JPH04212212A - Oxide superconductive wire, manufacture thereof, and treating method therefor - Google Patents
Oxide superconductive wire, manufacture thereof, and treating method thereforInfo
- Publication number
- JPH04212212A JPH04212212A JP3067068A JP6706891A JPH04212212A JP H04212212 A JPH04212212 A JP H04212212A JP 3067068 A JP3067068 A JP 3067068A JP 6706891 A JP6706891 A JP 6706891A JP H04212212 A JPH04212212 A JP H04212212A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting wire
- metal sheath
- oxide
- superconductor
- wire according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 239000002887 superconductor Substances 0.000 claims abstract description 67
- 239000004033 plastic Substances 0.000 claims abstract description 20
- 238000005452 bending Methods 0.000 claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims description 61
- 239000002184 metal Substances 0.000 claims description 61
- 238000010438 heat treatment Methods 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 26
- 239000000126 substance Substances 0.000 claims description 11
- 229910052797 bismuth Inorganic materials 0.000 claims description 10
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 229910052745 lead Inorganic materials 0.000 claims description 3
- 229910015901 Bi-Sr-Ca-Cu-O Inorganic materials 0.000 claims 1
- 239000000843 powder Substances 0.000 description 22
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 12
- 229910052709 silver Inorganic materials 0.000 description 12
- 239000004332 silver Substances 0.000 description 12
- 238000005096 rolling process Methods 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000005491 wire drawing Methods 0.000 description 8
- 239000010949 copper Substances 0.000 description 7
- 239000000919 ceramic Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 4
- 229910052716 thallium Inorganic materials 0.000 description 4
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 4
- 229910052727 yttrium Inorganic materials 0.000 description 4
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 229910002480 Cu-O Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000003353 gold alloy Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910016264 Bi2 O3 Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N lead(II) oxide Inorganic materials [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- LEDMRZGFZIAGGB-UHFFFAOYSA-L strontium carbonate Chemical compound [Sr+2].[O-]C([O-])=O LEDMRZGFZIAGGB-UHFFFAOYSA-L 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Wire Processing (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は、酸化物超電導線材、
その製造方法およびその取扱方法に関するもので、特に
、超電導線材が与える臨界電流密度の耐歪特性を向上さ
せるための改良に関するものである。[Industrial Application Field] This invention relates to oxide superconducting wire,
The present invention relates to a method for producing the same and a method for handling the same, and in particular, it relates to an improvement for improving the strain resistance of the critical current density provided by the superconducting wire.
【0002】0002
【従来の技術】近年、より高い臨界温度を示す超電導材
料として、セラミックス系のもの、すなわち、酸化物超
電導材料が注目されている。中でも、イットリウム系が
90K、ビスマス系が110K、タリウム系が120K
程度の高い臨界温度を示すことから、その実用化が期待
されている。2. Description of the Related Art In recent years, ceramic-based materials, ie, oxide superconducting materials, have attracted attention as superconducting materials exhibiting higher critical temperatures. Among them, yttrium type is 90K, bismuth type is 110K, and thallium type is 120K.
Since it exhibits a relatively high critical temperature, its practical application is expected.
【0003】このような酸化物超電導材料からなる超電
導体を用いて、長尺の超電導線材または適宜の基板上に
配線される超電導パターンのような超電導線材を得るた
めの方法として、原料粉末を金属シースにて被覆した状
態とし、これを熱処理することにより、原料粉末を所望
のごとく超電導体化して、超電導体が金属シースにて被
覆されてなる超電導線材を製造する方法が知られている
。得られた超電導線材は、より具体的には、ケーブル、
ブスバー、パワーリード、マグネット、コイルなどに応
用することができる。[0003] As a method for obtaining a superconducting wire such as a long superconducting wire or a superconducting pattern wired on a suitable substrate using a superconductor made of such an oxide superconducting material, raw material powder is mixed with metal. There is a known method for manufacturing a superconducting wire in which a superconductor is covered with a metal sheath by turning raw material powder into a desired superconductor by heat-treating the powder coated with a sheath. More specifically, the obtained superconducting wire can be used as a cable,
It can be applied to bus bars, power leads, magnets, coils, etc.
【0004】0004
【発明が解決しようとする課題】上述したような超電導
線材をケーブルまたはマグネット等に応用しようとする
には、高い臨界温度に加えて、高い臨界電流密度を有し
ていることが必要である。特に、使用する磁場において
必要な臨界電流密度を確保しなければならないだけでな
く、使用される歪の下で高い臨界電流密度を維持できる
ことが必要である。[Problems to be Solved by the Invention] In order to apply the above-mentioned superconducting wire to cables, magnets, etc., it is necessary to have a high critical current density in addition to a high critical temperature. In particular, it is not only necessary to ensure the required critical current density in the magnetic field used, but also to be able to maintain a high critical current density under the used strains.
【0005】しかしながら、酸化物超電導体を含む超電
導線材は、臨界電流密度の耐歪特性が極めて劣っており
、たとえば、ある曲率で曲げた場合、臨界電流密度が低
下するという欠点があった。[0005] However, superconducting wires containing oxide superconductors have extremely poor strain resistance characteristics at critical current density, and have the drawback that, for example, when bent at a certain curvature, the critical current density decreases.
【0006】それゆえに、この発明の目的は、歪が加え
られた場合でも、臨界電流密度の低下がそれほど生じな
い、超電導線材およびその製造方法を提供しようとする
ことである。[0006] Therefore, an object of the present invention is to provide a superconducting wire and a method for manufacturing the same, in which the critical current density does not decrease significantly even when strain is applied.
【0007】この発明の他の目的は、上述のような超電
導線材の好ましい取扱方法を提供しようとすることであ
る。Another object of the present invention is to provide a preferred method for handling superconducting wires as described above.
【0008】[0008]
【課題を解決するための手段】この発明による超電導線
材は、いわゆる多芯構造を有しており、金属シースと、
金属シース内において、互いに独立して金属シースの厚
み方向に分布された複数の超電導体とを備える。個々の
超電導体の厚み方向寸法は、金属シースの厚み方向外形
寸法の5%以下にされる。[Means for Solving the Problems] A superconducting wire according to the present invention has a so-called multicore structure, and has a metal sheath,
The metal sheath includes a plurality of superconductors distributed independently of each other in the thickness direction of the metal sheath. The thickness direction dimension of each superconductor is set to 5% or less of the thickness direction external dimension of the metal sheath.
【0009】この発明は、酸化物超電導体によって超電
導体が構成されるときに、特に有利に適用される。The present invention is particularly advantageously applied when the superconductor is composed of an oxide superconductor.
