JPH0419938A - Circuit breaker - Google Patents
Circuit breakerInfo
- Publication number
- JPH0419938A JPH0419938A JP2134482A JP13448290A JPH0419938A JP H0419938 A JPH0419938 A JP H0419938A JP 2134482 A JP2134482 A JP 2134482A JP 13448290 A JP13448290 A JP 13448290A JP H0419938 A JPH0419938 A JP H0419938A
- Authority
- JP
- Japan
- Prior art keywords
- movable contact
- contact
- circuit breaker
- holder
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004020 conductor Substances 0.000 claims abstract description 90
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 10
- 239000002131 composite material Substances 0.000 claims abstract description 9
- 229910052709 silver Inorganic materials 0.000 claims abstract description 9
- 230000007246 mechanism Effects 0.000 claims description 18
- 238000005452 bending Methods 0.000 claims description 7
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 7
- 239000004332 silver Substances 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 238000005520 cutting process Methods 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052802 copper Inorganic materials 0.000 abstract description 11
- 239000010949 copper Substances 0.000 abstract description 11
- 239000011347 resin Substances 0.000 abstract description 5
- 229920005989 resin Polymers 0.000 abstract description 5
- 230000006835 compression Effects 0.000 abstract description 4
- 238000007906 compression Methods 0.000 abstract description 4
- 230000000670 limiting effect Effects 0.000 description 47
- 238000007747 plating Methods 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000016507 interphase Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- RRKGBEPNZRCDAP-UHFFFAOYSA-N [C].[Ag] Chemical compound [C].[Ag] RRKGBEPNZRCDAP-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/58—Electric connections to or between contacts; Terminals
- H01H1/5833—Electric connections to or between contacts; Terminals comprising an articulating, sliding or rolling contact between movable contact and terminal
- H01H2001/5838—Electric connections to or between contacts; Terminals comprising an articulating, sliding or rolling contact between movable contact and terminal using electrodynamic forces for enhancing the contact pressure between the sliding surfaces
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H77/00—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting
- H01H77/02—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism
- H01H77/10—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with electrodynamic opening
- H01H77/102—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with electrodynamic opening characterised by special mounting of contact arm, allowing blow-off movement
- H01H77/104—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with electrodynamic opening characterised by special mounting of contact arm, allowing blow-off movement with a stable blow-off position
Landscapes
- Breakers (AREA)
Abstract
Description
この発明は、配線用遮断器や漏電遮断器などの小形の回
路遮断器に関し、更に詳しくは開閉機構に駆動されて開
閉運動をする可動接触子とケースに固定された接続導体
とを電気的に接続するための構成に関する。The present invention relates to a small circuit breaker such as a molded circuit breaker or an earth leakage breaker, and more specifically, the present invention relates to a small circuit breaker such as a molded circuit breaker or an earth leakage breaker, and more specifically, it electrically connects a movable contact that moves to open and close by being driven by an opening and closing mechanism and a connecting conductor that is fixed to a case. Concerning the configuration for connecting.
