[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04214824A - Manufacture of low oxygen-containing rare earth metal - Google Patents

Manufacture of low oxygen-containing rare earth metal

Info

Publication number
JPH04214824A
JPH04214824A JP41072390A JP41072390A JPH04214824A JP H04214824 A JPH04214824 A JP H04214824A JP 41072390 A JP41072390 A JP 41072390A JP 41072390 A JP41072390 A JP 41072390A JP H04214824 A JPH04214824 A JP H04214824A
Authority
JP
Japan
Prior art keywords
rare earth
earth metal
calcium
fluoride
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41072390A
Other languages
Japanese (ja)
Inventor
Yuichi Makino
牧野 勇一
Takashi Tode
戸出 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP41072390A priority Critical patent/JPH04214824A/en
Publication of JPH04214824A publication Critical patent/JPH04214824A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To offer an industrial manufacturing method for rare earth metal having low content of oxygen and calcium as impurity and useful as the material for a permanent magnet and magneto-optical recording. CONSTITUTION:In the method for manufacturing rare earth metal obtd. by reducing rare earth metal fluoride with metal calcium, as for the method for manufacturing low oxygen-contg. rare earth metal to be brought into a heating reaction with metal calcium by the theoretical amt. required for reducing the relevant fluoride or below, particularly, at the time of executing this heating reaction in the atmosphere of an inert gas or in a vacuum condition, rare earth metal with high purity can more effectively be obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、低酸素含有希土類金属
の製造方法に関し、特に永久磁石や光磁気記録用材料と
して有用な低酸素希土類金属の効果的製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing low-oxygen rare earth metals, and more particularly to an effective method for producing low-oxygen rare earth metals useful as permanent magnets and magneto-optical recording materials.

【0002】0002

【従来の技術】希土類金属は、一般に銀白色ないし灰色
の高い活性を有する金属類であって、空気中の酸素によ
って徐々に酸化される。この酸化によって結合した酸素
は、各種用途における誘導製品の品質を低下させるので
、材料としての希土類金属は可及的に低い酸素含有量の
ものが要求されている。
2. Description of the Related Art Rare earth metals are generally silvery white to gray highly active metals that are gradually oxidized by oxygen in the air. Oxygen combined by this oxidation deteriorates the quality of derived products in various applications, so rare earth metals as materials are required to have as low an oxygen content as possible.

【0003】従来、そのような高純度希土類金属の製造
方法としては、例えば、溶融塩電解法及び金属カルシウ
ム( Ca)による熱還元法が代表的方法として知られ
ている。前者の溶融塩電解法は、連続操業できるので生
産性に優れているが、比較的低融点の希土類金属には適
用できるが、融点の高い重希土金属類には適用できない
という欠点致命的欠陥があり、そのため重希土金属類は
、鉄等を消耗陰極とする手段により合金の形で製造され
ているにすぎない。
Conventionally, typical methods for producing such high-purity rare earth metals include, for example, a molten salt electrolysis method and a thermal reduction method using metallic calcium (Ca). The former molten salt electrolysis method has excellent productivity because it can be operated continuously, but it has a fatal flaw in that it can be applied to rare earth metals with relatively low melting points, but cannot be applied to heavy rare earth metals with high melting points. Therefore, heavy rare earth metals are only manufactured in the form of alloys by using iron or the like as a consumable cathode.

【0004】他方、後者の熱還元法は、バッチ方式であ
って、比較的不純物の少ない高純度希土類金属を製造し
得るという利点があるが、可及的高純度の希土類金属を
得るには、還元剤としての金属カルシウムを蒸留等によ
り精製することが必要であり、また、原料である希土類
金属ふっ化物を精製して脱酸素するなど予備処理するこ
とが要求されるので、工業的に望ましい方法とはいえな
い。
On the other hand, the latter thermal reduction method is a batch method and has the advantage of being able to produce high-purity rare earth metals with relatively few impurities. It is an industrially desirable method because it is necessary to purify metallic calcium as a reducing agent by distillation, etc., and it is also required to perform preliminary treatment such as refining and deoxidizing the raw material rare earth metal fluoride. I can't say that.