【0010】この発明では、また、上述のような酸化物
超電導体を含む超電導線材の製造方法が提供される。こ
の製造方法は、酸化物超電導体が第1の金属シースにて
被覆されてなる複数の素線材を準備するステップと、前
記複数の素線材を第2の金属シース内に充填するステッ
プと、個々の前記素線材に含まれていた超電導体の厚み
を第2の金属シースの厚み方向外形寸法の5%以下にし
かつ前記第2の金属シースをテープ状に変形させるよう
に、前記複数の素線材を充填した第2の金属シースに対
して断面方向に圧縮荷重が加わる塑性加工を少なくとも
1回施すステップとを備えている。なお、各々複数の素
線材を充填した複数の第2の金属シースをさらに第3の
金属シースに充填し、塑性加工を施すステップを、さら
に少なくとも1回繰返してもよい。The present invention also provides a method for manufacturing a superconducting wire containing the above-described oxide superconductor. This manufacturing method includes the steps of: preparing a plurality of wire materials in which an oxide superconductor is covered with a first metal sheath; filling the plurality of wire materials into a second metal sheath; The plurality of wire materials are arranged so that the thickness of the superconductor contained in the wire materials is 5% or less of the external dimension in the thickness direction of the second metal sheath, and the second metal sheath is deformed into a tape shape. and performing plastic working at least once in which a compressive load is applied in the cross-sectional direction to the second metal sheath filled with the second metal sheath. Note that the step of further filling a third metal sheath with a plurality of second metal sheaths each filled with a plurality of wire strands and subjecting the third metal sheath to plastic working may be further repeated at least once.
【0011】この発明では、また、酸化物超電導線材の
取扱方法が提供される。酸化物超電導線材は、厚み方向
寸法を有する金属シースと、前記金属シース内において
、互いに独立して前記厚み方向に分布された複数の酸化
物超電導体とを備え、個々の前記酸化物超電導体の厚み
方向寸法が前記金属シースの厚み方向外形寸法の5%以
下にされたものであって、このような酸化物超電導線材
は、歪(金属シースの厚み/曲げ直径)を0.3%以下
の範囲内に制御しながら取扱われる。The present invention also provides a method for handling oxide superconducting wire. The oxide superconducting wire includes a metal sheath having a dimension in the thickness direction, and a plurality of oxide superconductors distributed independently in the thickness direction within the metal sheath, and each of the oxide superconductors The dimension in the thickness direction is 5% or less of the external dimension in the thickness direction of the metal sheath, and such an oxide superconducting wire has a strain (thickness of the metal sheath/bending diameter) of 0.3% or less. It is handled within a controlled manner.
【0012】0012
【作用】超電導体に、一旦、クラックが入ると、それが
容易に伝播する傾向がある。この傾向は、セラミックで
ある酸化物超電導体において顕著である。したがって、
歪の大きさがある値を越えた場合、超電導体にクラック
が発生し、このように一旦発生したクラックは、歪の小
さい部分へも伝播して、臨界電流密度の低下を招く。し
かしながら、このの発明によれば、超電導体の厚みを所
定の値以下にするように、超電導体を分割しているので
、流れ得る電流の大きさを小さくすることなく、クラッ
クの伝播を阻止することができる。これによって、臨界
電流密度の耐歪特性を向上させることが可能になる。[Operation] Once a crack occurs in a superconductor, it tends to propagate easily. This tendency is remarkable in oxide superconductors which are ceramics. therefore,
If the amount of strain exceeds a certain value, cracks will occur in the superconductor, and once such cracks have occurred, they will propagate to areas with less strain, resulting in a decrease in critical current density. However, according to this invention, since the superconductor is divided so that the thickness of the superconductor is kept below a predetermined value, the propagation of cracks can be prevented without reducing the magnitude of the current that can flow. be able to. This makes it possible to improve the strain resistance of critical current density.
【0013】[0013]
【発明の効果】したがって、この発明によれば、歪が与
えられても、臨界電流密度がそれほど低下しない超電導
線材が得られる。それゆえに、特に耐歪特性が問題とな
る酸化物超電導線材を、歪が加えられる用途、たとえば
ケーブルまたはマグネットなどに問題なく応用すること
が可能になる。Therefore, according to the present invention, a superconducting wire can be obtained in which the critical current density does not decrease significantly even when strain is applied. Therefore, it becomes possible to apply oxide superconducting wires, in particular where strain resistance is a problem, to applications where strain is applied, such as cables or magnets, without any problems.
【0014】この発明において、超電導体として、酸化
物超電導体が用いられるとき、このような酸化物超電導
体は、好ましくは、厚み方向にc軸配向させている。In the present invention, when an oxide superconductor is used as the superconductor, such oxide superconductor is preferably c-axis oriented in the thickness direction.
【0015】また、上述の酸化物超電導体としては、イ
ットリウム系、ビスマス系またはタリウム系のいずれで
あってもよい。しかしながら、特にビスマス系酸化物超
電導体が最適である。ビスマス系酸化物超電導体は、B
i−Sr−Ca−Cu−Oまたは(Bi,Pb)−Sr
−Ca−Cu−Oの成分を有するものであるが、このよ
うな成分のBiまたは(Bi,Pb)−Sr−Ca−C
uが2223組成である、臨界温度110Kを示す22
23相が、そのa−b面を電流の流れる方向に配向させ
ているものが、さらに好ましい。この発明によれば、1
10Kの臨界温度を示す2223相のa−b面を、電流
の流れる方向に配向させた構造を容易に得ることができ
る。The above-mentioned oxide superconductor may be yttrium-based, bismuth-based, or thallium-based. However, bismuth-based oxide superconductors are particularly suitable. Bismuth-based oxide superconductor is B
i-Sr-Ca-Cu-O or (Bi,Pb)-Sr
-Ca-Cu-O, but such components Bi or (Bi, Pb)-Sr-Ca-C
22 exhibiting a critical temperature of 110 K, where u has a composition of 2223
More preferably, the 23 phases have their a-b planes oriented in the direction of current flow. According to this invention, 1
A structure in which the a-b plane of the 2223 phase exhibiting a critical temperature of 10 K is oriented in the direction of current flow can be easily obtained.
【0016】また、ビスマス系酸化物超電導体は、イッ
トリウム系またはタリウム系と比較して、臨界温度およ
び臨界電流密度が高いこと、毒性が少ないこと、ならび
に希土類元素を必要としないことのすべてを満足する点
においても、特に好ましいといえる。Furthermore, compared to yttrium-based or thallium-based oxide superconductors, bismuth-based oxide superconductors satisfy all of the following requirements: high critical temperature and critical current density, low toxicity, and no need for rare earth elements. It can be said that it is particularly preferable also in that it does.
【0017】なお、イットリウム系およびタリウム系に
ついても、ビスマス系ほどではないが、配向度をある程
度改善することができるので、これらについても、この
発明によって、臨界電流密度の耐歪特性を向上させ得る
ことが見出されている。Note that the degree of orientation of yttrium-based and thallium-based materials can be improved to some extent, although not as much as that of bismuth-based materials, so the present invention can also improve the critical current density strain resistance of these materials. It has been found that
【0018】この発明において、超電導線材は、より広
い範囲での実用性を与え得るために、長手の線材の形態
とされる。[0018] In the present invention, the superconducting wire is in the form of a long wire in order to provide practicality over a wider range.
