[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04214834A - Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture - Google Patents

Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture

Info

Publication number
JPH04214834A
JPH04214834A JP40251590A JP40251590A JPH04214834A JP H04214834 A JPH04214834 A JP H04214834A JP 40251590 A JP40251590 A JP 40251590A JP 40251590 A JP40251590 A JP 40251590A JP H04214834 A JPH04214834 A JP H04214834A
Authority
JP
Japan
Prior art keywords
less
corrosion resistance
aluminum alloy
range
press formability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40251590A
Other languages
Japanese (ja)
Inventor
Aoshi Tsuyama
青史 津山
Takeshi Fujita
毅 藤田
Shinji Mitao
三田尾 真司
Osamu Kuboyama
久保山 修
Kuninori Minagawa
邦典 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP40251590A priority Critical patent/JPH04214834A/en
Publication of JPH04214834A publication Critical patent/JPH04214834A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PURPOSE:To manufacture a high strength Al alloy sheet excellent in corrosion resistance and press formability by preparing an Al alloy having a specified compsn. in which each content of Ti, B and Zr is prescribed. CONSTITUTION:The ingot of an Al alloy contg., by weight, 3.0 to 10% Mg, 0.03 to 0.4% Si, 0.03 to 0.4% Fe, 0.005 to 0.15% Ti, 0.002 to 0.05% B and 0.001 to 0.09% Zr, furthermore contg. <=0.16% Cu, <=0.20% Zr, <0.10% Mn, <0.05% Cr and <0.05% V and the balance Al with inevitable impurities is subjected to single stage or multistage homogenizing treatment in the temp. range of 480 to 560 deg.C. Next, this ingot is subjected to hot rolling and cold rolling into a desired sheet thickness and is thereafter subjected to heat treatment in the temp. range of 320 to 560 deg.C. In this way, the Al alloy sheet excellent in corrosion resistance and press formability is obtd. and is suitable as material for an automobile body.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、耐食性とプレス成形
性に優れた特長を有する自動車車体等に好適なアルミニ
ウム合金板及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy plate suitable for automobile bodies, etc., which has excellent corrosion resistance and press formability, and a method for manufacturing the same.

【0002】0002

【従来の技術】従来より自動車ボディ−シ−ト等の成形
加工用板材として表面処理冷延鋼板が多用されているが
、近年、自動車の燃費向上のための軽量化の要望が高ま
っており、その要望を満たすべく自動車ボディ−シ−ト
等にアルミニウム合金板が使用され始めてきている。
[Prior Art] Surface-treated cold-rolled steel sheets have traditionally been widely used as plate materials for forming automobile body seats, etc., but in recent years, there has been an increasing demand for weight reduction in order to improve the fuel efficiency of automobiles. In order to meet this demand, aluminum alloy plates have begun to be used for automobile body seats and the like.

【0003】自動車ボディ−シ−ト用アルミニウム合金
としては、焼付硬化性を目的とした熱処理型の6009
,6010,6011(いずれもAl−Mg−Si系)
及び2036(Al−Cu系)があるが、これらは成形
性が必ずしも十分ではない。また、非熱処理型として0
.2〜0.5%のMn添加を前提とした5182(Al
−Mg系)、及び製造法の改良によりプレス歪模様現出
を抑制した5182−SSFがあり、これらは熱処理型
よりやや成形性が優れているが、焼付硬化性がない。
[0003] As an aluminum alloy for automobile body sheets, heat-treated 6009 for the purpose of bake hardening is used.
, 6010, 6011 (all Al-Mg-Si type)
and 2036 (Al-Cu type), but these do not necessarily have sufficient moldability. In addition, as a non-heat treatment type, 0
.. 5182 (Al
-Mg type) and 5182-SSF, which has suppressed the appearance of press distortion patterns by improving the manufacturing method, and these have slightly better formability than the heat-treated type, but do not have bake hardenability.

【0004】さらに、特開昭57−120648及び特
開昭53−103914に開示されているように、Al
−Mg系に若干の焼付硬化性を付与させるためにCuや
Znを添加した合金が開発されている。しかし、Cu添
加材は耐食性に問題があり、また、いずれも従来の表面
処理冷延鋼板よりも成形性が劣るため、さらなる成形性
の改善が達成されない限り、量産を前提とした成形加工
用板材として表面冷延鋼板の代替材となり得ないのが現
状である。
Furthermore, as disclosed in JP-A-57-120648 and JP-A-53-103914, Al
- Alloys containing Cu and Zn have been developed to impart some bake hardenability to Mg-based alloys. However, Cu-added materials have problems with corrosion resistance, and their formability is inferior to that of conventional surface-treated cold rolled steel sheets. At present, it cannot be used as a substitute for surface cold-rolled steel sheets.

【0005】[0005]

【発明が解決しようとする課題】この発明はかかる事情
に鑑みてなされたものであって、自動車車体用材料とし
て十分な耐食性及びプレス成形性を有するアルミニウム
合金板及びその製造方法を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an aluminum alloy plate having sufficient corrosion resistance and press formability as a material for automobile bodies, and a method for manufacturing the same. purpose.