第16図及び第17図は3極構成の従来の回路遮断器(
配線用遮断器)の−例を示す中央極部分の縦断面図で、
第16図は閉路状態を、また第17図は開路状態を示し
ている。
第16図において、1は樹脂成形品のケース、2は同じ
くカバー、3は電源側の端子3aと一体構成され図示し
ないねじでケース1に締め付けられた固定接触子、4は
固定接触子2に設けられた固定接点、5は樹脂成形品の
ホルダ6に軸7を介して回動可能に保持された可動接触
子、8は固定接点4と対向して可動接触子5に設けられ
た可動接点、9はバイメタル9a、これに溶接されたL
形の固定導体9b、バイメタル9aを囲んで配置された
固定マグネット9C1これと対向して回動可能に設けら
れたアーマチュア9dなどからなる過電流例外し装置、
10は固定導体9bと重ねてねじ11でケース1に締め
付けられた接続導体、12は両端が可動接触子5及び接
続導体10にそれぞれろう付げにより接続された可撓導
体、13はねじ14でケース1に締め付けられた負荷側
の端子、15は両端がバイメタル9a及び端子13にそ
れぞれ接続された可撓導体である。
16は詳細には説明しないが可動接触子5をホルダ6と
一緒に開閉駆動する開閉機構で、常時は各種に跨がって
延びるクロスパー17を含む引外し機構18でラッチさ
れている。19は図の左右方向に揺動可能に支持された
ハンドルレバーで、開閉機構16との間に開閉ばね20
が掛は渡され、頭部に操作ハンドル21が装着されてい
る。ホルダ6と可動接触子5との間には接触ばね22が
挿入され、可動接触子5が固定接触子3に向かつて付勢
されている。
可動接触子5の左右には図示しない左右極の可動接触子
が並べて配置され、これらの可動接触子も図示のホルダ
6と同様のホルダに軸を介して回動可能に保持されてい
るが、これら3極のホルダは一体成形された図示しない
開閉軸で互いに連結され、全体が開閉軸を介してケース
1の図示しない相関隔壁の軸受溝に回動可能に支持され
ている。
なお、23は可動接点8の移動軌跡を囲んで配置された
消弧室である。
このような構成において、電流は固定接触子3から、固
定接点4、可動接点8、可動接触子5、可撓導体12、
接続導体10、固定導体9b、バイメタル9a、及び可
撓導体15を経て端子13に流れる。その場合、定格電
流の10倍程度の過負荷電流が流れると、バイメタル9
aが図の左方向に湾曲してクロスパー17を押す。これ
により引外し機構18による開閉機1116のラッチが
崩れ、可動接触子5は開閉ばね20の力で撥ね上げられ
てホルダ6と一緒に回動し、固定接触子3から会、速開
離する。その際、固定接点4と可動接点8との間に発生
したアークは電磁力により消弧室23に引き込まれ、こ
こで冷却されて消弧される。
更に、短絡電流などの大電流が流れると、固定マグネッ
ト9cがアーマチュア9dを吸引して、バイメタル9b
の湾曲を待たずに瞬時にクロスパー17を叩き、可動接
触子5を開離させる。また、第17図に示すように、操
作ハンドル21を図の右方向に開操作すると、開閉機構
16がラッチされたままで、やはり開閉ばね2oのばね
力で可動接触子5が撥ね上げられて図示の通り開離する
。Figures 16 and 17 show a conventional three-pole circuit breaker (
This is a vertical cross-sectional view of the center pole part of a molded case circuit breaker).
FIG. 16 shows a closed circuit state, and FIG. 17 shows an open circuit state. In Fig. 16, 1 is a resin molded case, 2 is a cover, 3 is a fixed contact that is integrated with the terminal 3a on the power supply side and is fastened to the case 1 with a screw (not shown), and 4 is attached to the fixed contact 2. 5 is a movable contact rotatably held on a resin molded holder 6 via a shaft 7; 8 is a movable contact provided on the movable contact 5 facing the fixed contact 4; , 9 is a bimetal 9a, and L welded to this
An overcurrent exception device consisting of a fixed conductor 9b having a shape, a fixed magnet 9C disposed surrounding a bimetal 9a, and an armature 9d rotatably provided opposite the bimetal 9a;
10 is a connecting conductor which is overlapped with the fixed conductor 9b and fastened to the case 1 with screws 11; 12 is a flexible conductor whose both ends are connected to the movable contact 5 and the connecting conductor 10 by brazing, and 13 is a screw 14. The load-side terminal 15 fastened to the case 1 is a flexible conductor whose both ends are connected to the bimetal 9a and the terminal 13, respectively. Although not described in detail, 16 is an opening/closing mechanism that opens and closes the movable contact 5 together with the holder 6, and is normally latched by a tripping mechanism 18 including a crossbar 17 extending across various parts. Reference numeral 19 denotes a handle lever supported so as to be swingable in the left-right direction in the figure, and an opening/closing spring 20 is disposed between it and the opening/closing mechanism 16.
