JPH04210425A - Production of ferritic stainless steel excellent in ridging resistance - Google Patents
Production of ferritic stainless steel excellent in ridging resistanceInfo
- Publication number
- JPH04210425A JPH04210425A JP40985290A JP40985290A JPH04210425A JP H04210425 A JPH04210425 A JP H04210425A JP 40985290 A JP40985290 A JP 40985290A JP 40985290 A JP40985290 A JP 40985290A JP H04210425 A JPH04210425 A JP H04210425A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- annealing
- stainless steel
- ferritic stainless
- strain rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 238000005096 rolling process Methods 0.000 claims abstract description 47
- 238000000137 annealing Methods 0.000 claims abstract description 35
- 230000009467 reduction Effects 0.000 claims abstract description 24
- 238000005098 hot rolling Methods 0.000 claims abstract description 23
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 10
- 239000010959 steel Substances 0.000 claims abstract description 10
- 238000005097 cold rolling Methods 0.000 claims abstract description 5
- 239000010960 cold rolled steel Substances 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 abstract description 14
- 230000000694 effects Effects 0.000 description 11
- 239000000047 product Substances 0.000 description 7
- 238000001953 recrystallisation Methods 0.000 description 5
- 229910000859 α-Fe Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 239000002436 steel type Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 3
- 238000004026 adhesive bonding Methods 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 229910001035 Soft ferrite Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
[00011 [00011
【産業上の利用分野]本発明は、耐リジング性に優れた
フェライト系ステンレス鋼の製造方法に係り、製品特性
あるいは製造上において好ましい耐リジング性フェライ
ト系ステンレス鋼の製造方法を提供しようとするもので
ある。
[0002]
【従来の技術】フェライト系ステンレス鋼はオーステナ
イト系ステンレス鋼に比べ安価なこともあり、建材用途
、家業機器用途など幅広い用途に使用されている。美観
が大切にされる用途に用いられることが多いことから、
表面特性に優れることが要求される。従って、表面光沢
に優れることが必要である。ところが、フェライト系ス
テンレス鋼の特質として、プレス成型時にリジングと呼
ばれる表面の凹凸が生成することが一般によく知られて
いる。リジングの生成は製品外観を著しく損なうことか
ら、耐リジング性の向上がフェライト系ステンレス鋼に
強く求められてきている。
[0003]リジングは、凝固組織に強く影響されるこ
とが知られている。その改善方法としては、大きく二つ
に大別され、 (1)熱延条件、焼鈍条件の規定、 (
2)成分調整、による改善の検討が種々なされている。
例えば、最適熱延温度範囲と圧下率、焼鈍条件の規定(
特公昭63−26177号公報)、上記に加えて0.
1%−0,3%AIの添加と巻き取り温度の規定(特公
平1−60531号公報)、0.08%−0,5%A1
含有鋼に熱間圧延途中で再加熱を加える方法(特公平2
−1211号公報)、0.03%−0,2%A1含有鋼
に粗圧延と仕上げ圧延の間で曲げひずみを施工する方法
(特開昭62−136525号公報)、0.01%−0
,2%AIに対し圧延温度と圧下率を規定し、かつ、焼
鈍時の冷却条件を規定した方法(特公昭59−4397
7号公報)、熱間圧延に先立ち鋳片に熱処理を施す方法
(特公平2−409号公報、特公平2−411号公報)
などが提案されている。
[0004][Industrial Application Field] The present invention relates to a method of manufacturing ferritic stainless steel with excellent ridging resistance, and aims to provide a method of manufacturing ferritic stainless steel with good ridging resistance that is preferable in terms of product characteristics and manufacturing. It is. [0002] [0002] Ferritic stainless steel is cheaper than austenitic stainless steel, and is used in a wide range of applications such as building materials and household equipment. Because it is often used for purposes where aesthetics are important,
Excellent surface properties are required. Therefore, it is necessary to have excellent surface gloss. However, it is generally well known that a characteristic of ferritic stainless steel is that surface irregularities called ridging occur during press molding. Since the formation of ridging significantly impairs the appearance of the product, there is a strong demand for improved ridging resistance in ferritic stainless steel. [0003] Ridging is known to be strongly influenced by coagulation tissue. Improvement methods can be broadly divided into two categories: (1) regulation of hot rolling conditions and annealing conditions;
2) Various studies have been made on improvements by component adjustment. For example, specifying the optimum hot rolling temperature range, reduction rate, and annealing conditions (
(Japanese Patent Publication No. 63-26177), in addition to the above, 0.