【0019】この発明による長手の線材の形態をなした
超電導線材を、さらに有機物質からなる有機被覆によっ
て被覆すると、超電導線材が示す超電導特性を、超電導
線材の曲げに対してさらに安定させることができる。[0019] When the superconducting wire in the form of a long wire according to the present invention is further coated with an organic coating made of an organic substance, the superconducting properties exhibited by the superconducting wire can be further stabilized against bending of the superconducting wire. .
【0020】前述したこの発明にかかる酸化物超電導線
材の製造方法によれば、金属シースにて被覆された酸化
物超電導体の厚みを分割して、超電導線材全体の厚みの
5%以下にすることが容易である。According to the above-described method for manufacturing an oxide superconducting wire according to the present invention, the thickness of the oxide superconductor covered with the metal sheath is divided into 5% or less of the total thickness of the superconducting wire. is easy.
【0021】また、第2の金属シース内に充填される前
に、素線材に対して伸線加工を施すことも、得られた酸
化物超電導線材に含まれる個々の超電導体の厚みの減少
に有効である。[0021] Furthermore, drawing the wire material before filling it into the second metal sheath can also reduce the thickness of each superconductor contained in the obtained oxide superconducting wire material. It is valid.
【0022】また、この発明にかかる製造方法において
適用される塑性加工によって、第2の金属シースは、好
ましくは、平角テープ状に変形される。Further, the second metal sheath is preferably deformed into a rectangular tape shape by the plastic working applied in the manufacturing method according to the present invention.
【0023】臨界電流密度の向上のためには、塑性加工
の後に熱処理することが好ましく、さらに、塑性加工と
熱処理とを複数回繰返すことがなお好ましい。[0023] In order to improve the critical current density, it is preferable to perform heat treatment after plastic working, and it is more preferable to repeat plastic working and heat treatment multiple times.
【0024】また、第2の金属シース内に充填される素
線材の本数を変えることにより、塑性加工ステップにお
いて得られた酸化物超電導線材に含まれる個々の超電導
体の厚みを容易に調整することができる。たとえば、素
線材の本数を増やせば、塑性加工後の超電導体の厚みを
容易に薄くすることができる。[0024] Furthermore, by changing the number of wire strands filled in the second metal sheath, the thickness of each superconductor included in the oxide superconducting wire obtained in the plastic working step can be easily adjusted. I can do it. For example, by increasing the number of wires, the thickness of the superconductor after plastic working can be easily reduced.
【0025】また、この発明では、酸化物超電導体を含
む超電導線材に加わる歪を、前述したように、0.3%
以下の範囲内に制御すれば、歪による超電導特性の劣化
を実質的に防止することができる。このような歪の制御
は、超電導線材を製造するためのたとえば熱処理を含む
種々の工程において、また、製造後のリールからの繰出
し、リールへの巻取り、さらには、ケーブル、ブスバー
、パワーリード、コイルなどの形態にされる場合におい
て行なわれる。このように0.3%以下の範囲に歪を制
御すれば、歪を繰返し与えても、臨界電流密度の低下が
実質的になく、したがって、種々の用途に超電導線材を
向けることができる。Furthermore, in the present invention, the strain applied to the superconducting wire containing the oxide superconductor is reduced to 0.3% as described above.
If controlled within the following range, deterioration of superconducting properties due to strain can be substantially prevented. Such distortion control is effective in various processes for manufacturing superconducting wires, including heat treatment, and also in unwinding from a reel after manufacturing, winding onto a reel, and also in cables, busbars, power leads, This is done when it is formed into a coil or the like. If the strain is controlled within the range of 0.3% or less in this manner, there is substantially no decrease in critical current density even if strain is repeatedly applied, and therefore, the superconducting wire can be used for various purposes.
【0026】また、超電導線材を0.3%以下の歪を与
える曲率で巻回した状態で熱処理すれば、熱処理時およ
び繰出時において、歪による超電導特性の劣化がないか
、ほとんどなく、特に曲げに対して安定した超電導特性
を示す超電導線材を得ることができる。[0026] Furthermore, if the superconducting wire is heat-treated while being wound with a curvature that gives a strain of 0.3% or less, there will be little or no deterioration of the superconducting properties due to strain during the heat treatment and during the unwinding, especially when bending. It is possible to obtain a superconducting wire that exhibits stable superconducting properties against.
【0027】[0027]
【実施例】この発明に従って、酸化物超電導体を含む超
電導線材を得るため、たとえば、次のような製造方法が
適用される。EXAMPLE In order to obtain a superconducting wire containing an oxide superconductor according to the present invention, for example, the following manufacturing method is applied.
【0028】まず、酸化物超電導体を第1の金属シース
に充填し、素線材を得る。この素線材に伸線加工を施し
、これによって細線化する。このように細線化された複
数の素線材を、次いで、第2の金属シース内に充填し、
さらに細線化するため、伸線加工および圧延加工のよう
な塑性加工が施される。これによって、個々の素線材に
含まれていた酸化物超電導体の厚みが、全体の厚みの5
%以下にされた酸化物超電導線材を得る。この酸化物超
電導線材は、たとえば平角テープ状をなしている。First, a first metal sheath is filled with an oxide superconductor to obtain a wire material. This raw wire material is subjected to a wire drawing process, thereby making it thin. The plurality of wire materials thinned in this way are then filled into the second metal sheath,
In order to further make the wire thinner, plastic working such as wire drawing and rolling is performed. As a result, the thickness of the oxide superconductor contained in each wire material is reduced to 55% of the total thickness.
% or less is obtained. This oxide superconducting wire has, for example, a rectangular tape shape.
【0029】この酸化物超電導線材の臨界電流密度を高
くするため、その後、さらに伸線加工および圧延加工が
施され、次いで、熱処理が行なわれる。さらに、再度、
圧延加工および熱処理が行なわれてもよい。このとき、
圧延加工に代えて伸線加工を熱処理と組合わせてもよい
。In order to increase the critical current density of this oxide superconducting wire, it is then further subjected to wire drawing and rolling, and then heat treated. Furthermore, again,
Rolling and heat treatment may also be performed. At this time,
Instead of rolling, wire drawing may be combined with heat treatment.
【0030】ビスマス系酸化物超電導体の場合には、熱
処理の温度を、2223相を支配的に生成する温度より
も、若干高くすることにより、目的とする高い臨界電流
密度を有する構造を得ることができる。In the case of a bismuth-based oxide superconductor, a structure having the desired high critical current density can be obtained by making the heat treatment temperature slightly higher than the temperature at which the 2223 phase is predominantly produced. I can do it.
【0031】また、最初に第1の金属シース内に充填さ
れる粉末は、サブミクロンの状態にしておくと、均一度
の良好な超電導体が得られる。Furthermore, if the powder initially filled into the first metal sheath is in a submicron state, a superconductor with good uniformity can be obtained.