The rope is handed over, and the operating handle 21 is attached to the head. A contact spring 22 is inserted between the holder 6 and the movable contact 5, and urges the movable contact 5 toward the fixed contact 3. Left and right movable contacts (not shown) are arranged side by side on the left and right sides of the movable contact 5, and these movable contacts are also rotatably held by a holder similar to the illustrated holder 6 via a shaft. These three-pole holders are connected to each other by an integrally molded opening/closing shaft (not shown), and the whole is rotatably supported in a bearing groove of a correlative partition (not shown) of the case 1 via the opening/closing shaft. Note that 23 is an arc extinguishing chamber arranged surrounding the movement locus of the movable contact 8. In such a configuration, current flows from the fixed contact 3 to the fixed contact 4, the movable contact 8, the movable contact 5, the flexible conductor 12,
It flows to the terminal 13 via the connecting conductor 10, the fixed conductor 9b, the bimetal 9a, and the flexible conductor 15. In that case, if an overload current of about 10 times the rated current flows, the bimetal 9
a curves to the left in the figure and pushes the cross spar 17. As a result, the latch of the switch 1116 by the tripping mechanism 18 collapses, and the movable contact 5 is sprung up by the force of the switch spring 20, rotates together with the holder 6, and quickly opens and separates from the fixed contact 3. . At this time, the arc generated between the fixed contact 4 and the movable contact 8 is drawn into the arc extinguishing chamber 23 by electromagnetic force, where it is cooled and extinguished. Furthermore, when a large current such as a short circuit current flows, the fixed magnet 9c attracts the armature 9d, and the bimetal 9b
The cross spar 17 is instantly struck without waiting for the curve of the movable contact 5 to open. Further, as shown in FIG. 17, when the operation handle 21 is opened to the right in the figure, the opening/closing mechanism 16 remains latched, and the movable contact 5 is also flipped up by the spring force of the opening/closing spring 2o, as shown in the figure. Open as shown.
さて、上に説明した従来の回路遮断器において、開閉機
構16に駆動されて開閉運動する可動接触子5とケース
1に固定された接続導体1oとは可撓導体12を介して
電気的に接続されている。可撓導体12は一般に細い銅
線を少量ずつ束にして績み合わせたものが使用されてい
る。ところが、このような構成には次のような欠点があ
る。
(])可動接触子5の開閉運動に伴って可撓導体12も
揺動するが、可動接触子5の開離距離を大きくしようと
するとこの揺動も大きくなり、金属疲労の蓄積による可
撓導体12の断線の危険が生じる。
(2)可撓導体12の断線を防止するためには、上記揺
動時の可撓導体12の変形に無理が生しなl、sように
その収容スペースにゆとりを持たせる必要がある。その
ため、定格電流が大きくなり、それに応じて可視導体1
2が太くなると、その収容のためにケース1が大きくな
り、回路遮断器の小形化を困難にする。
(3)可動接触子5は開閉運動時に可撓導体12から抵
抗力を受け、この抵抗力は可撓導体12の両端と相手部
材との接合状態や回路遮断器の開閉回数によっても変化
するので、この抵抗力の影響を受けて接点4,8間の接
触圧力や可動接触子5の開閉速度にばらつきが生じる。
そこで、この発明は、可撓導体を用いることなく可動接
触子と固定側の接続導体とを電気的に接続するようにし
て上記欠点を排除した回路遮断器を提供することを目的
とするものである。
また、この発明は、上記回路遮断器において上記電気的
な接続をより確実にした回路遮断器を提供することを目
的とするものである。
更に、この発明は、上記回路遮断器において、ホルダへ
の可動接触子の装着を容易にした回路遮断器を提供する
ことを目的とするものである。
更にまた、この発明は、上記回路遮断器において、上記
電気的接続部分の長寿命化を図った回路遮断器を提供す
ることを目的とするものである。Now, in the conventional circuit breaker described above, the movable contact 5 that is driven by the opening/closing mechanism 16 to open and close and the connecting conductor 1o fixed to the case 1 are electrically connected via the flexible conductor 12. has been done. The flexible conductor 12 is generally made of thin copper wire bundled into small bundles. However, such a configuration has the following drawbacks. (]) The flexible conductor 12 also oscillates as the movable contactor 5 opens and closes, but if the separation distance of the movable contactor 5 is increased, this oscillation also increases, and the flexibility due to the accumulation of metal fatigue increases. There is a risk of disconnection of the conductor 12. (2) In order to prevent disconnection of the flexible conductor 12, it is necessary to provide a space for accommodating the flexible conductor 12 so that the deformation of the flexible conductor 12 during the swinging described above is not unreasonable. Therefore, the rated current increases and the visible conductor 1