【0006】[0006]

【課題を解決するための手段及び作用】本願発明者等は
、上記目的を達成するために種々検討を重ねた結果、化
学成分組成を適切に調整し、製造条件を適製正化するこ
とにより、プレス成形性及び耐食性を十分なものにする
ことが可能であることを見出し、本発明を完成するに至
った。特に、化学成分組成については、Al−Mg系合
金において一般的に再結晶抑制元素として添加している
Mn,Crを意図的に添加するレベルよりも低い含有量
とする代りに微量のZrをして伸びを向上させると共に
、耐食性に悪影響を及ぼすCuを意図的に添加するレベ
ルよりも低い含有量として耐食性を向上させた。
[Means and effects for solving the problem] In order to achieve the above object, the inventors of the present application have made various studies and found that by appropriately adjusting the chemical composition and adjusting the manufacturing conditions. They discovered that it is possible to achieve sufficient press formability and corrosion resistance, and have completed the present invention. In particular, regarding the chemical composition, instead of lowering the content of Mn and Cr, which are generally added as recrystallization suppressing elements in Al-Mg alloys, to a level lower than the intentional addition level, a trace amount of Zr was added. In addition to improving elongation, the content of Cu, which has a negative effect on corrosion resistance, was lower than the level of intentional addition, thereby improving corrosion resistance.

【0007】すなわち、この発明に係る耐食性及びプレ
ス成形性に優れたアルミニウム合金板は、重量%で、M
gを3.0〜10%、Siを0.03〜0.4%、Fe
を0.03〜0.4%、Tiを0.005〜0.15%
、Bを0.0002〜0.05%、Zrを0.001〜
0.09%の範囲で含有し、さらに0.16%以下のC
u、0.20%以下のZn、0.10%未満のMn、0
.05%未満のCr、0.05%未満のVを含有し、残
部がAl及び不可避的不純物からなることを特徴とする
。この場合に、板厚中心部の平均粒径が50μm以上で
あることが好ましい。
[0007] That is, the aluminum alloy plate having excellent corrosion resistance and press formability according to the present invention has M
g 3.0-10%, Si 0.03-0.4%, Fe
0.03-0.4%, Ti 0.005-0.15%
, B from 0.0002 to 0.05%, Zr from 0.001 to
Contains within the range of 0.09% and further contains C of 0.16% or less.
u, 0.20% or less Zn, less than 0.10% Mn, 0
.. It is characterized by containing less than 0.05% Cr, less than 0.05% V, and the remainder consisting of Al and inevitable impurities. In this case, it is preferable that the average grain size at the center of the plate thickness is 50 μm or more.

【0008】また、この発明に係る耐食性及びプレス成
形性に優れたアルミニウム合金板の製造方法は、上記組
成のアルミニウム合金鋳塊に対して480〜560℃の
範囲内の温度で1段又は多段の均質化処理を施した後、
この鋳塊を熱間圧延及び冷間圧延することにより所望の
板厚とし、次いで320〜560℃の範囲内の温度で熱
処理することを特徴とする。この場合に、熱間圧延と冷
間圧延との間、又は冷間圧延と冷間圧延との間、又はそ
の両方で、320〜560℃の範囲内の温度における中
間焼鈍処理を1回又は2回以上実施することが好ましい
。この発明に係るアルミニウム合金においては、良好な
耐食性が得られると共に、プレス成形性と密接に関連す
る破断伸びが35%以上とすることができる。以下、こ
の発明について詳細に説明する。なお、以下の説明にお
いて%表示は重量%を表わす。先ず、この発明に係るア
ルミニウム合金の成分組成の限定理由について説明する
[0008] Furthermore, in the method for producing an aluminum alloy plate having excellent corrosion resistance and press formability according to the present invention, an aluminum alloy ingot having the above composition is subjected to one or multiple stages at a temperature within the range of 480 to 560°C. After homogenization treatment,
This ingot is hot-rolled and cold-rolled to a desired thickness, and then heat-treated at a temperature within the range of 320 to 560°C. In this case, intermediate annealing treatment at a temperature within the range of 320 to 560°C is performed once or twice between hot rolling and cold rolling, or between cold rolling and cold rolling, or both. It is preferable to carry out the process more than once. In the aluminum alloy according to the present invention, good corrosion resistance can be obtained, and elongation at break, which is closely related to press formability, can be 35% or more. This invention will be explained in detail below. Note that in the following description, % indicates weight %. First, the reasons for limiting the composition of the aluminum alloy according to the present invention will be explained.

【0009】Mg:  Mgは本発明に係る合金におけ
る必須の基本成分であり、唯一の強化元素といっても過
言ではなく、適量合金されることにより合金の強度及び
成形性の向上に大きく寄与する。しかし、Mgが3.0
%未満では十分な強度及び伸びが得られず、逆に10%
を超えると熱間圧延時に割れが発生するようになり熱間
加工性が劣化する。従って、Mgの含有量を3.0〜1
0%の範囲に規定する。
Mg: Mg is an essential basic component in the alloy according to the present invention, and it is no exaggeration to say that it is the only strengthening element, and when alloyed in an appropriate amount, it greatly contributes to improving the strength and formability of the alloy. . However, Mg is 3.0
If it is less than 10%, sufficient strength and elongation cannot be obtained;
If it exceeds this, cracks will occur during hot rolling and hot workability will deteriorate. Therefore, the Mg content should be 3.0 to 1.
Specified in the range of 0%.