【0032】熱処理温度は、また、熱処理雰囲気により
最適な温度が選択されるので、一義的に定めることはで
きない。たとえば、熱処理雰囲気の酸素分圧を低くする
場合には、この熱処理温度は低めとなる。[0032] The heat treatment temperature cannot be unambiguously determined because the optimum temperature is selected depending on the heat treatment atmosphere. For example, when lowering the oxygen partial pressure in the heat treatment atmosphere, the heat treatment temperature is lowered.
【0033】金属シースは、超電導線材を安定化させる
機能を有する。このような金属シースを与える金属とし
ては、超電導体と反応せず、加工性が良好で、安定化材
として機能するような比抵抗の小さなものが適しており
、たとえば銀、銀合金、金、または金合金が用いられる
。なお、この発明による製造方法では、第1および第2
の金属シースが用いられるが、特に第1の金属シースに
ついては、超電導体と反応しないものでなければならな
いが、第2の金属シースについては、このような条件を
あえて満足する必要はない。しかしながら、通常、これ
ら第1および第2の金属シースは、好ましくは、銀、銀
合金、金または金合金から構成される。特に第1の金属
シースに関して、超電導体と接触する面のみが超電導体
と反応しない金属からなる層で被覆された金属シースを
用いてもよい。その場合には、金属シースの他の部分は
、別の金属で構成されることができ、このような別の金
属としては、たとえば、銅、アルミニウム、またはそれ
らの合金が用いられ得る。[0033] The metal sheath has the function of stabilizing the superconducting wire. Suitable metals for providing such a metal sheath are those that do not react with the superconductor, have good workability, and have a low specific resistance that functions as a stabilizing material, such as silver, silver alloys, gold, Or a gold alloy is used. In addition, in the manufacturing method according to the present invention, the first and second
In particular, the first metal sheath must not react with the superconductor, but the second metal sheath does not need to satisfy these conditions. However, typically these first and second metal sheaths are preferably constructed of silver, silver alloys, gold or gold alloys. In particular, regarding the first metal sheath, a metal sheath may be used in which only the surface in contact with the superconductor is coated with a layer made of a metal that does not react with the superconductor. In that case, other parts of the metal sheath may be constructed of another metal, such as copper, aluminum, or an alloy thereof.
【0034】塑性加工には、たとえば、伸線加工、圧延
加工などがある。臨界電流密度を向上させるためには、
伸線加工においては、その加工度が80%以上であるこ
とが望ましく、圧延加工においても、その加工度が80
%以上であることが望ましい。このような塑性加工の後
に、好ましくは熱処理が施されるが、これら塑性加工お
よび熱処理は、複数回繰返されることが、臨界電流密度
の向上にさらに効果的である。たとえば、圧延加工が複
数回実施される場合、1パスの加工度が40%以上であ
ることが望ましい。熱処理が実施された後、再度、圧延
加工または伸線加工が行なわれる場合、このような加工
における加工度は、10%ないし30%程度で十分であ
る。圧延加工は、たとえば、ロールまたはプレスを用い
て実施される。[0034] Examples of plastic working include wire drawing and rolling. In order to improve the critical current density,
In wire drawing, it is desirable that the degree of work is 80% or more, and in rolling, it is desirable that the degree of work is 80% or more.
% or more is desirable. After such plastic working, heat treatment is preferably performed, and repeating these plastic working and heat treatment multiple times is more effective in improving the critical current density. For example, when rolling is performed multiple times, it is desirable that the degree of work in one pass is 40% or more. When rolling or wire drawing is performed again after heat treatment, the degree of work in such processing is sufficient to be about 10% to 30%. The rolling process is performed using, for example, a roll or a press.
【0035】また、熱処理を終えた後、得られた超電導
線材を、有機物質でさらに被覆してもよい。有機物質で
被覆するためには、たとえば、超電導線材を有機物質の
浴に通過させることを行なったり、超電導線材の表面に
有機物質を塗布することが行なわれる。Further, after the heat treatment is completed, the obtained superconducting wire may be further coated with an organic substance. To coat with an organic substance, for example, the superconducting wire is passed through a bath of an organic substance, or the surface of the superconducting wire is coated with an organic substance.
【0036】以下に、この発明に従って行なった実験例
について説明する。Experimental examples conducted according to the present invention will be explained below.
【0037】
実験例1
Bi2 O3 、PbO、SrCO3 、CaCO3
およびCuOを用いて、Bi:Pb:Sr:Ca:Cu
=1.85:0.41:2.01:2.19:2.98
の組成比になるように、これらを配合した。この配合し
たものを、大気中において、750℃で12時間、次い
で800℃で8時間、さらに減圧雰囲気1Torrにお
いて、760℃で8時間、の順に熱処理した。なお、各
熱処理後において、それぞれ、粉砕を行なった。このよ
うな熱処理を経て得られた粉末を、さらに、ボールミル
により粉砕し、サブミクロンの粉末を得た。この粉末に
対して、減圧雰囲気において、800℃で10分間、脱
ガス処理を行なった。Experimental Example 1 Bi2 O3, PbO, SrCO3, CaCO3
and CuO, Bi:Pb:Sr:Ca:Cu
=1.85:0.41:2.01:2.19:2.98
These were blended so that the composition ratio was as follows. This blend was heat treated in the air at 750°C for 12 hours, then at 800°C for 8 hours, and then in a reduced pressure atmosphere of 1 Torr at 760°C for 8 hours. In addition, after each heat treatment, pulverization was performed, respectively. The powder obtained through such heat treatment was further pulverized using a ball mill to obtain submicron powder. This powder was subjected to degassing treatment at 800° C. for 10 minutes in a reduced pressure atmosphere.
【0038】得られた粉末を直径(外径)12mmの銀
パイプに充填し、直径1.8mmになるまで伸線加工を
施した。これによって素線材を得た。このようにして得
られた素線材について、そのままの状態、あるいは所望
の本数のものを、再度、銀パイプに充填した状態として
から、伸線加工および圧延加工を施し、次いで熱処理を
加え、さらに圧延加工および熱処理を施すことにより、
以下の表1に示された試料No.1〜5を得た。The obtained powder was filled into a silver pipe with a diameter (outer diameter) of 12 mm, and wire-drawn until the diameter was 1.8 mm. In this way, a wire material was obtained. The wire material obtained in this way is filled as it is or in the desired number into a silver pipe again, then subjected to wire drawing and rolling, then heat treated, and further rolled. By processing and heat treatment,
Sample No. shown in Table 1 below. 1 to 5 were obtained.
【0039】[0039]
【表1】
各試料における超電導線材全体の厚みに対する(個
々の)超電導体の厚みは、No.1については32%、
No.2については15%、No.3については6.2
%、No.4については4.3%、のNo.5について
は2.0%であった。[Table 1] The thickness of the (individual) superconductor relative to the total thickness of the superconducting wire in each sample is as follows: 32% for 1;
No. 15% for No. 2; 6.2 for 3
%, No. For No. 4, it was 4.3%. For No. 5, it was 2.0%.