If 2 becomes thicker, the case 1 becomes larger to accommodate it, making it difficult to downsize the circuit breaker. (3) The movable contactor 5 receives a resistance force from the flexible conductor 12 during the opening/closing movement, and this resistance force changes depending on the state of connection between both ends of the flexible conductor 12 and the mating member and the number of times the circuit breaker is opened and closed. Under the influence of this resistance force, variations occur in the contact pressure between the contacts 4 and 8 and the opening/closing speed of the movable contact 5. SUMMARY OF THE INVENTION An object of the present invention is to provide a circuit breaker that eliminates the above-mentioned drawbacks by electrically connecting a movable contact and a fixed-side connecting conductor without using a flexible conductor. be. Another object of the present invention is to provide a circuit breaker in which the electrical connection is made more reliable. A further object of the present invention is to provide a circuit breaker in which the movable contact can be easily attached to the holder. Furthermore, it is an object of the present invention to provide a circuit breaker in which the life of the electrical connection portion is extended.
上記目的を達成するために、この発明は、開閉軸を介し
てケースに回動自在に支持された絶縁物のホルダに可動
接触子が保持され、この可動接触子は開閉機構に駆動さ
れて前記ホルダと一緒に前記開閉軸のまわりに開閉運動
する回路遮断器において、可動接触子とケースに固定し
た接続導体とを摺動接触により電気的に接続する。
上記摺動接触を行わせるには、接続導体の可動接触子と
の接続端に対向する一対の腕を形成して前記可動接触子
を挟ませ、前記腕を前記可動接触子の側面に圧接するば
ねをその両側に設けるのがよい。
その場合、接続導体の腕の可動接触子との接触部の近傍
に対向間隔が前記接触部よりも狭い部分を設けることに
より、電磁力をより有効に利用して接触圧力を高めるこ
とができる。
可動接触子を係合片を切り曲げ形成した薄板からなる取
付金具に取り付け、この取付金具を前記係合片と対応す
る係合段部を有する凹部を形成したホルダに圧入して前
記可動接触子をホルダに保持させれば組立が容易となる
。
上記摺動接触において、接触接触部は摺動による摩擦熱
や通電によるジコ、−ル熱のために加熱されるが、通常
の導電材料である銅や銅合金は前記加熱のために酸化し
、接触抵抗が増加して通電容量が低下する。このような
酸化を防止して摺動接触部の通電容量を安定に維持させ
るための通常の手段としては、摺動接触面に銀(Ag)
めっきを施すことが考えられる。
しかし、発明者等の実験によれば、無負荷開閉(この場
合は接触部は無通電状態で摺動する。)を繰り返すと、
Agめっき層が磨耗して銅素地が露出し、また大電流を
遮断(この場合は接触部は通電状態で摺動する。)をす
ると、Agめっき層が溶融してやはり銅素地が露出する
。
そこで、この発明においては、可動接触子及び接続導体
の少なくとも一方の摺動接触面に、銀と炭素との複合材
料による被膜処理を施すものとする。
更に、一定収上の大電流により可動接触子と接続導体と
の間の摺動接触部の温度が上昇し、軟化、溶融あるいは
溶着などの現象が心配される場合には、可動接触子と接
続導体とをこれらの間の摺動接触部に対して並列回路を
構成するようにリード線で接続するとよい。In order to achieve the above object, the present invention has a movable contact that is held in an insulating holder that is rotatably supported on a case via an opening and closing shaft, and that this movable contact is driven by an opening and closing mechanism to In a circuit breaker that opens and closes around the opening and closing shaft together with a holder, a movable contact and a connecting conductor fixed to a case are electrically connected by sliding contact. In order to make the above-mentioned sliding contact, a pair of arms are formed opposite to the connecting end of the connecting conductor with the movable contact, the movable contact is sandwiched between the arms, and the arms are pressed against the side surface of the movable contact. It is preferable to provide springs on both sides. In that case, by providing a portion in the vicinity of the contact portion of the arm of the connection conductor with the movable contactor, the opposing interval is narrower than the contact portion, so that the electromagnetic