【0005】希土類金属中に含まれるこれらの不純物類
は、その代表的用途である永久磁石や光磁気記録材料と
しての利用性を考慮すれば、素材材料中に含まれる不純
物としての酸素及びカルシウムの量がいずれも1000
ppm以下であることが極めて重要であり、そのような
高純度の希土類金属を工業的に有利に製造する方法はこ
れまで知られていない。
[0005] These impurities contained in rare earth metals are considered to be impurities such as oxygen and calcium contained in the raw materials, considering their typical uses as permanent magnets and magneto-optical recording materials. Both amounts are 1000
It is extremely important that the content of rare earth metals be below ppm, and no method for industrially advantageous production of such highly purified rare earth metals has been known so far.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明が解決
しようとする課題は、すべての希土類金属に適用するこ
とができるそのような低酸素及び低カルシウムの希土類
金属の効果的製造方法を提供することにある。また、本
発明の他の課題は、カルシウムやふっ素等の不純物含有
量の少ない高純度の希土類金属を高収率で得ることがで
きる工業的方法を提供することにある。
OBJECTS OF THE INVENTION Therefore, it is an object of the present invention to provide an effective method for producing such low oxygen and low calcium rare earth metals that can be applied to all rare earth metals. There is a particular thing. Another object of the present invention is to provide an industrial method capable of obtaining high-yield rare earth metals of high purity with a low content of impurities such as calcium and fluorine.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく、特に、希土類金属ふっ化物を還元する方
法について研究を重ねた結果、制限された極めて狭い範
囲量の金属カルシウムを還元剤として作用させるとき、
上記課題が効果的に達成され、工業的に望ましい低酸素
含有希土類金属が得られることを知った。
[Means for Solving the Problems] In order to solve the above problems, the present inventors have conducted extensive research on methods for reducing rare earth metal fluorides, and as a result, they have found that metallic calcium can be reduced in a limited and extremely narrow range. When acting as a reducing agent,
It has been found that the above-mentioned problems can be effectively achieved and an industrially desirable low-oxygen-containing rare earth metal can be obtained.

【0008】すなわち、本発明は、希土類金属ふっ化物
を金属カルシウムで還元する希土類金属の製造方法にお
いて、該ふっ化物を還元するのに必要な理論量以下の金
属カルシウムと加熱反応させることから成る低酸素含有
希土類金属の製造方法を要旨とするものである。
That is, the present invention provides a method for producing rare earth metals in which a rare earth metal fluoride is reduced with metallic calcium, in which a rare earth metal fluoride is reduced by heating and reacting with metallic calcium in an amount less than the theoretical amount necessary to reduce the fluoride. The gist of this paper is a method for producing oxygen-containing rare earth metals.

【0009】本発明は、特に希土類金属ふっ化物の還元
において、その還元反応に必要な理論量以下の相対的少
量の金属カルシウムで希土類金属ふっ化物を還元するこ
とに技術的特徴がある。理論量以上の金属カルシウムの
使用は、生成希土類金属の収量を増大させるが、生成金
属中の不純物量が顕著に増加するので好ましくない。ま
た、工業的生産性を考慮するならば、理論量の0.9 
倍以上が好ましい。
The technical feature of the present invention is that, particularly in the reduction of rare earth metal fluorides, the rare earth metal fluorides are reduced with a relatively small amount of metallic calcium, which is less than the theoretical amount required for the reduction reaction. Use of metallic calcium in an amount greater than the stoichiometric amount increases the yield of the rare earth metal produced, but is not preferred because it significantly increases the amount of impurities in the produced metal. Also, if we consider industrial productivity, the theoretical amount is 0.9
More than twice as much is preferable.