Addition of 1%-0.3% AI and regulation of winding temperature (Japanese Patent Publication No. 1-60531), 0.08%-0.5% A1
A method of reheating the contained steel during hot rolling (Patent Publication No. 2)
-1211 publication), method of applying bending strain to 0.03%-0.2% A1-containing steel between rough rolling and finish rolling (JP-A-62-136525 publication), 0.01%-0
, a method in which the rolling temperature and reduction rate are specified for 2% AI, and the cooling conditions during annealing are specified (Japanese Patent Publication No. 59-4397
7), a method of heat-treating a slab prior to hot rolling (Japanese Patent Publication No. 2-409, Japanese Patent Publication No. 2-411)
etc. have been proposed. [0004]
【発明が解決しようとする課題】上記した従来の製造方
法のうち成分調整によっているものは、Atの添加を基
本にしている。しかしながら、AIの添加は鋼中に硬質
なAl2O3の生成をもたらす。その結果、熱間圧延中
あるいは冷間圧延中に圧延疵に起因した表面疵の生成が
容易に起こり得る。これは、表面特性の劣化をもたらす
ものであり、好ましくない。また、製造条件の規定によ
っているものは、鋳片に熱処理を施す方法、熱間圧延途
中で再加熱を加える方法、曲げひずみを施工する方法が
あるが、これらはいずれも製造工程の増加をもたらし製
造コストを増大させる。最適熱延温度範囲と圧下率、焼
鈍条件を規定した方法は粗圧延開始温度を1150℃以
下とし仕上げ圧延開始温度を900℃以上として第一、
第二仕上げ圧延圧下率を25%以上としたものであり、
大圧下に伴う仕上げ圧延の負荷が増加する懸念がある。
さらに、焼鈍条件温度範囲を900〜1100℃に規定
しているが、このような高温の焼鈍は酸洗工程において
肌荒れをもたらし製品特性を劣化させる。
[0005]このように、従来の方法はいずれも製品特
性の面、あるいは製造性の点から問題を有しているもの
である。製品表面特性を劣化させるような特別な成分調
整を要せず、かつ、従来の製造工程を大幅に変えること
なく耐リジング性に優れたフェライト系ステンレス鋼を
安価に製造することが従来の方法ではできない。
[00061Problems to be Solved by the Invention Among the conventional manufacturing methods described above, those based on component adjustment are based on the addition of At. However, the addition of AI results in the formation of hard Al2O3 in the steel. As a result, surface flaws due to rolling flaws can easily occur during hot rolling or cold rolling. This is undesirable because it causes deterioration of surface properties. In addition, methods that are based on specified manufacturing conditions include methods of heat treating the slab, methods of applying reheating during hot rolling, and methods of applying bending strain, but all of these methods increase the number of manufacturing steps. Increase manufacturing costs. The method of specifying the optimum hot rolling temperature range, rolling reduction rate, and annealing conditions is as follows: First, the rough rolling start temperature is set to 1150°C or lower, and the finish rolling start temperature is set to 900°C or higher.