【0010】Si,Fe:  Si及びFeは不可避的
不純物として通常アルミニウム合金に含有されるもので
ある。そして、これらの含有量が0.4%を超えると成
形性に悪影響を及ぼす粗大な晶出物が生成されやすくな
るので、このような晶出物の生成を抑制する観点から、
これらの上限を0.4%とする。しかしながら、逆にこ
れらの含有量が少なすぎても成形性が劣化するので下限
を0.03%とする。すなわち、Si,Feいずれもそ
の含有量を0.03〜0.4%の範囲とする。
Si, Fe: Si and Fe are normally contained in aluminum alloys as inevitable impurities. If the content of these substances exceeds 0.4%, coarse crystallized substances that adversely affect moldability are likely to be generated, so from the viewpoint of suppressing the formation of such crystallized substances,
These upper limits are set at 0.4%. However, conversely, if their content is too small, moldability deteriorates, so the lower limit is set at 0.03%. That is, the content of both Si and Fe is in the range of 0.03 to 0.4%.

【0011】Ti,B:  Ti及びBはTiB2 等
として存在し、鋳塊の結晶粒を微細化して加工性等を改
善する効果を有するので、複合添加するするが極めて重
要である。しかしながら、これらを過剰に添加すると粗
大な晶出物を生成し、成形性を劣化させるのでTi及び
Bの含有量を、夫々0.005〜0.15%、及び0.
0002〜0.05%の範囲に規定する。
Ti, B: Ti and B exist as TiB2, etc., and have the effect of refining the crystal grains of the ingot and improving workability, etc., so it is extremely important to add them in combination. However, if they are added in excess, coarse crystallized substances will be generated and the formability will be deteriorated, so the contents of Ti and B should be adjusted to 0.005 to 0.15% and 0.00 to 0.15%, respectively.
It is defined in the range of 0002 to 0.05%.

【0012】Zr:  ZrはAl3 Zrとして析出
し、鋳塊のみならず熱処理時の結晶粒の粗大化を抑制し
て組織を均一にし、成形性向上にも寄与する。また同様
に結晶粒粗大化抑制効果を有するMn,Cr,Vに比べ
て含有量が少量でも十分に効果を得られ、加えてAl3
 ZrそのものがMn,Cr,Vの化合物よりも微細で
ある。 従って、Mn,Cr,Vと比較して成形性への悪影響が
極めて少ない。しかしながら、Zrが過剰に含有される
とMn,Cr,Vと同様に成形性を劣化させるので、そ
の含有量を0.001〜0.09%の範囲とする。
Zr: Zr precipitates as Al3Zr, suppresses coarsening of crystal grains not only in the ingot but also during heat treatment, makes the structure uniform, and contributes to improving formability. Similarly, compared to Mn, Cr, and V, which have the effect of suppressing crystal grain coarsening, a sufficient effect can be obtained even with a small content, and in addition, Al3
Zr itself is finer than the compounds of Mn, Cr, and V. Therefore, compared to Mn, Cr, and V, it has extremely little adverse effect on moldability. However, if Zr is contained excessively, the formability will be deteriorated like Mn, Cr, and V, so the content is set in the range of 0.001 to 0.09%.

【0013】Cu:  従来Cuは焼付軟化を抑制する
ためにAl−Mg合金に添加されていたが、近年のよう
に省エネルギ−等の理由から焼付温度が170℃より低
くなってくると、その効果はないに等しい。そればかり
かCuは耐食性を大きく劣化させる作用を有し、逆に悪
影響を与えてしまうため、0.16%を超えて含有する
ことは避けなければならない。従って、Cuの含有量を
0.16%以下に規定する。
[0013]Cu: Conventionally, Cu was added to Al-Mg alloys to suppress softening due to baking, but in recent years, as baking temperatures have become lower than 170°C for reasons such as energy saving, It's almost ineffective. Moreover, Cu has the effect of greatly deteriorating corrosion resistance, and has an adverse effect, so it must be avoided to contain more than 0.16%. Therefore, the Cu content is specified to be 0.16% or less.

【0014】Zn:  ZnもCuと同様、焼付軟化を
抑制するため添加されることがあるが、上述のように低
温焼付ではその効果がほとんどなく、逆に成形性への悪
影響が大きいため、0.20%を超えて添加することは
避けなければならない。従って、Znの含有量を0.2
0%以下に規定する。
Zn: Like Cu, Zn is sometimes added to suppress softening due to baking, but as mentioned above, it has almost no effect when baked at low temperatures, and on the contrary has a large negative effect on formability. Addition of more than .20% must be avoided. Therefore, the Zn content is 0.2
Specify 0% or less.