【0010】ふっ素を還元する金属カルシウムの理論量
とは、希土類金属をRで表すとき、次の反応式1によっ
て表示される理論モル割合である。 RF3 +1.5 Ca →R+1.5 Ca F2 
The theoretical amount of calcium metal that reduces fluorine is the theoretical molar ratio expressed by the following reaction formula 1, where R represents the rare earth metal. RF3 +1.5 Ca →R+1.5 Ca F2

【0011】本発明の方法において対象とされる希土類
金属は、イットリウムY及び原子番号57〜71の元素
類である。該原子番号群の希土類金属は、例挙するまで
もないが、例えばランタンLa ,セリウムCe ,プ
ラセオジムPr ,ネオジムNd ,サマリウムSm 
,ユ−ロピウムEu ,ガドリニウムGd ,テルビウ
ムTb ,ジスプロシウムDy ,ホルミウムHo エ
ルビウムEr ,ツリウムTm ,イッテルビウムYb
 及びルテチウムLu を包含する。
The rare earth metals targeted in the method of the present invention are yttrium Y and elements with atomic numbers 57-71. Examples of rare earth metals in this atomic number group include lanthanum La, cerium Ce, praseodymium Pr, neodymium Nd, and samarium Sm.
, europium Eu, gadolinium Gd, terbium Tb, dysprosium Dy, holmium Ho, erbium Er, thulium Tm, ytterbium Yb
and lutetium Lu.

【0012】また、本発明の方法においては、それらの
ふっ化物を金属カルシウムと加熱溶融して還元するので
あって、その加熱還元反応は、希土類金属の種類によっ
て異なるが、通常、例えば、1300℃ないし1600
℃程度の高温度領域で行われる。温度が低すぎると収量
が低下し、また、高い温度では経済的に不利になるばか
りでなく、反応容器からの不純物が増加するので好まし
くない。このような高温領域での脱ふっ素還元反応は、
酸素を実質的に含まない反応区域で行うことが重要であ
って、特に、例えば、アルゴン,ヘリウム,ネオン等の
不活性ガスの雰囲気中で、あるいは真空条件下で行うこ
とが実用上好ましい。
In addition, in the method of the present invention, these fluorides are reduced by heating and melting with metallic calcium, and the heating reduction reaction varies depending on the type of rare earth metal, but is usually heated at, for example, 1300°C. or 1600
It is carried out in a high temperature range of around ℃. If the temperature is too low, the yield will decrease, and if the temperature is too high, it will not only be economically disadvantageous but also increase the amount of impurities from the reaction vessel, which is not preferred. The defluorination reduction reaction in such a high temperature region is
It is important to carry out the reaction in a reaction zone substantially free of oxygen, and it is particularly preferred in practice to carry out the reaction in an atmosphere of an inert gas such as argon, helium, neon, etc., or under vacuum conditions.

【0013】更に、かかる還元反応においては、金属カ
ルシウムを希土類金属ふっ化物に対して、上記理論量以
下、好ましくは0.9 〜1.0 倍という極めて狭い
範囲量を使用することが極めて重要である。0.9 倍
未満では、得られる希土類金属中に含まれるカルシウム
不純物量は少なく、また酸素含有量も比較的少ないが、
目的とする希土類金属の収率が低いので工業的に採用し
難い。また、1.0 倍を超えて使用すると希土類金属
の収率は向上するが、含有不純物としてのカルシウム及
び酸素量が急激に増大するので、永久磁石や光磁気記録
材料用の素材としては極めて不都合である。この還元反
応に使用する金属カルシウムは、蒸留等により精製した
ものが一層好ましいが、工業的に提供される通常のもの
も好適に使用できる。
Furthermore, in such a reduction reaction, it is extremely important to use metallic calcium in an extremely narrow range of less than the above-mentioned theoretical amount, preferably 0.9 to 1.0 times the amount of rare earth metal fluoride. be. If it is less than 0.9 times, the amount of calcium impurities contained in the obtained rare earth metal is small and the oxygen content is also relatively small;
Since the yield of the target rare earth metal is low, it is difficult to employ it industrially. Furthermore, if the amount exceeds 1.0 times, the yield of rare earth metals improves, but the amount of calcium and oxygen as impurities increases rapidly, which is extremely inconvenient as a material for permanent magnets and magneto-optical recording materials. It is. It is more preferable that the metallic calcium used in this reduction reaction be purified by distillation or the like, but commercially available common calcium can also be suitably used.