The second finish rolling reduction ratio is 25% or more,
There is a concern that the load of finish rolling will increase due to large reduction. Further, although the annealing condition temperature range is specified as 900 to 1100°C, such high-temperature annealing causes rough skin in the pickling process and deteriorates product characteristics. [0005] As described above, all of the conventional methods have problems in terms of product characteristics or manufacturability. With conventional methods, it is possible to inexpensively produce ferritic stainless steel with excellent ridging resistance without requiring special component adjustments that would degrade the product's surface properties and without significantly changing the conventional manufacturing process. Can not. [00061
【課題を解決するための手段]本発明は上記したような
従来のものにおける課題を解決するように検討を重ねて
創案されたものであって、以下の如くである。フェライ
ト系ステンレス鋼のスラブを熱間圧延するに際し、粗圧
延のうち少なくとも1パス以上を圧下量20%以上で、
かつ、ひずみ速度2.0s−1以下の低ひずみ速度圧延
で行い、続いて連続スタンドでの仕上げ圧延により熱延
鋼帯としたのち、箱型焼鈍あるいは連続焼鈍するか、焼
鈍を省略し、その後、冷間圧延と冷延板焼鈍とを組み合
わせて冷延鋼帯を製造することを特徴とする耐リジング
性に優れたフェライト系ステンレス鋼の製造方法。即ち
、フェライト系ステンレス鋼のりジング現象は凝固組織
を継承した集合組織のコロニーの存在に主として起因す
ることが知られる。従って、耐リジング性の向上にはこ
の集合組織のランダム化が最も有効であり、この点に基
づいて、従来の提案もなされているが、従来の提案にお
いては、前述したように、現実的な製造方法として取り
得ない種々の課題を有している。
[0007]本発明はこのような状況を鑑みて、まった
く新しい視点から耐リジング性の改善を図ったものであ
る。すなわち、熱間圧延における圧延ひずみ速度の影響
に注目し、リジングに対する影響を克明に調査した結果
、1パス当たりの圧下量を20%以上確保した上で、ひ
ずみ速度を低速度に限定することによって、耐リジング
性を大幅に向上することができるという新しい知見を得
、本発明をなすに至ったのである。特に高温で行われる
粗圧延でのひずみ速度の低下は、圧延中のフェライト相
への変形の集中をもたらし、再結晶を促進させることに
よってリジングに有害な集合組織のランダム化を有効に
得しめる。
[0008]
【作用】上記したような本発明によれば、熱延粗圧延中
の少なくとも1パスの圧延速度を遅くするだけでよく、
既存の製造工程を変える必要がない。熱延に要する時間
も、仕−ヒげ圧延までの待ち時間を短縮することによっ
て実質的に従来と同程度であり、製造コストの増加はな
い。熱延板焼鈍は通常の箱型焼鈍でも、連袂焼鈍でも、
あるいは焼鈍を省略しても良い。熱延板に通常の箱型焼
鈍を施せば、最終製品の耐リジング性は著しく改善され
る。また、連続焼鈍あるいは焼鈍省略によっても従来の
製品に比ペリジジグ性が劣化することはない。
[00091本発明の基本要件は、熱延粗圧延時の低ひ
ずみ速度圧延の実施(1パス当たりの圧下量は20%以
上)にある。金属の高温変形挙動にひずみ速度が影響を
与えることは、よく知らねている。特に、再結晶挙動に
ついては動的、ならびに静的な再結晶挙動に対するひず
み速度の影響がフェライト系ステンレス鋼についても種
々検討されている[例えば、鉄と鋼、69(1983)
、p1440、鉄と鋼、70 (1984)、p725
、鉄と鋼、70 (1984)、p2152、鉄と鋼、
75 (1989)、pH93、鉄と鋼、68 (19
82)、5539、日本金属学会春季大会一般講演概要
集、 (1982−4)、p65]。しかしながら、こ
れまでフェライト系ステンレス鋼のりジング特性に対す
る熱間加工中のひずみ速度の影響が調査されたことはな
かった。発明者らは、この点に着目し熱延粗圧延時のひ
ずみ速度を変えた実験を行い、最終冷延焼鈍材のりジン
グ特性を調べた結果、リジング特性はひずみ速度に大き
く影響されることを見出した。図1は、代表的フエライ
1へ系ステンレス鋼である5US430を用いて検討し
た結果である。熱延粗圧延時のひずみ速度を低下させる
ことによってリジング高さが小さくなり、耐リジング性
が改善されることが示されており、ひずみ速度2.0以
下でその効果が大きいことがわかる。スラブ厚さは16
0m1、スラブ加熱温度は1150℃、粗圧延は各パス
25%で5パス行った。仕上がり圧延開始温度をそろえ
る目的で、第一、第二粗圧延パスのみ、ひずみ速度を変
化させ、残りの圧延はすべてひずみ速度6.0s”と一
定とした。また、図1中には熱延板の焼鈍条件として箱
型焼鈍(820℃×5時間均熱後徐冷)、連続焼鈍(8
40℃×90秒)、焼鈍省略の各条件が示されているが
、いずれにおいても上記の改善効果は認められている。
なお、ここでのりジング高さは冷延(冷延率80%)、
焼鈍(850℃×90秒)、調圧(調圧率1.0%)し
た材料から圧延方向にJISS号試験片を作製し引張り
試験機により15%のひずみを与え、粗さ試験機にて圧
延直角方向に表面粗さを測定し、Rz(十点平均粗さ)
を求めて、これをリジング高さとした。
[00101図2は、1パス当たりの圧下量とりジング
高さの関係を示したものである。ひずみ速度が大きい場
合には、5〜40%の範囲て圧下量の影響はほとんどな
い。これに対し、ひずみ速度が1.0s−’のような低