【0015】Mn,Cr,V:  これらの元素はZr
と同様に、結晶粒粗大化を抑制する効果を有するが、Z
rとは異なり、成形性を大きく劣化させるのでこれらの
含有量を少なくする必要がある。従って、Mn,Cr,
Vの含有量を夫々0.10%未満、0.05%未満、0
.05%未満に規定する。
Mn, Cr, V: These elements are Zr
Similarly, it has the effect of suppressing crystal grain coarsening, but Z
Unlike r, it greatly deteriorates moldability, so it is necessary to reduce their content. Therefore, Mn, Cr,
The content of V is less than 0.10%, less than 0.05%, and 0, respectively.
.. Specified as less than 0.05%.

【0016】上記元素の他、通常のアルミニウム合金と
同様、不可避的不純物が含有されるが、その量は本発明
の効果を損なわない程度の範囲で許容される。例えば、
Be≦0.001%、Na≦0.001%、K≦0.0
01%であればこれらの元素を含んでいても特性上の支
障はない。
[0016] In addition to the above elements, unavoidable impurities are contained as in ordinary aluminum alloys, but the amount thereof is allowed within a range that does not impair the effects of the present invention. for example,
Be≦0.001%, Na≦0.001%, K≦0.0
If the content of these elements is 0.01%, there will be no problem in terms of characteristics even if these elements are contained.

【0017】このような組成のアルミニウム合金をイン
ナ材でなく、アウタ材として用いる場合には、表面に生
じるプレス歪み模様が問題となる。このプレス歪み模様
は結晶粒径が小さい場合に発生しやすくなる。従って、
このようなプレス歪み模様をなくするために平均結晶粒
径を50μm以上に制御することが必要がある。次に、
この発明の合金の製造条件について説明する。
[0017] When an aluminum alloy having such a composition is used as an outer material rather than an inner material, a press strain pattern generated on the surface becomes a problem. This press strain pattern is more likely to occur when the crystal grain size is small. Therefore,
In order to eliminate such press distortion patterns, it is necessary to control the average crystal grain size to 50 μm or more. next,
The manufacturing conditions for the alloy of this invention will be explained.

【0018】上記範囲に成分・組成が規定されたアルミ
ニウム合金を溶解・鋳造し、その鋳塊に対して480〜
560℃の範囲内の温度で1段又は多段の均質化熱処理
を施す。このような均質化処理を施すことにより、鋳造
時に晶出した共晶化合物の拡散固溶を促進し、局部的ミ
クロ偏析を軽減する。また、この処理により、最終製品
の結晶粒粗大化を抑制し、均一化を図るうえで重要な役
割を果たすZrの化合物を微細に析出させることができ
る。しかし、この処理の温度が480℃未満の場合には
上述したような効果が不十分であり、一方560℃を超
えると共晶融解が生じる。従って、均質化処理の温度を
480〜560℃とした。なお、この温度範囲内での保
持時間は特に規定されないが、上述した効果が十分に得
られかつ経済性を損ねない好ましい範囲は1〜72時間
である。
[0018] An aluminum alloy whose ingredients and composition are specified in the above range is melted and cast, and the ingot is heated to 480~
A single or multi-stage homogenization heat treatment is carried out at a temperature in the range of 560°C. By performing such homogenization treatment, the diffusion solid solution of the eutectic compound crystallized during casting is promoted, and local micro-segregation is reduced. Furthermore, this treatment makes it possible to finely precipitate the Zr compound, which plays an important role in suppressing crystal grain coarsening and achieving uniformity in the final product. However, if the temperature of this treatment is less than 480°C, the above-mentioned effects are insufficient, while if it exceeds 560°C, eutectic melting occurs. Therefore, the temperature of the homogenization treatment was set at 480 to 560°C. Note that the holding time within this temperature range is not particularly defined, but a preferable range is 1 to 72 hours, in which the above-mentioned effects can be sufficiently obtained and economical efficiency is not impaired.

【0019】次いで、このような均質化処理が施された
鋳塊に対し、常法に従って所定の板厚を得るために熱間
圧延及び冷間圧延を行う。また、歪矯正及び表面粗度調
整のため、5%以下のスキンパス圧延を実施してもよい
Next, the ingot subjected to such homogenization treatment is subjected to hot rolling and cold rolling according to a conventional method in order to obtain a predetermined thickness. Further, skin pass rolling of 5% or less may be performed for distortion correction and surface roughness adjustment.

【0020】その後、このような圧延板材を320〜5
60℃の範囲内の温度で熱処理する。これにより組織が
均一化され、結晶粒が調整され、さらに加工歪が除去さ
れ、結果としてプレス成形性を向上させることができる
。この際に、加熱温度が440℃未満では上述のような
効果を十分に得ることができない。逆に560℃を超え
ると結晶粒粗大化や共晶融解が生じるので560℃を超
える範囲は避けなければならない。なお、加熱及び冷却
速度については特に規定されない。また、保持時間につ
いては経済性の観点からは10時間以内であることが好
ましいが、特性上特に限定されるものではない。なお、
アウタ−パネル材として用いる場合には、前述したよう
にプレスによる歪み模様が問題になるが、これを抑制す
るためには加熱温度が450℃以上であることが望まし
い。
[0020] After that, such a rolled plate material is
Heat treatment at a temperature within the range of 60°C. This makes the structure uniform, adjusts the crystal grains, and eliminates processing strain, resulting in improved press formability. At this time, if the heating temperature is lower than 440° C., the above-mentioned effects cannot be sufficiently obtained. On the other hand, if the temperature exceeds 560°C, grain coarsening and eutectic melting will occur, so a temperature exceeding 560°C must be avoided. Note that the heating and cooling rates are not particularly specified. Further, the holding time is preferably 10 hours or less from the economic point of view, but is not particularly limited in terms of characteristics. In addition,
When used as an outer panel material, the distortion pattern caused by pressing becomes a problem as described above, but in order to suppress this, it is desirable that the heating temperature is 450° C. or higher.