【0040】なお、このように、線材全体の厚みに対し
て、超電導体の厚みを種々に異ならせた試料を得るには
、図1および図2に示すような方法が用いられた。[0040] In order to obtain samples in which the thickness of the superconductor was varied in relation to the overall thickness of the wire, the method shown in FIGS. 1 and 2 was used.
【0041】図1および図2において、酸化物超電導体
1が第1の金属シース2にて被覆されてなる複数の素線
材3が示されている。図1では、7本の素線材3が第2
の金属シース4内に充填される。他方、図2では、19
本の素線材3が第2の金属シース5内に充填される。こ
れらの状態で、たとえば圧延加工のような塑性加工が施
される。これによって、図1では、平角テープ状の超電
導線材6が得られ、図2では、同じく平角テープ状の超
電導線材7が得られる。1 and 2, a plurality of strands 3 each having an oxide superconductor 1 covered with a first metal sheath 2 are shown. In Fig. 1, seven wire rods 3 are connected to the second
is filled into the metal sheath 4 of. On the other hand, in Figure 2, 19
A real wire material 3 is filled into the second metal sheath 5. In these conditions, plastic working such as rolling is performed. As a result, in FIG. 1, a rectangular tape-shaped superconducting wire 6 is obtained, and in FIG. 2, a rectangular tape-shaped superconducting wire 7 is obtained.
【0042】これら超電導線材6および7を比較したと
き、図1に示した超電導線材6においては、個々の酸化
物超電導体1の厚みは、超電導線材6全体の厚みの30
%程度にされる。他方、図2に示した超電導線材7にお
いては、個々の酸化物超電導体1の厚みは、超電導線材
7全体の厚みの15%程度にされる。When these superconducting wires 6 and 7 are compared, in the superconducting wire 6 shown in FIG.
%. On the other hand, in the superconducting wire 7 shown in FIG. 2, the thickness of each oxide superconductor 1 is approximately 15% of the thickness of the entire superconducting wire 7.
【0043】このように、第2の金属シース内に充填さ
れる素線材の本数により、塑性加工により得られた超電
導線材に含まれる個々の超電導体の厚みを調整すること
ができる。上述した各試料は、図1および図2に示した
手法により、個々の超電導体の厚みの比率を変更したも
のである。[0043] In this way, the thickness of each superconductor included in the superconducting wire obtained by plastic working can be adjusted by changing the number of wires filled in the second metal sheath. In each of the samples described above, the thickness ratio of each superconductor was changed by the method shown in FIGS. 1 and 2.
【0044】このようにして得られた超電導線材の各々
について、歪−臨界電流密度(液体窒素温度における)
特性を比較した。その結果が、表1に示されている。For each of the superconducting wires thus obtained, strain-critical current density (at liquid nitrogen temperature)
The characteristics were compared. The results are shown in Table 1.
【0045】表1に示した各数字は、歪を与えない場合
の臨界電流密度をJCOとし、所定の歪を与えた場合の
臨界電流密度をJC としたとき、JC /JCO×1
00[%]で計算された値を示している。[0045] Each number shown in Table 1 is expressed as JC/JCO×1, where JCO is the critical current density when no strain is applied, and JC is the critical current density when a predetermined strain is applied.
It shows the value calculated in 00[%].
【0046】表1から個々の超電導体の厚みが線材全体
の厚みの5%以下とされた試料No.4およびNo.5
が、優れた耐歪特性を有していることがわかる。From Table 1, sample No. 1 in which the thickness of each superconductor was 5% or less of the total thickness of the wire. 4 and no. 5
It can be seen that the material has excellent strain resistance.
【0047】
実験例2
Bi:Pb:Sr:Ca:Cu=1.78:0.44:
1.99:2.23:2.98の組成を持つように、各
々の元素を含む酸化物または炭酸塩を混合し、熱処理に
より、Bi+Pb:Sr:Ca:Cuの比率がほぼ2:
2:1:2となっている2212相と非超電導相とから
なる粉末を準備した。Experimental Example 2 Bi:Pb:Sr:Ca:Cu=1.78:0.44:
Oxides or carbonates containing each element are mixed to have a composition of 1.99:2.23:2.98, and by heat treatment, the ratio of Bi+Pb:Sr:Ca:Cu is approximately 2:
A powder consisting of a 2212 phase and a non-superconducting phase in a ratio of 2:1:2 was prepared.
【0048】この粉末を、8Torrの減圧雰囲気にお
いて、720℃で10時間の脱ガス処理した。[0048] This powder was degassed at 720°C for 10 hours in a reduced pressure atmosphere of 8 Torr.
【0049】得られた粉末を、まず、外径12mm、内
径8mmの銀パイプで被覆し、外径1mmになるまで伸
線加工し、次いで、これを、大きな径の銀パイプにさら
に入れて、1296本の多芯線とした。次いで、これを
、外径1mmになるまで伸線加工し、その後、0.17
mmの厚みになるまで圧延加工した。The obtained powder was first covered with a silver pipe having an outer diameter of 12 mm and an inner diameter of 8 mm, and wire-drawn to an outer diameter of 1 mm.Then, this was further put into a silver pipe with a larger diameter. There were 1296 multicore wires. Next, this was wire-drawn to an outer diameter of 1 mm, and then wire-drawn to an outer diameter of 0.17 mm.
It was rolled to a thickness of mm.
【0050】さらに、この線材を、840℃で50時間
熱処理し、その後、11.8%の加工度で圧延し、次い
で、直径50mmのアルミナ/シリカ製セラミック円筒
に巻き付けた。このような巻回状態において、線材は、
0.3%の歪を与える曲率を有していた。Further, this wire rod was heat treated at 840° C. for 50 hours, then rolled at a workability of 11.8%, and then wound around an alumina/silica ceramic cylinder having a diameter of 50 mm. In this winding state, the wire rod is
It had a curvature that gave a strain of 0.3%.
【0051】上述の状態で、線材を、840℃で50時
間熱処理した。この熱処理直後の線材の液体窒素温度で
の臨界電流密度は、7000A/cm2 であった。[0051] Under the above conditions, the wire rod was heat treated at 840°C for 50 hours. The critical current density of the wire immediately after this heat treatment at liquid nitrogen temperature was 7000 A/cm2.
【0052】次いで、線材を、円筒から繰出し、同じ直
径の円筒の周面上で曲げることおよび直線状に戻すこと
を40回繰返した後、同様に臨界電流密度を測定したと
ころ、熱処理直後と同等の値が得られた。Next, the wire was drawn out from the cylinder, bent on the circumferential surface of a cylinder of the same diameter, and returned to a straight shape 40 times.The critical current density was then measured in the same manner, and it was found to be the same as that immediately after heat treatment. The value of was obtained.