びずみ速度の条件では]−パス当たりの圧下量が20%
を越えると耐リジング性の改善効果が著しくなる。従っ
て、1パス当たりの圧下量は20%以上とする必要があ
ることが示されている。以上、熱延粗圧延時の低ひずみ
速度圧延の実施(1パス当たりの圧下量は20%以上)
という本発明によれば耐リジング特性の改善がもたらさ
れるという作用のあることを示した。本作用がどのよう
な機構によっているかは、かならずしも明確ではないが
、再結晶の促進による集合組織のランダム化が作用して
いることは明らかである。特に熱間圧延中にフェライト
とオーステナイ1への二相混合組織となるような成分系
のフェライトステンレス鋼では、ひずみ速度の低下によ
って、軟質なフェライト相へのひずみの集中が起こる。
これにより、フェライト相での実質的なひずみ増加に伴
う再結晶促進とオーステナイトのフェライト相中での加
工ひずみ誘起変態が生じ、フェライト粒の集合組織のラ
ンダム化がもたらされるものと認められる。
[00113[Means for Solving the Problems] The present invention has been devised after repeated studies to solve the above-mentioned problems in the conventional methods, and is as follows. When hot rolling a slab of ferritic stainless steel, at least one pass of rough rolling is performed with a reduction amount of 20% or more,
And, after rolling at a low strain rate of 2.0 s-1 or less, followed by finishing rolling on a continuous stand to form a hot rolled steel strip, box annealing or continuous annealing, or omitting annealing, and then A method for producing ferritic stainless steel with excellent ridging resistance, characterized by producing a cold-rolled steel strip by combining cold rolling and cold-rolled plate annealing. That is, it is known that the sliding phenomenon of ferritic stainless steel is mainly caused by the presence of colonies of texture inherited from the solidified structure. Therefore, randomization of this texture is the most effective way to improve ridging resistance, and conventional proposals have been made based on this point. There are various problems that cannot be solved as a manufacturing method. [0007] In view of this situation, the present invention aims to improve ridging resistance from a completely new perspective. In other words, we focused on the influence of the rolling strain rate in hot rolling, and as a result of a thorough investigation of its influence on ridging, we found that by securing a reduction amount of 20% or more per pass and limiting the strain rate to a low rate, The present invention was made based on the new knowledge that the ridging resistance can be significantly improved. In particular, a reduction in the strain rate during rough rolling performed at high temperatures causes concentration of deformation in the ferrite phase during rolling, promoting recrystallization and effectively randomizing the texture that is harmful to ridging. [0008] According to the present invention as described above, it is only necessary to slow down the rolling speed in at least one pass during hot rolling rough rolling,
There is no need to change existing manufacturing processes. The time required for hot rolling is also substantially the same as that of the conventional method by shortening the waiting time until finish rolling, and there is no increase in manufacturing costs. Hot-rolled sheet annealing can be either regular box annealing or continuous annealing.