【0021】このような工程に加えて、生産性向上の観
点から、上述の熱間圧延と冷間圧延との間、又は冷間圧
延と冷間圧延との間、又はその両方で、1回又は2回以
上の中間焼鈍を施すことが望ましい。この中間焼鈍は、
冷間圧延の際に強圧下する場合のエッジ割れを防止し、
また、Mg化合物を析出させて再結晶核とし、組織を均
一化し、もって成形性を向上させる。これらの効果によ
り生産性を向上させることができる。この際の温度が3
20℃未満ではその効果が十分ではなく、また560℃
を超えると共晶融解が生じるので、320〜560℃の
範囲で中間焼鈍を行う。なお、この中間焼鈍は必須のプ
ロセスではなく、省プロセスの観点からはこの中間焼鈍
を省略しても構わない。なお、このような熱処理が施さ
れた板材に対し、必要に応じて歪矯正の目的で4%以下
のストレッチング、レベリング、又はスキンパスを実施
してもよい。
[0021] In addition to these steps, from the viewpoint of productivity improvement, one time between the above-mentioned hot rolling and cold rolling, or between cold rolling and cold rolling, or both. Alternatively, it is desirable to perform intermediate annealing two or more times. This intermediate annealing is
Prevents edge cracking during heavy reduction during cold rolling,
Furthermore, the Mg compound is precipitated to serve as recrystallized nuclei, which homogenizes the structure and thereby improves formability. These effects can improve productivity. The temperature at this time is 3
The effect is not sufficient below 20℃, and the temperature below 560℃
Since eutectic melting occurs when the temperature exceeds 320°C to 560°C, intermediate annealing is performed in the range of 320 to 560°C. Note that this intermediate annealing is not an essential process, and may be omitted from the viewpoint of process saving. Note that the plate material subjected to such heat treatment may be subjected to stretching of 4% or less, leveling, or skin pass for the purpose of correcting distortion, if necessary.

【0022】このようにして得られたアルミニウム合金
板は、破断伸びが35%以上となり、また耐食性にも優
れている。従って、このようなアルミニウム合金板は自
動車ボディ−シ−ト用として好適である。
The aluminum alloy plate thus obtained has an elongation at break of 35% or more and also has excellent corrosion resistance. Therefore, such an aluminum alloy plate is suitable for use in automobile body seats.

【0023】[0023]

【実施例】以下、この発明の実施例について説明する。 (実施例1)[Embodiments] Examples of the present invention will be described below. (Example 1)

【0024】表1、表2に示すような成分・組成を有す
る合金を溶解−連続鋳造し、510℃で10時間の均質
化処理を実施し、次いで鋳片を450℃に加熱して板厚
5mmまで熱間圧延を行い、350℃で2時間の中間焼
鈍を施した。その後、冷間圧延により板厚2mmとし、
再度360℃で1時間の中間焼鈍を行った後、冷間圧延
により板厚1mmまで仕上げた。なお、熱間圧延の仕上
り温度は280℃であった。また、中間焼鈍は昇温・冷
却ともに50℃/時間の徐加熱及び徐冷で行った。この
厚さ1mmの板材を510℃まで10℃/秒の速度で加
熱し、40秒保持後、強制空冷により20℃/秒の速度
で冷却した。
[0024] An alloy having the components and compositions shown in Tables 1 and 2 was melted and continuously cast, homogenized at 510°C for 10 hours, and then the slab was heated to 450°C to reduce the plate thickness. Hot rolling was performed to a thickness of 5 mm, and intermediate annealing was performed at 350° C. for 2 hours. After that, the plate thickness was made 2 mm by cold rolling,
After performing intermediate annealing at 360°C for 1 hour again, the plate was finished by cold rolling to a thickness of 1 mm. Note that the finishing temperature of hot rolling was 280°C. Further, intermediate annealing was performed by gradual heating and cooling at a rate of 50° C./hour for both heating and cooling. This plate material having a thickness of 1 mm was heated to 510° C. at a rate of 10° C./second, held for 40 seconds, and then cooled by forced air cooling at a rate of 20° C./second.