force can be used more effectively and the contact pressure can be increased. The movable contact is attached to a mounting bracket made of a thin plate formed by cutting and bending an engagement piece, and the mounting bracket is press-fitted into a holder having a recessed portion having an engagement step corresponding to the engagement piece. If the holder holds the holder, assembly becomes easy. In the above-mentioned sliding contact, the contact portion is heated due to frictional heat due to sliding and zigzag heat due to current flow, but copper and copper alloy, which are normal conductive materials, are oxidized due to the heating. Contact resistance increases and current carrying capacity decreases. The usual means to prevent such oxidation and maintain stable current carrying capacity of the sliding contact area is to apply silver (Ag) to the sliding contact surface.
It is possible to apply plating. However, according to experiments conducted by the inventors, repeating no-load opening and closing (in this case, the contact part slides in a non-energized state)
The Ag plating layer is worn away and the copper base is exposed, and when a large current is cut off (in this case, the contact portion slides while energized), the Ag plating layer melts and the copper base is exposed as well. Therefore, in the present invention, the sliding contact surface of at least one of the movable contactor and the connecting conductor is coated with a composite material of silver and carbon. Furthermore, if the temperature of the sliding contact between the movable contact and the connecting conductor increases due to a large current at a constant rate, and there is a concern that phenomena such as softening, melting, or welding may occur, the movable contact and the connecting conductor may It is preferable to connect the conductor to the sliding contact between them by a lead wire so as to form a parallel circuit.
可動接触子と接続導体とを直接摺動接触させて両者を電
気的に接続することにより、可撓導体が不要となり、ケ
ース内にその収容スペースを確保する必要もなくなる。
その場合、可動接触子の開閉運動(ホルダを連結する連
結軸のまわりの回転運動)に伴って接続導体から可動接
触子に働く制動トルクは、摺動接触面の摩擦力と小面積
の接触範囲の平均的な回転半径との積で生じ、この回転
半径に比べてはるかに長い可動接触子の先端部に設けら
れた可動接点の接触圧力や開閉速度に与える影響は小さ
い。また、上記摩擦力は摺動接触面に翳りや溶着が生じ
ない限りほとんど変化しないから、上記制動トルクの変
動も小さい。
接続導体の可動接触子との接続端に対向する一対の腕を
形成して可動接触子を挟ませれば、可動接触子の一方の
面でのみ接触させる場合に比べて接触面積が2倍となり
、更に接続導体の対向する腕をそれぞれ同方向に流れる
電流の間に互いに働く電磁吸引力により腕が可動接触子
に押しつけられ接触圧力が高まることになる。その場合
、接続導体の腕の可動接触子との接触部の近傍に対向間
隔が前記接触部よりも狭い部分を設ければ上記電磁吸引
力かをより有効に利用して接触圧力を高めることができ
る。また、その腕を可動接触子の側面に圧接するばねを
両側に設ければ常時の接触圧力を確保することができる
。
可動接触子をホルダに保持させる構造として、可動接触
子を係合片を切り曲げ形成した薄板からなる取付金具に
取り付け、この取付金具を前記係合片と対応する係合段
部を有する凹部を形成したホルダに圧入してするように
すれば、可動接触子を一動作でホルダに装着でき、組立
作業が簡単となる。
ところで、発明者等の考察によれば、可動接触子と接続
導体とを摺動接触させた場合に、無負荷開閉でAgめっ
きが磨耗して銅素地が露出するのは、可動接触子及び接
続導体の双方のAgめっき層に薔りが生じるためである
。また、大電流遮断で銅素地が露出するのは、双方のA
gめっき層が互いに溶着するためで、その際、溶着部が
摺動の過程で破断するとその部分が肌荒れを起こし、電
気的接触が悪くなって通電による発熱が増え、益々熔融
、溶着しやすくなる。
このような問題は、Agめっきに代えて、銀マトリツク
ス中に炭素(C)粒を分散させた複合材料よりなる被膜
処理を摺動接触面に施すことにより解決できる。炭素は
周知の通り優れた潤滑性を持つが銀とは全く溶は合わな
い。そのため、銀−炭素複合材は無負荷開閉時の蕩りを
防止できると同時に、大電流通電時に発熱により溶融し
ても溶着し合うことが少なく、いずれの場合にも摺動接
触面は平滑に保たれ、安定した通電容量を維持できる。
また、摺動接触部に対して並列回路を構成するように、
可動接触子と接続導体とをリード線で接続することによ
って、短絡電流などの大電流が流れた場合に、この電流
を摺動接触部とリード線とに分流させて摺動接触部の熱
負荷を減少させ、その分、電流容量を増やすことができ