Alternatively, annealing may be omitted. If the hot-rolled sheet is subjected to conventional box annealing, the ridging resistance of the final product will be significantly improved. In addition, continuous annealing or omission of annealing does not cause deterioration in relative perijig properties compared to conventional products. [00091 The basic requirement of the present invention is implementation of low strain rate rolling during rough hot rolling (reduction amount per pass is 20% or more). It is well known that strain rate affects the high-temperature deformation behavior of metals. In particular, with regard to recrystallization behavior, the influence of strain rate on dynamic and static recrystallization behavior has been variously investigated for ferritic stainless steel [e.g., Tetsu to Hagane, 69 (1983)]
, p1440, Tetsu to Hagane, 70 (1984), p725
, Tetsu to Hagane, 70 (1984), p2152, Tetsu to Hagane,
75 (1989), pH93, Tetsu to Hagane, 68 (19
82), 5539, Japanese Institute of Metals Spring Conference General Lecture Abstracts, (1982-4), p65]. However, the influence of strain rate during hot working on the gluing properties of ferritic stainless steels has never been investigated. The inventors focused on this point and conducted experiments in which the strain rate during hot rolling and rough rolling was varied, and as a result of investigating the ridging properties of the final cold-rolled annealed material, they found that the ridging properties are greatly affected by the strain rate. I found it. FIG. 1 shows the results of an investigation using 5US430, which is a typical stainless steel. It has been shown that by lowering the strain rate during rough hot rolling, the ridging height is reduced and the ridging resistance is improved, and the effect is significant at strain rates of 2.0 or less. Slab thickness is 16
0 ml, the slab heating temperature was 1150° C., and rough rolling was performed for 5 passes at 25% for each pass. In order to equalize the finish rolling start temperature, the strain rate was changed only in the first and second rough rolling passes, and the strain rate was kept constant at 6.0 s for all remaining rolling passes. The annealing conditions for the plate include box type annealing (820°C x 5 hours of soaking followed by slow cooling), continuous annealing (820°C
40°C x 90 seconds) and omitting annealing, the above-mentioned improvement effect was observed in both cases. Note that the gluing height here is cold rolled (cold rolling rate 80%),
A JISS No. test piece was prepared in the rolling direction from the annealed (850°C x 90 seconds) and pressure adjusted (pressure adjustment ratio 1.0%) material, subjected to a 15% strain using a tensile tester, and then tested using a roughness tester. Measure the surface roughness in the direction perpendicular to rolling, and calculate Rz (10-point average roughness).
This was determined as the ridging height. [00101 FIG. 2 shows the relationship between the rolling reduction amount per pass and the rolling height. When the strain rate is high, the reduction amount has almost no effect in the range of 5 to 40%. On the other hand, under conditions of low strain rate such as 1.0 s-', the reduction amount per pass is 20%.
If it exceeds 20%, the effect of improving ridging resistance becomes remarkable. Therefore, it has been shown that the amount of rolling reduction per pass needs to be 20% or more. As mentioned above, implementation of low strain rate rolling during hot rolling rough rolling (reduction amount per pass is 20% or more)
It has been shown that the present invention has the effect of improving ridging resistance. Although it is not necessarily clear what kind of mechanism this effect is based on, it is clear that randomization of the texture by promoting recrystallization is at work. Particularly in a ferritic stainless steel having a component system that forms a two-phase mixed structure of ferrite and austenite 1 during hot rolling, a decrease in the strain rate causes concentration of strain in the soft ferrite phase. It is recognized that this causes recrystallization promotion due to a substantial increase in strain in the ferrite phase and strain-induced transformation of austenite in the ferrite phase, resulting in randomization of the texture of ferrite grains. [00113
【実施例]本発明によるものの具体的な実施例について
説明すると、先ず本発明者等が用いたフェライト系ステ
ンレス鋼は次の表1に示す如くであって、代表的フェラ
イト系ステンレス鋼である5US430を初め、5US
430LX、5US444.5US410L、5UH4
09、高Si含有耐熱鋼を用いた。Cr含有量は10.