【0025】このようにして製造した板材を25℃で3
週間放置後、所定形状に切出し、引張試験(JIS5号
,引張方向:圧延方向)及びコニカルカップ試験(JI
SZ2249:試験工具21型)を実施した。なお、コ
ニカルカップ試験はプレス成形のシミュレ−トとして行
い、張出しと深絞りとの複合成形性をCCV(mm)に
より評価した(CCVが小さいほど成形性に優れている
)。また、耐食性を評価するために、塗装焼付熱サイク
ルシミュレ−トとして170℃、20分間の熱サイクル
を付与した後、塩水噴霧試験(JIS  Z2371)
を96時間行ってその腐食減量を測定した。これらの結
果も第1表に併記した。また、歪模様の有無も併記した
[0025] The plate material thus produced was heated at 25°C for 3
After leaving it for a week, cut it into a specified shape, perform a tensile test (JIS No. 5, tensile direction: rolling direction) and a conical cup test (JIS No. 5, tensile direction: rolling direction).
SZ2249: Test tool type 21) was carried out. The conical cup test was conducted as a simulation of press forming, and the combined formability of overhang and deep drawing was evaluated by CCV (mm) (the smaller the CCV, the better the formability). In addition, in order to evaluate corrosion resistance, after applying a heat cycle at 170°C for 20 minutes as a paint baking heat cycle simulation, a salt spray test (JIS Z2371) was conducted.
The corrosion weight loss was measured after 96 hours. These results are also listed in Table 1. The presence or absence of a distorted pattern was also noted.

【0026】なお、表1の合金番号1〜11は本発明の
組成範囲内の実施例であり、表2の合金番号12〜22
はその範囲から外れる比較例である。また、比較例のう
ち合金番号21、22は夫々自動車ボディ−シ−ト用と
して実績のある5182合金及び6111に対応するも
のである。
Alloy numbers 1 to 11 in Table 1 are examples within the composition range of the present invention, and alloy numbers 12 to 22 in Table 2
is a comparative example that falls outside the range. Further, alloy numbers 21 and 22 of the comparative examples correspond to 5182 alloy and 6111, respectively, which have been used for automobile body seats.

【0027】表1及び表2から明らかなように、実施例
である合金番号1〜11は破断伸びが36%以上と高く
、また腐食減量も0.004mg/cm2 以下と極め
て少なく、比較例に比べて成形性及び耐食性に優れてい
ることが確認された。また比較例である合金番号12〜
22のうち、Cuが多い合金番号16、22は特に腐食
が激しいことが示されている。さらにZrが多い合金番
号15及びB,Tiが多い合金番号14は破断伸びが極
めて低いことが示されている。また、CCVについても
実施例では全て良好な値を示したが、比較例ではCCV
値の劣るものが存在した。特に破断伸びが低い合金番号
14,15ではCCV値が低い値となった。また、合金
番号18〜21では平均粒径が16〜24μmと小さく
、歪模様が確認された。これに対し、実施例である合金
番号1〜11、及び比較例の合金番号12〜17では平
均粒径が夫々54〜68μm及び53〜72μmとなり
、歪模様は発生しなかった。なお、6111に対応する
合金番号22では平均粒径が20μm程度であったが歪
模様は確認されなかった。 (実施例2)
As is clear from Tables 1 and 2, alloys Nos. 1 to 11, which are examples, have a high elongation at break of 36% or more, and their corrosion loss is extremely small, 0.004 mg/cm2 or less, and is superior to the comparative examples. It was confirmed that the moldability and corrosion resistance were superior compared to the previous one. Also, alloy number 12~ which is a comparative example
Among No. 22 alloys, alloy numbers 16 and 22, which contain a large amount of Cu, are shown to be particularly susceptible to severe corrosion. Furthermore, alloy number 15, which contains a large amount of Zr, and alloy number 14, which contains a large amount of B and Ti, have been shown to have extremely low elongations at break. In addition, all of the examples showed good values for CCV, but in the comparative example, CCV
There were some items of inferior value. In particular, alloy numbers 14 and 15, which had low elongation at break, had low CCV values. Further, in alloy numbers 18 to 21, the average grain size was as small as 16 to 24 μm, and a strained pattern was observed. On the other hand, in alloy numbers 1 to 11 as examples and alloy numbers 12 to 17 as comparative examples, the average grain diameters were 54 to 68 μm and 53 to 72 μm, respectively, and no strain pattern was generated. In addition, in alloy number 22 corresponding to 6111, the average grain size was about 20 μm, but no strain pattern was observed. (Example 2)

【0028】次に、表1に示した合金のうち、合金番号
10の組成を有する鋳塊を使用し、表3に示す製造条件
で合金板材を製造した。なお、第2表に特に記載されて
いない処理については実施例1の条件を採用した(圧延
条件等)。なお、表3中記号A〜Dは本発明に係る製造
方法の範囲内の実施例であり、記号E〜Hはその範囲か
ら外れる比較例である。なお、表3中、中間焼鈍1は熱
間圧延と冷間圧延との間で行ったもので、加熱速度を5
0℃/時間、冷却速度を50℃/時間とした。また、中
間焼鈍2は板厚を4mmから2mmにする際の冷間圧延
と2mmから1mmにする際の冷間圧延との間で行った
もので、加熱速度を50℃/時間、冷却速度を50℃/
時間とした。このようにして製造した板材について実施
例1と同様の評価試験を行った。その結果も表3に併記
する。
Next, an alloy plate material was manufactured under the manufacturing conditions shown in Table 3 using an ingot having the composition of alloy number 10 among the alloys shown in Table 1. Note that for treatments not specifically listed in Table 2, the conditions of Example 1 were adopted (rolling conditions, etc.). Note that symbols A to D in Table 3 are examples within the scope of the manufacturing method according to the present invention, and symbols E to H are comparative examples outside the range. In addition, in Table 3, intermediate annealing 1 was performed between hot rolling and cold rolling, and the heating rate was 5.
The cooling rate was 0°C/hour and the cooling rate was 50°C/hour. In addition, intermediate annealing 2 was performed between cold rolling when changing the plate thickness from 4 mm to 2 mm and cold rolling when changing the plate thickness from 2 mm to 1 mm, with a heating rate of 50°C/hour and a cooling rate of 50°C/hour. 50℃/
It was time. The same evaluation test as in Example 1 was conducted on the plate material thus manufactured. The results are also listed in Table 3.

