域と前記第二層の表面露出部にはさまれた前記ベ
ース領域の表面上に絶縁膜を介して設けられたゲート電
極と、前記第二導電型領域とベース領域に共通に接触す
るエミッタ電極と、前記第二層の表面部に前記ベース領
域から離れて形成された第二導電型で第二層より不純物
濃度の高いバッファ領域と、そのバッファ領域の表面層
内に選択的に形成された第一導電型のコレクタ領域と、
そのコレクタ領域に接触するコレクタ電極とを有するも
のにおいて、第一層に接触し、エミッタ電極に接続され
る副エミッタ電極を備えたことを特徴とする横型伝導度
変調型半導体装置。Claim 1: A first layer of a first conductivity type, a second layer of a second conductivity type laminated thereon, and a first layer selectively formed within the surface layer of the second layer. a base region of a first conductivity type connected by a region of a conductivity type; a region of a second conductivity type selectively formed in a surface layer of the base region; and a region of the second conductivity type and the second layer. a gate electrode provided on the surface of the base region sandwiched between the surface exposed portions via an insulating film; an emitter electrode commonly in contact with the second conductivity type region and the base region; a buffer region of a second conductivity type and having a higher impurity concentration than the second layer formed on the surface portion away from the base region; and a collector region of the first conductivity type selectively formed in the surface layer of the buffer region. and,
1. A lateral conductivity modulation type semiconductor device having a collector electrode in contact with the collector region thereof, and further comprising a sub-emitter electrode in contact with the first layer and connected to the emitter electrode.
域がバッファ領域の表面露出部をはさみ、コレクタ電極
がバッファ領域の表面露出部およびコレクタ領域表面に
共通に接触する横型伝導度変調型半導体装置。2. A lateral conductivity modulated semiconductor device according to claim 1, wherein the collector region sandwiches the exposed surface portion of the buffer region, and the collector electrode commonly contacts the exposed surface portion of the buffer region and the surface of the collector region. .
極とバッファ領域表面露出部との間に局部的に絶縁膜が
介在する横型伝導度変調型半導体装置。3. A lateral conductivity modulation type semiconductor device according to claim 2, wherein an insulating film is locally interposed between the collector electrode and the exposed surface portion of the buffer region.
域直下のバッファ領域からコレクタ領域を貫通する第一
導電型のバッファ領域接続部とを備え、そのバッファ領
域接続部はコレクタ領域底部より表面に近づくにつれて
広がっており、その広がった部分の表面露出部にコレク
タ領域表面と共通にコレクタ電極が接触する横型伝導度
変調型半導体装置。4. The device according to claim 1, further comprising a first conductivity type buffer region connecting portion extending from the buffer region immediately below the collector region to the collector region, the buffer region connecting portion extending from the bottom of the collector region to the surface. A lateral conductivity modulation type semiconductor device in which the collector electrode is in common contact with the surface of the collector region, and the exposed surface portion of the widened portion is in common contact with the surface of the collector region.
極とバッファ領域接続部の表面露出部との間に局部的に
絶縁膜が介在する横型伝導度変調型半導体装置。5. A lateral conductivity modulation type semiconductor device according to claim 4, wherein an insulating film is locally interposed between the collector electrode and the exposed surface portion of the buffer region connection portion.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2-221661 | 1990-08-23 | ||
JP22166190 | 1990-08-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04212464A true JPH04212464A (en) | 1992-08-04 |
Family
ID=16770280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3485891A Pending JPH04212464A (en) | 1990-08-23 | 1991-03-01 | Horizontal conductivity modulation type semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04212464A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5637908A (en) * | 1994-09-28 | 1997-06-10 | Harris Corporation | Structure and technique for tailoring effective resistivity of a SIPOS layer by patterning and control of dopant introduction |
DE102007030804A1 (en) | 2007-01-29 | 2008-08-07 | Mitsubishi Electric Corporation | Semiconductor device |
-
1991
- 1991-03-01 JP JP3485891A patent/JPH04212464A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5637908A (en) * | 1994-09-28 | 1997-06-10 | Harris Corporation | Structure and technique for tailoring effective resistivity of a SIPOS layer by patterning and control of dopant introduction |
DE102007030804A1 (en) | 2007-01-29 | 2008-08-07 | Mitsubishi Electric Corporation | Semiconductor device |
JP2008186921A (en) * | 2007-01-29 | 2008-08-14 | Mitsubishi Electric Corp | Semiconductor device |
US7473965B2 (en) | 2007-01-29 | 2009-01-06 | Mitsubishi Electric Corporation | Structure of a high breakdown voltage element for use in high power applications |
US7786532B2 (en) | 2007-01-29 | 2010-08-31 | Mitsubishi Electric Corporation | Structure of a high breakdown voltage element for use in high power application |
DE102007030804B4 (en) * | 2007-01-29 | 2013-06-06 | Mitsubishi Electric Corporation | Semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5068700A (en) | Lateral conductivity modulated mosfet | |
US5631483A (en) | Power device integrated structure with low saturation voltage | |
JPH06125078A (en) | Semiconductor device | |
JPH0883897A (en) | Mos control type thyristor | |
JPH0575110A (en) | Semiconductor device | |
JPH043981A (en) | Conductivity-modulation mosfet | |
JPH04291767A (en) | Conductivity modulation mosfet | |
JPH09321290A (en) | Semiconductor device with insulted gate bipolar transistor | |
JPH03194974A (en) | Mos type semiconductor device | |
JPH053205A (en) | Insulated-gate bipolar transistor | |
JP3206395B2 (en) | Semiconductor device | |
JP2601862B2 (en) | Anode short type conductive modulation MOSFET | |
JPH04212464A (en) | Horizontal conductivity modulation type semiconductor device | |
JPH0529628A (en) | Insulating-gate type bipolar transistor | |
JPH07226511A (en) | Semiconductor device | |
JP2581233B2 (en) | Horizontal conductivity modulation MOSFET | |
JP2856257B2 (en) | P-channel insulated gate bipolar transistor | |
JP3161092B2 (en) | Dual gate MOS thyristor | |
JP3116667B2 (en) | Semiconductor device | |
JP3271396B2 (en) | Insulated gate bipolar transistor | |
JPH04320377A (en) | Insulated gate bipolar transistor | |
JP3289880B2 (en) | MOS control thyristor | |
US5606183A (en) | Double-gated turn-off thyristor | |
JP2001358339A (en) | Semiconductor device having insulated gate bipolar transistor | |
JPH0479376A (en) | Horizontal conductivity modulation type-semiconductor device and manufacture thereof |