【0053】
実験例3
Bi:Pb:Sr:Ca:Cu=1.78:0.44:
1.96:2.25:2.99:の組成を持つように、
各々の元素を含む酸化物または炭酸塩を混合し、熱処理
により、2212相と非超電導相とからなる粉末を準備
した。Experimental Example 3 Bi:Pb:Sr:Ca:Cu=1.78:0.44:
So that it has a composition of 1.96:2.25:2.99:
Oxides or carbonates containing each element were mixed and heat treated to prepare a powder consisting of a 2212 phase and a non-superconducting phase.
【0054】この粉末を、11Torrの減圧雰囲気に
おいて、700℃で7時間の脱ガス処理した。[0054] This powder was degassed at 700°C for 7 hours in a reduced pressure atmosphere of 11 Torr.
【0055】得られた粉末を、外径12mm、内径8m
mの銀パイプで被覆し、外径1mmになるまで伸線加工
し、次いで、これを、大きな径の銀パイプにさらに挿入
し、1260本の多芯線を作製した。次いで、この多芯
線を、外径1mmになるまで伸線し、次いで、0.17
mmの厚みになるまで圧延加工した。[0055] The obtained powder was made into a powder with an outer diameter of 12 mm and an inner diameter of 8 m.
The wire was covered with a silver pipe having a diameter of m and was drawn to an outer diameter of 1 mm, and then further inserted into a larger diameter silver pipe to produce 1260 multifilamentary wires. Next, this multifilamentary wire was drawn to an outer diameter of 1 mm, and then to a diameter of 0.17 mm.
It was rolled to a thickness of mm.
【0056】得られた線材を2枚重ねて密着させ、密着
させた状態で、840℃で50時間熱処理し、その後、
15%の加工度で圧延した。[0056] Two pieces of the obtained wire rods were stacked and brought into close contact with each other, and while they were in close contact, they were heat-treated at 840°C for 50 hours, and then,
It was rolled with a working degree of 15%.
【0057】これによって得られた2枚重ねの線材を、
歪0.29%に相当する直径のセラミックボビンに巻付
け、840℃で50時間熱処理した。[0057] The two-ply wire rod obtained in this way is
It was wound around a ceramic bobbin with a diameter corresponding to a strain of 0.29%, and heat treated at 840° C. for 50 hours.
【0058】このように2枚重ねて密着された線材を、
同じ直径のボビンに巻替え、さらに同じ直径のテフロン
(商品名)パイプに、ピッチ60mmでスパイラル状に
巻き付けた。[0058] Two wire rods stacked and stuck together in this way are
It was re-wound onto a bobbin of the same diameter, and then spirally wound around a Teflon (trade name) pipe with the same diameter at a pitch of 60 mm.
【0059】この巻き付けたものを、半径100mmお
よび200mmとなるようにそれぞれ曲げ、これらの曲
げ操作を10回繰返した。[0059] This wound product was bent to have a radius of 100 mm and a radius of 200 mm, respectively, and these bending operations were repeated 10 times.
【0060】熱処理後、各巻替え後、および各曲げの繰
返し後のそれぞれについて、線材の液体窒素中での臨界
電流密度を測定した。結果は、いずれも、8000A/
cm2 の臨界電流密度が得られた。The critical current density of the wire in liquid nitrogen was measured after the heat treatment, after each rewinding, and after each repeated bending. The results are 8000A/
A critical current density of cm2 was obtained.
【0061】
実験例4
Bi:Pb:Sr:Ca:Cu=1.76:0.43:
1.98:2.20:3.02の組成を持つように、各
々の元素を含む酸化物または炭酸塩を混合し、熱処理に
より、2212相と非超電導相とからなる粉末を準備し
た。Experimental Example 4 Bi:Pb:Sr:Ca:Cu=1.76:0.43:
Oxides or carbonates containing each element were mixed so as to have a composition of 1.98:2.20:3.02, and a powder consisting of a 2212 phase and a non-superconducting phase was prepared by heat treatment.
【0062】この粉末を、15Torrの減圧雰囲気に
おいて、710℃で12時間の脱ガス処理した。[0062] This powder was degassed at 710°C for 12 hours in a reduced pressure atmosphere of 15 Torr.
【0063】得られた粉末を、まず、外径12mm、内
径8mmの銀パイプで被覆し、外径1mmになるまで伸
線加工し、次いで、これを、大きな径の銀パイプにさら
に入れて、1296本の多芯線とした。次いで、これを
、外径1mmになるまで伸線加工して、その後、0.1
7mmの厚みになるまで圧延加工した。The obtained powder was first covered with a silver pipe having an outer diameter of 12 mm and an inner diameter of 8 mm, and wire-drawn to an outer diameter of 1 mm.Then, this was further put into a silver pipe with a larger diameter. There were 1296 multicore wires. Next, this was wire-drawn to an outer diameter of 1 mm, and then wire-drawn to an outer diameter of 0.1 mm.
It was rolled to a thickness of 7 mm.
【0064】次いで、この線材を840℃で50時間熱
処理し、その後、11.8%の加工度で圧延し、さらに
、直径50mmのアルミナ/シリカ製セラミック円筒に
巻き付けた。この巻回した状態において、線材は、0.
3%の歪を与える曲率を有していた。[0064] Next, this wire rod was heat treated at 840°C for 50 hours, then rolled at a workability of 11.8%, and further wound around an alumina/silica ceramic cylinder having a diameter of 50 mm. In this wound state, the wire rod has a diameter of 0.
It had a curvature that gave a strain of 3%.
【0065】上述の状態で、線材を、840℃で50時
間熱処理した。[0065] Under the above conditions, the wire rod was heat treated at 840°C for 50 hours.
【0066】次いで、線材を、上述の円筒から繰出し、
フォルマールの浴に線速20m/分で通過させた後、3
50℃で焼付けることを、10回実施し、30ないし5
0ミクロンの厚みのフォルマール被覆を付与した。この
とき、すべての工程において、歪を0.3%以下に制御
した。[0066] Next, the wire is drawn out from the above-mentioned cylinder,
After passing through a formal bath at a linear speed of 20 m/min, 3
Baking at 50℃ was carried out 10 times, and 30 to 5
A formal coating of 0 micron thickness was applied. At this time, strain was controlled to 0.3% or less in all steps.
【0067】この線を、直径50mmのボビンに巻いて
コイルを作製した。このコイルは、液体窒素温度での臨
界電流密度6000A/cm2 を示した。[0067] This wire was wound around a bobbin having a diameter of 50 mm to produce a coil. This coil exhibited a critical current density of 6000 A/cm2 at liquid nitrogen temperature.
【0068】
実験例5
Bi:Pb:Sr:Ca:Cu=1.82:0.42:
1.99:2.22:3.01の組成を持つように、各
々の元素を含む酸化物または炭酸塩を混合し、熱処理に
より、2212相と非超電導相とからなる粉末を準備し
た。Experimental Example 5 Bi:Pb:Sr:Ca:Cu=1.82:0.42:
Oxides or carbonates containing each element were mixed so as to have a composition of 1.99:2.22:3.01, and a powder consisting of a 2212 phase and a non-superconducting phase was prepared by heat treatment.