【0029】表3から明らかなように、本発明の条件を
満足しない比較例は伸び及び成形性が著しく劣ることが
確認された。なお、製造条件Dではプレス時に歪模様が
現出するが、インナ−パネル用として用いれば何等問題
は発生しない。
As is clear from Table 3, it was confirmed that the comparative examples that did not satisfy the conditions of the present invention were significantly inferior in elongation and moldability. Note that under manufacturing condition D, a distorted pattern appears during pressing, but no problem will occur if it is used for an inner panel.

【0030】[0030]

【発明の効果】この発明によれば、耐食性及びプレス成
形性が従来のアルミニウム合金板よりも格段に優れた自
動車ボディ−シ−ト用として好適なアルミニウム合金板
及びその製造方法が提供される。従って、自動車車体の
軽量化を推進することが可能になるなど、地球環境汚染
防止の観点から価値が高い。
According to the present invention, there is provided an aluminum alloy plate suitable for use in automobile body sheets, which has much better corrosion resistance and press formability than conventional aluminum alloy plates, and a method for manufacturing the same. Therefore, it is of great value from the perspective of preventing global environmental pollution, such as by making it possible to promote weight reduction of automobile bodies.

【0031】[0031]

【表1】[Table 1]

【0032】[0032]

【表2】[Table 2]

【0033】[0033]

【表3】[Table 3]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  重量%で、Mgを3.0〜10%、S
iを0.03〜0.4%、Feを0.03〜0.4%、
Tiを0.005〜0.15%、Bを0.0002〜0
.05%、Zrを0.001〜0.09%の範囲で含有
し、さらに0.16%以下のCu、0.20%以下のZ
n、0.10%未満のMn、0.05%未満のCr、0
.05%未満のVを含有し、残部がAl及び不可避的不
純物からなることを特徴とする耐食性及びプレス成形性
に優れた高強度アルミニウム合金板。
Claim 1: 3.0 to 10% Mg, S
i 0.03 to 0.4%, Fe 0.03 to 0.4%,
Ti 0.005-0.15%, B 0.0002-0
.. 05%, Zr in the range of 0.001 to 0.09%, further containing 0.16% or less Cu, 0.20% or less Z
n, less than 0.10% Mn, less than 0.05% Cr, 0
.. A high-strength aluminum alloy plate with excellent corrosion resistance and press formability, characterized by containing less than 0.5% V and the remainder consisting of Al and unavoidable impurities.
【請求項2】  板厚中心部の平均粒径が50μm以上
であることを特徴とする請求項1に記載の耐食性及びプ
レス成形性に優れた高強度アルミニウム合金板。
2. The high-strength aluminum alloy plate with excellent corrosion resistance and press formability according to claim 1, wherein the average grain size at the center of the plate thickness is 50 μm or more.
【請求項3】  重量%で、Mgを3.0〜10%、S
iを0.03〜0.4%、Feを0.03〜0.4%、
Tiを0.005〜0.15%、Bを0.0002〜0
.05%、Zrを0.001〜0.09%の範囲で含有
し、さらに0.16%以下のCu、0.20%以下のZ
n、0.10%未満のMn、0.05%未満のCr、0
.05%未満のVを含有し、残部がAl及び不可避的不
純物からなるアルミニウム合金鋳塊に対して480〜5
60℃の範囲内の温度で1段又は多段の均質化処理を施
した後、この鋳塊を熱間圧延及び冷間圧延することによ
り所望の板厚とし、次いで320〜560℃の範囲内の
温度で熱処理することを特徴とする耐食性及びプレス成
形性に優れた高強度アルミニウム合金板の製造方法。
Claim 3: 3.0 to 10% Mg, S
i 0.03 to 0.4%, Fe 0.03 to 0.4%,
Ti 0.005-0.15%, B 0.0002-0
.. 05%, Zr in the range of 0.001 to 0.09%, further containing 0.16% or less Cu, 0.20% or less Z
n, less than 0.10% Mn, less than 0.05% Cr, 0
.. 480-5 for aluminum alloy ingots containing less than 0.5% V and the remainder consisting of Al and unavoidable impurities.
After one-stage or multi-stage homogenization treatment at a temperature within the range of 60°C, the ingot is hot-rolled and cold-rolled to a desired thickness, and then homogenized at a temperature within the range of 320-560°C. A method for producing a high-strength aluminum alloy plate with excellent corrosion resistance and press formability, which is characterized by heat treatment at a high temperature.
【請求項4】  熱間圧延と冷間圧延との間、又は冷間
圧延と冷間圧延との間、又はその両方で、320〜56
0℃の範囲内の温度における中間焼鈍処理を1回又は2
回以上実施することを特徴とする請求項3に記載の耐食
性及びプレス成形性に優れた高強度アルミニウム合金板
の製造方法。
4. 320 to 56 between hot rolling and cold rolling, or between cold rolling and cold rolling, or both.
Intermediate annealing treatment at a temperature within the range of 0°C once or twice
4. The method for producing a high-strength aluminum alloy sheet with excellent corrosion resistance and press formability according to claim 3, wherein the method is carried out at least once.
JP40251590A 1990-12-14 1990-12-14 Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture Pending JPH04214834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40251590A JPH04214834A (en) 1990-12-14 1990-12-14 Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40251590A JPH04214834A (en) 1990-12-14 1990-12-14 Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture

Publications (1)

Publication Number Publication Date
JPH04214834A true JPH04214834A (en) 1992-08-05

Family

ID=18512323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40251590A Pending JPH04214834A (en) 1990-12-14 1990-12-14 Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture

Country Status (1)

Country Link
JP (1) JPH04214834A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594509A1 (en) * 1992-10-23 1994-04-27 The Furukawa Electric Co., Ltd. Process for manufacturing Al-Mg alloy sheets for press forming
JP2006249480A (en) * 2005-03-09 2006-09-21 Kobe Steel Ltd Aluminum alloy sheet to be formed
JP2008511756A (en) * 2004-08-27 2008-04-17 コモンウェルス インダストリーズ,インコーポレーテッド Aluminum automotive structural members
CN101880803A (en) * 2010-07-30 2010-11-10 浙江巨科铝业有限公司 Al-Mg aluminum alloy for automobile body panel and method for producing same
JP2018204100A (en) * 2017-04-15 2018-12-27 ザ・ボーイング・カンパニーThe Boeing Company Aluminum alloy with additions of magnesium and at least one of chromium, manganese and zirconium, and method of manufacturing the same
JP2019011505A (en) * 2017-04-15 2019-01-24 ザ・ボーイング・カンパニーThe Boeing Company Aluminum alloy with additions of magnesium, calcium and at least one of chromium, manganese and zirconium, and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594509A1 (en) * 1992-10-23 1994-04-27 The Furukawa Electric Co., Ltd. Process for manufacturing Al-Mg alloy sheets for press forming
JP2008511756A (en) * 2004-08-27 2008-04-17 コモンウェルス インダストリーズ,インコーポレーテッド Aluminum automotive structural members
JP2006249480A (en) * 2005-03-09 2006-09-21 Kobe Steel Ltd Aluminum alloy sheet to be formed
JP4541934B2 (en) * 2005-03-09 2010-09-08 株式会社神戸製鋼所 Manufacturing method of forming aluminum alloy sheet
CN101880803A (en) * 2010-07-30 2010-11-10 浙江巨科铝业有限公司 Al-Mg aluminum alloy for automobile body panel and method for producing same
JP2018204100A (en) * 2017-04-15 2018-12-27 ザ・ボーイング・カンパニーThe Boeing Company Aluminum alloy with additions of magnesium and at least one of chromium, manganese and zirconium, and method of manufacturing the same
JP2019011505A (en) * 2017-04-15 2019-01-24 ザ・ボーイング・カンパニーThe Boeing Company Aluminum alloy with additions of magnesium, calcium and at least one of chromium, manganese and zirconium, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2614686B2 (en) Manufacturing method of aluminum alloy for forming process excellent in shape freezing property and paint bake hardenability
JPH0127146B2 (en)
JPS58224141A (en) Cold roller aluminum alloy plate for forming and its manufacture
US5441582A (en) Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardenability
US5460666A (en) Method of manufacturing natural aging-retardated aluminum alloy sheet
JPH08232052A (en) Production of aluminum alloy sheet for automobile outer sheet
JPS626740B2 (en)
JPH05112840A (en) Baking hardenability al-mg-si alloy sheet excellent in press formability and its manufacture
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JPH04214834A (en) Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JPH0543974A (en) Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production
JP3210419B2 (en) Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same
JP3871462B2 (en) Method for producing aluminum alloy plate for can body
JPH04263034A (en) Aluminum alloy sheet for press forming excellent in baking hardenability and its production
JPH0547615B2 (en)
JPH0788558B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH0480979B2 (en)
JPH04276048A (en) Production of aluminum alloy sheet for forming excellent in baking hardenability
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JPH08296011A (en) Production of aluminum alloy sheet for high speed forming excellent in baking hardenability of coating film and cold stability
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH01225738A (en) Heat treatment-type aluminum alloy rolled plate for forming and its manufacture
JPH07173565A (en) Aluminum alloy sheet for press forming excellent in curability for coating/baking
JP3069008B2 (en) Method for manufacturing aluminum alloy DI can body