8〜18.5%まで広範囲な鋼種を用いている。なお、
本発明はフェライト系ステンレス鋼に関するものである
が、通常マルテンサイト系と呼ばれる5US410系、
高Cr系耐熱鋼であるS UH409の鋼種も含んでい
る。
[001,2]
【表1】
[00131次の表2には、各鋼種のリジング高さを本
発明条件で製造した場合と、比較条件で製造した場合と
のそれぞれを示した。本発明と比較例との条件の差は、
粗圧延時のひずみ速度の差にあるが、いずれも、スラブ
加熱後、粗圧延5パス(圧下量24.30.37.25
.33%)、仕上げ7段連続スタンドで3mmの熱延鋼
帯とした。熱延後、熱延鋼帯を箱型焼鈍し、冷間圧延に
て0.8mmの冷延板とし、連続焼鈍後、調圧率1.0
%の調圧を施した。
[0014][Example] To explain a specific example of the present invention, first, the ferritic stainless steel used by the present inventors is as shown in Table 1 below, and 5US430 is a typical ferritic stainless steel. Starting with 5US
430LX, 5US444.5US410L, 5UH4
09, high Si-containing heat-resistant steel was used. Cr content is 10.
A wide range of steel types is used, ranging from 8 to 18.5%. In addition,
The present invention relates to ferritic stainless steel, including 5US410 series, which is usually called martensitic stainless steel.
It also includes the steel type SUH409, which is a high Cr heat-resistant steel. [001,2] [Table 1] [00131] Table 2 below shows the ridging height of each steel type when manufactured under the conditions of the present invention and when manufactured under comparative conditions. The difference in conditions between the present invention and the comparative example is
The difference lies in the strain rate during rough rolling, but in both cases, after heating the slab, 5 passes of rough rolling (reduction amount 24.30.37.25
.. 33%) and finished into a 3 mm hot rolled steel strip using a 7-stage continuous stand. After hot rolling, the hot rolled steel strip was box-shaped annealed, cold rolled into a cold rolled sheet of 0.8 mm, and after continuous annealing, the pressure adjustment ratio was 1.0.
% pressure adjustment was performed. [0014]
【表2】
(0015]前記表2に示されるように比較例(従来の
熱間圧延条件)ではりジング高さが8〜12gmであっ
たのに比べ、本発明によれば各鋼種でリジング高さが約
50〜60%程度軽減し、5.0μm以下となる。この
程度までリジング高さが改善されれば、実際のプレス成
型後の製品となった段階でほとんど問題となることはな
い。
[00163次の表3には粗熱延条件の圧下量とひずみ
速度を種々変えた場合の最終製品のりジング高さを示し
た。
[0017][Table 2] (0015) As shown in Table 2, the comparative example (conventional hot rolling conditions) had a ridging height of 8 to 12 gm, but according to the present invention, the ridging height was 8 to 12 gm for each steel type. The height is reduced by about 50 to 60% to 5.0 μm or less. If the ridging height is improved to this extent, there will be almost no problems when the product is actually press-formed. [00163 The following Table 3 shows the rolling height of the final product when the reduction amount and strain rate of the rough hot rolling conditions were varied.[0017]
【表3】
[0018]即ち、本発明によれば、熱延板の焼鈍法を
箱型焼鈍、連続焼鈍、あるいは焼鈍省略のいずれによっ
てもリジング高さは4.5gm以下の優れた特性を示す
。低ひずみ速度圧延という本発明の適用は第1から第5
パスのいずれによってもその効果は得られている。また
、比較例に示されるように、圧下量が20%未満、ある
いは、ひずみ速度が28−1を越えるとりジング特性は
改善されない。
[0019][Table 3] [0018] That is, according to the present invention, the ridging height exhibits excellent properties of 4.5 gm or less regardless of whether the hot rolled sheet is annealed by box annealing, continuous annealing, or omitting annealing. . The application of the present invention of low strain rate rolling is
The effect was obtained with each pass. Further, as shown in the comparative example, the rolling properties are not improved when the reduction amount is less than 20% or when the strain rate exceeds 28-1. [0019]
【発明の効果】以上説明したような、この発明によれば
、フェライト系ステンレス鋼の粗熱間圧延条件を圧下量
20%以上で、かつ、ひずみ速度2.0s”以下の低ひ
ずみ速度圧延で行うように構成したことにより、製造工
程の増加をもたらすことなく、逆に熱延板の焼鈍工程を
短縮して、耐リジング性に優れたフェライト系ステンレ
ス鋼を安価に得らしめることができるなどの効果を有し
、工業的にその効果の大きい発明である。