【0014】[0014]

【作用】本発明の溶融還元反応方法は、すべての希土類
金属に適用することができるので優れた実用性を有し、
また素材として望ましくない不純物含有量の低い希土類
金属を効果的に製造することができる。更に、そのよう
な高純度の希土類金属を高収率で得ることができるので
、工業的に極めて有利である。
[Operation] The smelting reduction reaction method of the present invention has excellent practicality because it can be applied to all rare earth metals.
Furthermore, rare earth metals with a low content of impurities that are undesirable as raw materials can be effectively produced. Furthermore, since such highly purified rare earth metals can be obtained in high yield, it is extremely advantageous industrially.

【0015】[0015]

【実施例】次に、本発明の方法を具体例により、更に詳
細に説明する。
EXAMPLES Next, the method of the present invention will be explained in more detail using specific examples.

【0016】実施例  1ふっ化ネオジム500gと金
属カルシウム142g(ふっ化ネオジムに対する理論量
の0.95倍)をタンタル製るつぼに入れ、アルゴン雰
囲気中で1400℃の温度に加熱保持して30分間反応
させた。
Example 1 500 g of neodymium fluoride and 142 g of metallic calcium (0.95 times the theoretical amount for neodymium fluoride) were placed in a tantalum crucible, heated and maintained at a temperature of 1400°C in an argon atmosphere, and reacted for 30 minutes. I let it happen.

【0017】金属ネオジムとふっ化カルシウムの二層生
成物をるつぼから取り出し、金属ネオジム層について調
べた結果は次の通りで、各種の用途材料として満足し得
る金属ネオジムが得られた。 得られた金属ネオジム量:333g(収率93%)含有
酸素量            :430ppm〃カル
シウム量        :520ppm
The two-layer product of neodymium metal and calcium fluoride was taken out of the crucible, and the neodymium metal layer was examined. The results were as follows, and neodymium metal was obtained that was satisfactory as a material for various uses. Amount of neodymium metal obtained: 333g (yield 93%) Amount of oxygen contained: 430ppm Amount of calcium: 520ppm

【0018】
実施例  2 ふっ化ジスプロシウム500gと金属カルシウム137
g( 理論量の1.0 倍) を、加熱反応温度を14
50℃としたほかは実施例1と同様に操作して金属ジス
プロシウムを製造した。金属ジスプロシウム層とふっ化
カルシウム層を分け、金属ジスプロシウム層について調
べた結果は次の通りであった。各種の用途材料として満
足し得る金属ネオジムが得られた。 得られた金属ネオジム量:352g( 収率95%)含
有酸素量            :910ppm〃カ
ルシウム量        :860ppm含有する酸
素量及びカルシウムは、いずれも実用上要求される10
00ppm以下であった。
[0018]
Example 2 Dysprosium fluoride 500g and metallic calcium 137
g (1.0 times the theoretical amount) and the heating reaction temperature was 14
Metallic dysprosium was produced in the same manner as in Example 1 except that the temperature was 50°C. The metallic dysprosium layer and the calcium fluoride layer were separated and the metallic dysprosium layer was investigated, and the results were as follows. Neodymium metal was obtained that could be used as a material for various purposes. Amount of neodymium metal obtained: 352 g (yield 95%) Amount of oxygen contained: 910 ppm Amount of calcium: 860 ppm The amount of oxygen and calcium contained are both practically required 10
00 ppm or less.

【0019】実施例  3 ふっ化テルビウム500gを各種量の金属カルシウム(
理論量の0.7 〜1.2 倍)とアルゴン雰囲気中で
、いずれも1400℃の温度に約30分間加熱反応させ
て金属テルビウムを製造した。それぞれの生成金属テル
ビウムの収率、その中に含まれる酸素及びカルシウムの
不純物量を理論量のカルシウム倍率と共に、下掲表1に
まとめて示す。
Example 3 500 g of terbium fluoride was mixed with various amounts of metallic calcium (
(0.7 to 1.2 times the theoretical amount) in an argon atmosphere at a temperature of 1400° C. for about 30 minutes to produce metallic terbium. The yield of each produced metal terbium and the amount of oxygen and calcium impurities contained therein are summarized in Table 1 below, together with the theoretical amount of calcium magnification.