る。By bringing the movable contact and the connecting conductor into direct sliding contact to electrically connect them, there is no need for a flexible conductor, and there is no need to secure a space for housing it in the case. In that case, the braking torque that acts on the movable contact from the connecting conductor as the movable contact opens and closes (rotational motion around the connecting shaft that connects the holder) is caused by the frictional force of the sliding contact surface and the small area of contact. The effect on the contact pressure and opening/closing speed of the movable contact provided at the tip of the movable contact, which is much longer than this rotation radius, is small. Further, since the frictional force hardly changes unless clouding or welding occurs on the sliding contact surface, the variation in the braking torque is also small. By forming a pair of arms facing the connecting end of the connecting conductor with the movable contact and sandwiching the movable contact, the contact area will be doubled compared to when contact is made only on one side of the movable contact. Furthermore, the electromagnetic attraction forces that act on each other between the currents flowing in the same direction through the opposing arms of the connecting conductor press the arms against the movable contact, increasing the contact pressure. In that case, if a part is provided in the vicinity of the contact part of the arm of the connecting conductor with the movable contact, the facing distance is narrower than the contact part, so that the above-mentioned electromagnetic attraction force can be used more effectively and the contact pressure can be increased. can. Further, if springs are provided on both sides of the movable contact for pressing the arms against the side surfaces of the movable contact, constant contact pressure can be ensured. As a structure for holding the movable contact in the holder, the movable contact is attached to a mounting bracket made of a thin plate formed by cutting and bending an engagement piece, and the mounting bracket is attached to a recessed part having an engagement step corresponding to the engagement piece. By press-fitting the movable contact into the formed holder, the movable contact can be attached to the holder in one motion, which simplifies the assembly work. By the way, according to the inventors' considerations, when the movable contact and the connecting conductor are brought into sliding contact, the reason why the Ag plating wears out and the copper base is exposed due to no-load switching is due to the movable contact and the connecting conductor. This is because the Ag plating layers on both sides of the conductor are coated. In addition, the copper substrate is exposed when a large current is cut off.
This is because the plating layers weld to each other, and if the welded part breaks during the sliding process, the surface of that part will become rough, the electrical contact will be poor, and the heat generated by electricity will increase, making it easier to melt and weld. . Such problems can be solved by applying a coating treatment on the sliding contact surface made of a composite material in which carbon (C) grains are dispersed in a silver matrix instead of Ag plating. As is well known, carbon has excellent lubricating properties, but it is completely incompatible with silver. Therefore, the silver-carbon composite material can prevent warping during no-load opening and closing, and at the same time, it is less likely to weld together even if it melts due to heat generation when a large current is applied, and in both cases, the sliding contact surface is smooth. It is possible to maintain stable current carrying capacity. In addition, so as to form a parallel circuit for the sliding contact part,
By connecting the movable contact and the connecting conductor with a lead wire, when a large current such as a short circuit current flows, this current is divided between the sliding contact and the lead wire, reducing the thermal load on the sliding contact. can be reduced, and the current capacity can be increased accordingly.