[00201Effects of the Invention According to the present invention as explained above, the rough hot rolling conditions for ferritic stainless steel are set to a rolling reduction of 20% or more and a low strain rate rolling of 2.0 s'' or less. By configuring it to do this, it is possible to shorten the annealing process for hot-rolled sheets without increasing the manufacturing process, and to obtain ferritic stainless steel with excellent ridging resistance at a low cost. This invention has the following effects and has great industrial effects. [00201
【図1】図1は、本発明の構成要件である粗圧延のひず
み速度のりジング高さに対する影響を示したものである
。ひずみ速度の低下により耐リジング性が改善され、特
にひずみ速度が2.0s”以下となるとりジング高さが
5μm以下となり、優れた耐リジング性が得られること
が示されている。FIG. 1 shows the effect of rough rolling, which is a component of the present invention, on the strain rate and sliding height. It has been shown that the ridging resistance is improved by lowering the strain rate, and in particular, when the strain rate is 2.0 s'' or less, the ridging height becomes 5 μm or less, and excellent ridging resistance can be obtained.
【図2】図2は、本発明の構成要件である粗圧延の1パ
ス当たりの圧下量のりジング高さに対する影響を示した
ものである。圧下量の増加により耐リジング性が改善さ
れ、特に圧下量が20%以上となるとりジング高さが5
μm以下となり、優れた耐リジング性が得られることが
示されている。
発明昔FIG. 2 shows the influence of the reduction amount per pass of rough rolling, which is a component of the present invention, on the sliding height. Ridging resistance is improved by increasing the reduction amount, especially when the reduction amount is 20% or more, the ridging height is 5.
μm or less, and it has been shown that excellent ridging resistance can be obtained. invention long ago
Claims (1)
圧延するに際し、粗圧延のうち少なくとも1パス以上を
圧下量20%以上で、かつ、ひずみ速度2.0s^−^
1以下の低ひずみ速度圧延で行い、続いて連続スタンド
での仕上げ圧延により熱延鋼帯としたのち、箱型焼鈍あ
るいは連続焼鈍するか、焼鈍を省略し、その後、冷間圧
延と冷延板焼鈍とを組み合わせて冷延鋼帯を製造するこ
とを特徴とする耐リジング性に優れたフェライト系ステ
ンレス鋼の製造方法。Claim 1: When hot rolling a slab of ferritic stainless steel, at least one pass of rough rolling is performed with a reduction amount of 20% or more and a strain rate of 2.0 s^-^
Rolling is performed at a low strain rate of 1 or less, followed by finishing rolling on a continuous stand to form a hot rolled steel strip, followed by box annealing or continuous annealing, or omitting annealing, followed by cold rolling and cold rolled sheet. A method for producing ferritic stainless steel with excellent ridging resistance, characterized by producing a cold-rolled steel strip in combination with annealing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2409852A JPH0819471B2 (en) | 1990-12-12 | 1990-12-12 | Method for producing ferritic stainless steel with excellent ridging resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2409852A JPH0819471B2 (en) | 1990-12-12 | 1990-12-12 | Method for producing ferritic stainless steel with excellent ridging resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04210425A true JPH04210425A (en) | 1992-07-31 |
JPH0819471B2 JPH0819471B2 (en) | 1996-02-28 |
Family
ID=18519123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2409852A Expired - Lifetime JPH0819471B2 (en) | 1990-12-12 | 1990-12-12 | Method for producing ferritic stainless steel with excellent ridging resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0819471B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0959717A (en) * | 1995-08-24 | 1997-03-04 | Kawasaki Steel Corp | Production of ferritic stainless steel strip excellent in press formability, ridging resistance, and surface characteristic |