【0069】この粉末を、10Torrの減圧雰囲気に
おいて、700℃で15時間の脱ガス処理した。This powder was degassed at 700° C. for 15 hours in a reduced pressure atmosphere of 10 Torr.
【0070】得られた粉末を、外径12mm、内径8m
mの銀パイプで被覆し、外径1mmになるまで伸線加工
し、次いで、これを大きな径の銀パイプにさらに挿入し
、1260本の多芯線を作製した。次いで、この多芯線
を、外径1mmになるまで伸線し、次いで、0.17m
mの厚みになるまで圧延加工した。[0070] The obtained powder was made into a powder with an outer diameter of 12 mm and an inner diameter of 8 m.
The wire was covered with a silver pipe having a diameter of m and was drawn to an outer diameter of 1 mm, and then further inserted into a larger diameter silver pipe to produce 1260 multifilamentary wires. Next, this multifilamentary wire was drawn to an outer diameter of 1 mm, and then 0.17 m
It was rolled until it had a thickness of m.
【0071】さらに、この線材を、840℃で50時間
熱処理し、その後、15%の加工度で圧延した。[0071] Further, this wire rod was heat treated at 840°C for 50 hours, and then rolled at a workability of 15%.
【0072】この線材を、歪0.29%に相当する直径
のセラミックボビンに巻付け、840℃で50時間熱処
理した。[0072] This wire was wound around a ceramic bobbin having a diameter corresponding to a strain of 0.29%, and heat treated at 840°C for 50 hours.
【0073】次いで、上述のボビンから線材を繰出し、
フォルマールの浴に通過させた後、400℃の炉で約1
0秒焼付け、これを10回繰返した。このとき、すべて
の工程において、歪を3%以下に抑えるように管理した
。これによって、厚み40ミクロンのフォルマール被覆
を有する線材を得た。Next, the wire rod is paid out from the above-mentioned bobbin,
After passing through a formal bath, it is heated in an oven at 400℃ for about 1
Baking was performed for 0 seconds, and this was repeated 10 times. At this time, strain was controlled to be suppressed to 3% or less in all steps. As a result, a wire rod having a formal coating with a thickness of 40 microns was obtained.
【0074】この線材を、ケーブルの導体として、直径
50mmのステンレス管にピッチ50mmで巻付け、半
径70cmの曲率で曲げた状態とした。[0074] This wire was wound at a pitch of 50 mm around a stainless steel tube with a diameter of 50 mm as a conductor of a cable, and bent with a curvature of 70 cm in radius.
【0075】熱処理後、フォルマール被覆後、各巻替え
後、および曲げた状態のそれぞれについて、線材の液体
窒素温度での臨界電流密度を測定したところ、いずれも
7500A/cm2 の値が得られた。[0075] The critical current density of the wire at liquid nitrogen temperature was measured after heat treatment, after formal coating, after each rewinding, and in the bent state, and a value of 7500 A/cm2 was obtained in each case.
【図1】この発明による酸化物超電導線材の製造方法に
含まれる塑性加工ステップを示す図解的断面図である。FIG. 1 is a schematic cross-sectional view showing a plastic working step included in the method for manufacturing an oxide superconducting wire according to the present invention.
【図2】図1に相当する図であって、素線材3の本数が
図1の場合より増やされた状態を示している。FIG. 2 is a diagram corresponding to FIG. 1, showing a state in which the number of strands 3 is increased compared to the case of FIG. 1;
【符号の説明】 1 酸化物超電導体 2 第1の金属シース 3 素線材 4,5 第2の金属シース 6,7 超電導線材[Explanation of symbols] 1 Oxide superconductor 2 First metal sheath 3. Wire material 4,5 Second metal sheath 6,7 Superconducting wire
Claims (18)
前記金属シース内において、互いに独立して前記厚み方
向に分布された複数の超電導体とを備え、個々の前記超
電導体の厚み方向寸法が前記金属シースの厚み方向外形
寸法の5%以下にされている、超電導線材。[Claim 1] A metal sheath having a thickness direction dimension;
A plurality of superconductors are distributed independently in the thickness direction within the metal sheath, and each of the superconductors has a thickness direction dimension of 5% or less of the thickness direction external dimension of the metal sheath. Superconducting wire.
る、請求項1に記載の超電導線材。2. The superconducting wire according to claim 1, wherein the superconductor is an oxide superconductor.
軸配向している、請求項2に記載の超電導線材。3. The oxide superconductor has c in the thickness direction.
The superconducting wire according to claim 2, which is axially oriented.
Ca−Cu−Oまたは(Bi,Pb)−Sr−Ca−C
u−Oの成分を有するビスマス系酸化物超電導体である
、請求項3に記載の超電導線材。4. The oxide superconductor is Bi-Sr-
Ca-Cu-O or (Bi,Pb)-Sr-Ca-C
The superconducting wire according to claim 3, which is a bismuth-based oxide superconductor having a u-O component.
i+Pb:Sr:Ca:Cu=1.5〜2.5:1.8
〜2.2:1.5〜2.5:2.5〜3.5の組成比を
有する、請求項4に記載の超電導線材。5. The bismuth-based oxide superconductor comprises B
i+Pb:Sr:Ca:Cu=1.5-2.5:1.8
The superconducting wire according to claim 4, having a composition ratio of ~2.2:1.5-2.5:2.5-3.5.
、それぞれ、長さ方向寸法を有する、請求項1に記載の
超電導線材。6. The superconducting wire according to claim 1, wherein the metal sheath and the superconductor each have a longitudinal dimension.
さらに備える、請求項6に記載の超電導線材。7. The superconducting wire according to claim 6, further comprising an organic substance covering the metal sheath.
被覆されてなる複数の素線材を準備し、前記複数の素線
材を第2の金属シース内に充填し、個々の前記素線材に
含まれていた超電導体の厚みを前記第2の金属シースの
厚み方向外形寸法の5%以下にしかつ前記第2の金属シ
ースをテープ状に変形させるように、前記複数の素線材
を充填した第2の金属シースに対して断面方向に圧縮荷
重が加わる塑性加工を少なくとも1回施す、各ステップ
を備える、酸化物超電導線材の製造方法。8. A plurality of strands of oxide superconductor covered with a first metal sheath are prepared, the plurality of strands are filled in a second metal sheath, and each of the oxide superconductors is coated with a first metal sheath. The plurality of wire materials are filled in such a manner that the thickness of the superconductor contained therein is 5% or less of the external dimension in the thickness direction of the second metal sheath, and the second metal sheath is deformed into a tape shape. A method for producing an oxide superconducting wire comprising the steps of performing plastic working at least once in which a compressive load is applied to the metal sheath in the cross-sectional direction.