以下、図に基づいてこの発明の詳細な説明する。なお、
実施例を示す図において従来例と実質的に同一の部分に
は同一の符号を付けるものとする。
まず、第1図はこの発明を原理的に示す第1の実施例の
中央極の可動接触子部分の斜視図である。
可動接触子31は銅帯から所定の形状に打ち抜がれて構
成され、先端に可動接点32がろう付けされている。接
続導体33はバイメタル9aと一体構成されており、穴
34を通る図示しないねしによりケース1に締め付けら
れる。この場合、バイメタル9aを固定するための固定
導体9b(第16図)は不要となっている。接続導体3
3には対向する一対の腕33aが折り曲げ形成されてお
り、この腕33aは可動接触子31の端部を弾性的に挟
み、開閉運動をする可動接触子31と摺動接触する。図
示しないが、可動接触子31と腕33aには共通の穴が
あけられ、図示の通り軸35が挿通されている。
一方、樹脂成形品のホルダ36には可動接触子31を受
は入れる凹部36aが形成されており、その両端の壁に
軸35の両端がそれぞれ嵌め込まれている。また、その
際、腕33aの両側で軸35にコイルばねからなる圧縮
ばね37が挿入され、ホルダ36との間で腕33aの内
壁面を可動接触子31の側面に圧接させている。38は
ホルダ36と図示しないその両側の左右極のホルダとを
連結する一体成形された開閉軸で、ホルダ36は開閉軸
38を介してケース1に回動自在に支持される。可動接
触子31は開閉機構16で駆動されると連結軸38のま
わりに開閉運動し、図示しないホルダに同様に保持され
た左右極の可動接触子も一体に開閉運動する。
第16図の従来例、及び第1図の実施例の過電流引外し
装置9はバイメタル9a自身に電流を流す直熱型のもの
であるが、ヒータ導体に電流を流して発熱させ、これに
結合したバイメタルに熱を伝達させる傍熱型のものがあ
る。第2図はそのような過電流引外し装置を用いた回路
遮断器における原理的な実施例で、この場合は接続導体
33はヒータ導体39と一体に構成されている。それ以
外の構成については第1図の実施例と同じなので説明を
省略する。
第3図及び第4図は、第1図の実施例に示した可動接触
子31と接続導体33とを備えた回路遮断器の縦断面図
で、第3図は閉路状態、また第4図は開路状態を示して
いる。図において、固定接触子3から固定接点4、可動
接点8を経て可動接触子31に流れた電流は、可動接触
子31の側面と腕33aの内壁面との摺動接触により直
接接続導体33に流れ、バイメタル9a、可撓導体15
を経て端子13に至る。40は可動接触子31とケース
1との間に挿入された圧縮ばねからなる接触ばねで、こ
れにより可動接触子31は固定接触子3に向かつて付勢
され適切な接触圧力が与えられている。その他の構成、
動作については従来例と同じなので説明を省略する。
次に、第5図〜第9図はこの発明の実際的な第3の実施
例を示すものである。以下、これについて詳細に説明す
る。
まず、第5図は可動接触子と、これと摺動接触する接続
導体とを組み合わせた状態を示すもので、第5図(A)
は取付金具44(後述)の上部板を部分的に取り除いた
平面図、同(B)は取付金具44の手前側の側板を部分
的に取り除いた側面図、同(C)は背面図である。図に
おいて、41は銅帯から図示形状に打ち抜かれた可動接
触子、42はその先端にろう付けされた可動接点、43
ば銅板から折り曲げ形成された接続導体、44はばね性
の大きい薄鋼板から門形に折り曲げ形成された取付金具
、45は限流機構を構成する鋼板からなる限流ラッチで
ある。
接続導体43は穴46を通るねじで回路遮断器のケース
l (第3図)に締め付けられる基部43aから、対向
する一対の腕43bが立ち上げられたもので、腕43b
は可動接触子41の板厚よりやや狭い間隔まで図示形状