CN103506383A (en) * | 2013-09-26 | 2014-01-15 | 山西太钢不锈钢股份有限公司 | Method for hot-rolling manufacture of ultra-pure ferrite stainless steel |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5943978A (en) * | 1982-09-07 | 1984-03-12 | Sanshin Ind Co Ltd | Flywheel magnet of internal-combustion engine |
-
1990
- 1990-12-12 JP JP2409852A patent/JPH0819471B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5943978A (en) * | 1982-09-07 | 1984-03-12 | Sanshin Ind Co Ltd | Flywheel magnet of internal-combustion engine |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0959717A (en) * | 1995-08-24 | 1997-03-04 | Kawasaki Steel Corp | Production of ferritic stainless steel strip excellent in press formability, ridging resistance, and surface characteristic |
CN103506383A (en) * | 2013-09-26 | 2014-01-15 | 山西太钢不锈钢股份有限公司 | Method for hot-rolling manufacture of ultra-pure ferrite stainless steel |
CN103506383B (en) * | 2013-09-26 | 2016-04-27 | 山西太钢不锈钢股份有限公司 | Super-purity ferrite stainless steel hot rolling making method |
Also Published As
Publication number | Publication date |
---|---|
JPH0819471B2 (en) | 1996-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100771253B1 (en) | Method for producing non grain-oriented electric sheets | |
US5405463A (en) | Continuous annealing process of producing cold rolled mild steel sheet excellent in deep drawability and aging resistibility | |
JPH01172524A (en) | Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength | |
JP2000265215A (en) | PRODUCTION OF FERRITIC Cr-CONTAINING STEEL SHEET EXCELLENT IN WORKABILITY | |
JPS6169928A (en) | Manufacture of steel plate for ironing by continuous annealing | |
JPH04210425A (en) | Production of ferritic stainless steel excellent in ridging resistance | |
GB1592274A (en) | Method for producing continuously cast steel slabs | |
JPH07310122A (en) | Production of ferritic stainless steel strip having excellent bulging formability | |
JPH02290917A (en) | Production of cold rolled ferritic stainless steel sheet | |
JPH04160117A (en) | Manufacture of ferritic stainless steel sheet excellent in gloss, corrosion resistance and ridging resistance | |
JPS61204320A (en) | Production of as-rolled thin steel sheet for working having excellent ridging resistnace | |
KR20030050695A (en) | Method for producing ferritic stainless steel sheets having excellent ridging property | |
JPS6119688B2 (en) | ||
JP2854055B2 (en) | Cold-rolled steel sheet for deep drawing with excellent resistance to galling and chemical conversion | |
JPH07118754A (en) | Production of ferritic stainless steel sheet excellent in ribbing characteristic | |
JPS61204325A (en) | Production of as-rolled thin steel sheet for working having excellent ridging resistance and strength-elongation balance | |
JPS6320889B2 (en) | ||
JPH06271944A (en) | Production of ferritic stainless thin steel sheet excellent in formability and ridging resistance and furthermore small in anisotropy | |
JPS6053725B2 (en) | Method for manufacturing austenitic stainless steel sheets and steel strips | |
JPS6210217A (en) | Manufacture of ferritic stainless steel sheet having superior ridging resistance | |
JPH03140417A (en) | Production of hot rolled steel plate excellent in deep drawability | |
JPH0250806B2 (en) | ||
JPH0418013B2 (en) | ||
JP2516441B2 (en) | Manufacturing method of non-oriented electrical steel sheet with excellent ridging resistance | |
JPS62136525A (en) | Production of ferritic stainless steel having excellent surface characteristic and formability |