【0020】[0020]

【表1】[Table 1]

【0021】上表から明らかなように、金属カルシウム
の添加量が、全ふっ素原子と反応する理論量の0.9 
倍より少ないと目的とする希土類金属の収率が悪く、1
.0 倍を超えると、得られる金属中に含まれる酸素及
びカルシウムの量が著しく上昇するので実用的に採用で
きない。
As is clear from the above table, the amount of metal calcium added is 0.9 of the theoretical amount that reacts with all fluorine atoms.
If it is less than 1 times, the yield of the target rare earth metal will be poor;
.. If it exceeds 0 times, the amount of oxygen and calcium contained in the obtained metal will increase significantly, so it cannot be used practically.

【0022】比較例  1 実施例1において、金属カルシウム165g(理論量の
1.1 倍)を用いてふっ化ネオジムを加熱還元し、金
属ネオジムを製造した。得られた金属ネオジムは、34
7g( 収率97%)で生成金属中に含まれる酸素及び
カルシウムは、それぞれ1050ppm及び3500p
pmであった。
Comparative Example 1 In Example 1, neodymium fluoride was thermally reduced using 165 g of metallic calcium (1.1 times the theoretical amount) to produce metallic neodymium. The obtained metallic neodymium was 34
Oxygen and calcium contained in the produced metal at 7g (97% yield) are 1050ppm and 3500ppm, respectively.
It was pm.

【0023】比較例  2 実施例2において、金属カルシウム116g(理論量の
0.85倍)を用いてふっ化ジスプロシウムと加熱溶融
し還元して金属ジスプロシウムを製造した。得られた金
属ジスプロシウムの中に含まれる酸素及びカルシウムは
、いずれも750ppm及び510ppmであったが、
その収率は76%(281g)と低く、工業的には採用
できない。
Comparative Example 2 In Example 2, 116 g of metallic calcium (0.85 times the theoretical amount) was heated and melted with dysprosium fluoride and reduced to produce metallic dysprosium. The oxygen and calcium contained in the obtained metal dysprosium were both 750 ppm and 510 ppm,
The yield is as low as 76% (281 g), and it cannot be used industrially.

【0024】[0024]

【発明の効果】本発明の方法によれば、含有酸素量及び
カルシウム量の低減された高純度の希土類金属が高収率
で、且つ効果的に製造され、永久磁石や光磁気記録材料
の素材として望ましい希土類金属が工業的に有利に提供
される。
Effects of the Invention According to the method of the present invention, high-purity rare earth metals with reduced oxygen and calcium content can be produced in high yield and effectively, and can be used as raw materials for permanent magnets and magneto-optical recording materials. Rare earth metals desirable as such are industrially advantageously provided.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】希土類金属ふっ化物を金属カルシウムで還
元する希土類金属の製造方法において、該ふっ化物を還
元するのに必要な理論量以下の金属カルシウムと加熱反
応させることを特徴とする低酸素含有希土類金属の製造
方法。
Claim 1: A method for producing a rare earth metal by reducing a rare earth metal fluoride with metallic calcium, characterized in that the fluoride is heated and reacted with less than the theoretical amount of metallic calcium necessary to reduce the fluoride. A method for producing rare earth metals.
【請求項2】上記加熱反応を不活性ガス雰囲気下、又は
真空条件下で行う請求項1記載の製造方法。
2. The method according to claim 1, wherein the heating reaction is carried out under an inert gas atmosphere or under vacuum conditions.
JP41072390A 1990-12-14 1990-12-14 Manufacture of low oxygen-containing rare earth metal Pending JPH04214824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41072390A JPH04214824A (en) 1990-12-14 1990-12-14 Manufacture of low oxygen-containing rare earth metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41072390A JPH04214824A (en) 1990-12-14 1990-12-14 Manufacture of low oxygen-containing rare earth metal