ース内に充填するステップの前に、各前記素線材を伸線
加工するステップをさらに備える、請求項8に記載の酸
化物超電導線材の製造方法。9. The oxide superconducting wire according to claim 8, further comprising the step of drawing each of the plurality of wire materials before filling the second metal sheath with the plurality of wire materials. manufacturing method.
記第2の金属シースは平角テープ状に変形される、請求
項8に記載の酸化物超電導線材の製造方法。10. The method for manufacturing an oxide superconducting wire according to claim 8, wherein in the plastic working step, the second metal sheath is deformed into a rectangular tape shape.
酸化物超電導体を熱処理するステップをさらに備える、
請求項8に記載の酸化物超電導線材の製造方法。11. The method further comprises a step of heat treating the oxide superconductor after the plastic working step.
The method for manufacturing an oxide superconducting wire according to claim 8.
ステップとが複数回繰返される、請求項11に記載の酸
化物超電導線材の製造方法。12. The method for producing an oxide superconducting wire according to claim 11, wherein the plastic working step and the heat treatment step are repeated multiple times.
る前記素線材の本数により、前記塑性加工ステップにお
いて得られた酸化物超電導線材に含まれる個々の超電導
体の厚みを調整するステップをさらに備える、請求項8
に記載の酸化物超電導線材の製造方法。13. The step of further comprising adjusting the thickness of each superconductor included in the oxide superconducting wire obtained in the plastic working step by the number of the wires filled in the second metal sheath. Claim 8 comprising:
A method for producing an oxide superconducting wire according to .
2の金属シースを有機物質で被覆するステップをさらに
備える、請求項11に記載の酸化物超電導線材の製造方
法。14. The method for manufacturing an oxide superconducting wire according to claim 11, further comprising the step of coating the second metal sheath with an organic substance after the heat treatment step.
、前記素線材を有機物質の浴に通過させるステップを備
える、請求項14に記載の酸化物超電導線材の製造方法
。15. The method for manufacturing an oxide superconducting wire according to claim 14, wherein the step of coating with an organic substance comprises passing the wire through a bath of an organic substance.
、前記素線材の表面に有機物質を塗布するステップを備
える、請求項14に記載の酸化物超電導線材の製造方法
。16. The method for manufacturing an oxide superconducting wire according to claim 14, wherein the step of coating with an organic substance comprises a step of applying an organic substance to the surface of the wire.
を、0.3%以下の歪(歪=超電導線材の厚み/曲げ直
径)を与える曲率で巻回した状態で熱処理し、その後、
その曲率を与えている状態から繰出すステップを備える
、請求項11に記載の酸化物超電導線材の製造方法。17. In the heat treatment step, the superconducting wire is heat-treated in a state where it is wound with a curvature that gives a strain of 0.3% or less (strain=thickness of the superconducting wire/bending diameter), and then,
The method for manufacturing an oxide superconducting wire according to claim 11, comprising a step of feeding out the curvature.
、前記金属シース内において、互いに独立して前記厚み
方向に分布された複数の酸化物超電導体とを備え、個々
の前記酸化物超電導体の厚み方向寸法が前記金属シース
の厚み方向外形寸法の5%以下にされている、酸化物超
電導線材の取扱方法であって、歪(金属シースの厚み/
曲げ直径)を0.3%以下の範囲内に制御しながら超電
導線材を取扱う、酸化物超電導線材の取扱方法。18. A metal sheath having a thickness direction dimension, and a plurality of oxide superconductors distributed independently in the thickness direction within the metal sheath, wherein the thickness of each of the oxide superconductors is A method for handling an oxide superconducting wire whose dimension in the direction is 5% or less of the external dimension in the thickness direction of the metal sheath, the method comprising:
A method for handling oxide superconducting wires, which involves handling superconducting wires while controlling the bending diameter) within a range of 0.3% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06706891A JP3248190B2 (en) | 1990-03-30 | 1991-03-29 | Oxide superconducting wire, its manufacturing method and its handling method |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8705290 | 1990-03-30 | ||
JP2-238166 | 1990-09-07 | ||
JP2-87052 | 1990-09-07 | ||
JP23816790 | 1990-09-07 | ||
JP2-238167 | 1990-09-07 | ||
JP23816690 | 1990-09-07 | ||
JP06706891A JP3248190B2 (en) | 1990-03-30 | 1991-03-29 | Oxide superconducting wire, its manufacturing method and its handling method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04212212A true JPH04212212A (en) | 1992-08-03 |
JP3248190B2 JP3248190B2 (en) | 2002-01-21 |
Family
ID=27464806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06706891A Expired - Lifetime JP3248190B2 (en) | 1990-03-30 | 1991-03-29 | Oxide superconducting wire, its manufacturing method and its handling method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3248190B2 (en) |
-
1991
- 1991-03-29 JP JP06706891A patent/JP3248190B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP3248190B2 (en) | 2002-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2030558C (en) | Oxide superconductive wire, method of manufacturing the same and the products using the same | |
JPH06318409A (en) | Superconductor | |
JP3386942B2 (en) | Oxide superconducting coil and manufacturing method thereof | |
US5246917A (en) | Method of preparing oxide superconducting wire | |
JPH03138820A (en) | Manufacture of oxide superconductor | |
JPH04237910A (en) | Manufacture of bismuth oxide superconducting wire rod | |
US20030130128A1 (en) | Method of fabricating fine high temperature superconducting composites | |
US6205345B1 (en) | Oxide superconducting wire, method of preparing the same, and method of handling the same | |
JP3369225B2 (en) | Method for producing oxide high-temperature superconducting wire | |
JPH04218215A (en) | Superconductive conductor | |
JP3248190B2 (en) | Oxide superconducting wire, its manufacturing method and its handling method | |
JP3051867B2 (en) | Manufacturing method of oxide superconducting wire | |
JPH05211013A (en) | Oxide superconductor and manufacture thereof | |
JP2861444B2 (en) | Multi-core superconducting wire and its processing method | |
JP2951419B2 (en) | Method for manufacturing large-capacity oxide superconducting conductor | |
JPH04123718A (en) | Manufacture of superconducting wire rod | |
JP2841933B2 (en) | Manufacturing method of oxide superconducting wire | |
JPH06251929A (en) | Manufacture of oxide superconducting coil | |
KR0174386B1 (en) | Method for manufacturing high temperature superconducting multicore wire | |
JPH06342607A (en) | Manufacture of oxide superconductive wire rod | |
JP3350935B2 (en) | Multi-core superconducting wire | |
JP3053411B2 (en) | Manufacturing method of oxide superconducting wire | |
JP2599138B2 (en) | Method for producing oxide-based superconducting wire | |
JPH03265523A (en) | Bismuth-containing oxide superconductor and production thereof | |
JPH04292814A (en) | Manufacture of bismuth-based oxide superconductive wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20001205 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20011009 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071109 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081109 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091109 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091109 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101109 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111109 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111109 Year of fee payment: 10 |