Publications (1)

Publication Number Publication Date
JPH04214824A true JPH04214824A (en) 1992-08-05

Family

ID=18519837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41072390A Pending JPH04214824A (en) 1990-12-14 1990-12-14 Manufacture of low oxygen-containing rare earth metal

Country Status (1)

Country Link
JP (1) JPH04214824A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067061A1 (en) * 2010-11-19 2012-05-24 Jx日鉱日石金属株式会社 Production method for high-purity lanthanum, high-purity lanthanum, sputtering target composed of high-purity lanthanum, and metal gate film containing high-purity lanthanum as main component
JP2014189837A (en) * 2013-03-27 2014-10-06 Jx Nippon Mining & Metals Corp Method for manufacturing high-purity neodymium, high-purity neodymium, sputtering target comprising high-purity neodymium, and rare earth magnet using high-purity neodymium as component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067061A1 (en) * 2010-11-19 2012-05-24 Jx日鉱日石金属株式会社 Production method for high-purity lanthanum, high-purity lanthanum, sputtering target composed of high-purity lanthanum, and metal gate film containing high-purity lanthanum as main component
CN103221560A (en) * 2010-11-19 2013-07-24 吉坤日矿日石金属株式会社 Production method for high-purity lanthanum, high-purity lanthanum, sputtering target composed of high-purity lanthanum, and metal gate film containing high-purity lanthanum as main component
JP5497913B2 (en) * 2010-11-19 2014-05-21 Jx日鉱日石金属株式会社 Method for producing high purity lanthanum
US9234257B2 (en) 2010-11-19 2016-01-12 Jx Nippon Mining & Metals Corporation Production method for high-purity lanthanum, high-purity lanthanum, sputtering target composed of high-purity lanthanum, and metal gate film containing high-purity lanthanum as main component
JP2014189837A (en) * 2013-03-27 2014-10-06 Jx Nippon Mining & Metals Corp Method for manufacturing high-purity neodymium, high-purity neodymium, sputtering target comprising high-purity neodymium, and rare earth magnet using high-purity neodymium as component

Similar Documents

Publication Publication Date Title
US4578242A (en) Metallothermic reduction of rare earth oxides
JPS6137341B2 (en)
JPH04193706A (en) Refining method for silicon
US4066445A (en) Process for producing magnesium utilizing aluminum metal reductant
WO2000049188A1 (en) Refining of tantalum and tantalum scrap with carbon
US4033758A (en) Process for producing magnesium utilizing aluminum-silicon alloy reductant
JPH04214824A (en) Manufacture of low oxygen-containing rare earth metal
US4244736A (en) Yttrium containing alloys
CA1175661A (en) Process for aluminothermic production of chromium and chromium alloys low in nitrogen
JP6177173B2 (en) High purity boron and method for producing the same
JPS6311628A (en) Production of rare earth metal
JP2702649B2 (en) Manufacturing method of high purity rare earth metal
JPH0790410A (en) Production of low-oxygen rare earth metal
JPS61201753A (en) High purity phosphor iron and its manufacture
US4661317A (en) Method for manufacturing a hydrogen-storing alloy
JPH028332A (en) Manufacture of rare earth metal or rare earth alloy
CN108517457B (en) Preparation method of rare earth-containing alloy
JPS63282218A (en) Manufacture of high-purity rare-earth metal
JPH0885835A (en) Production of rare earth-nickel alloy
JPH03170627A (en) Method for deoxidizing from rare earth metal
JPH0192338A (en) High purity niobium-titanium alloy sponge and its manufacture
JPH05331589A (en) Production of rare earth-iron alloy
JP2012162402A (en) Method for removing impurity in flux
JPS6280249A (en) Production of amorphous alloy
JPS6011099B2 (en) Production method of low phosphorus manganese ferroalloy