に折り曲げられ、これを押し広げて挿入された可動接触
子41の後端部を弾性的に挟んで、その側面と摺動接触
す葛ようになっている。また、第5図(A)に示すよう
に、基部43aには中心線に沿って図の左端から穴46
の手前までスリット43cが切り込まれており、腕43
bが横方向に弾性変形し易いようになっている。
可動接触子41と腕43bとの摺動接触部には共通の貫
通穴があけられ、軸47が若干の隙間を介して挿入され
ている。そして、腕43bの両側でワッシャ48を挟ん
で軸47に圧縮ばねからなるばね49が挿入され、軸4
7の両端は取付金具44の側板にかしめ付けにより結合
されている。
これにより、可動接触子41は軸47のまわりに回動可
能であり、また腕43bはばね49により可動接触子4
1に圧接され適度の接触圧力が与えられている。
ここで、第9図(A)は接続導体43の側面図、同(B
)はそのB−B線に沿う断面図である。第9図に示すよ
うに、軸47を通す貫通穴50を囲んで、腕43bの内
側には環状凸部43cが形成され、この部分で可動接触
子41に接触するようになっている。これにより可動接
触子41と腕43bとの接触範囲が小さな平均半径の範
囲内に特定され、摩擦力による可動接触子41への制動
トルクを小さく抑え得るとともに接触圧力が向上し、更
に開閉運動を繰り返しても接触面が一定して安定した接
触が維持されるようになる。
再び第5図に戻って、取付金具44には、その側板に軸
47と同様に両端が固着された別の軸51により、限流
ラッチ45が回動可能に支持されている。限流ラッチ4
5は軸51が貫通する部分でU字形に折り曲げられた二
股状の硬質部材で、軸47に対向する側に変曲点■を挟
んで、はぼ垂直な通常面45aと、これに対して図の反
時計方向に傾斜した限流面45bとが設けられている。
そして、この限流ラッチ45は、通常の開閉状態では通
常面45aで、可動接触子41に左右に突出するように
植え込まれた限流ピン52と係合し、その上端と取付金
具上部との間に掛は渡された左右一対の限流ばね53に
より限流ピン52に押圧されている。一方、可動接触子
41は、限流ばね53により限流ビン52を介して軸4
7のまわりに第5図(B)の反時計方向に回動するトル
クを与えられている。このトルクは後述するように回路
遮断器に組み込まれた際に、可動接点42を固定接点4
に向かって押圧する接触圧力を発生させる。つまり、限
流ばね53は接触ばねの作用を持っている。
取付金具44の上部板及び側板下部にはそれぞれ外側に
張り出すように係合片44a及び44bが切り曲げによ
り形成されている。図示可動接触子41と接続導体43
との組立体は係合片44a。
44bを用いてホルダに固定されるが、次にそのホルダ
について説明する。
第6図はホルダの平面図、第7図はその■−■線に沿う
断面図である。第6図に示すように、モールド樹脂から
なる各種のホルダ54は開閉軸55により互いに結合さ
れている。55aは開閉軸55と一体形成された相間バ
リヤである。ホルダ54は連結軸55が二点鎖線で示し
たケース1の相間隔壁1aに形成された図示しない軸受
溝に嵌め込まれることにより回動自在に支持される。な
お、中央橋のホルダ54の左右の側面には開閉機構のリ
ンクを連結するための切欠54aが形成されている。
第5図の組立体は、第7図に示すようにホルダ54に装
着される。すなわち、ホルダ54にはその背面から上記
組立体を挿入する凹部56が形成され、また前面の壁に
は可動接触子41を開閉運動可能に挿通する窓57があ
けられている。凹部56の左右の壁には、取付金具44
の幅に合わせて嵌合面56aが形成され、その前縁56
bは取付金具44の前面の輪郭に形取られている。また
、凹部56の天井壁には係合片44aに対応して段部5
6cが設けられ、更に左右の壁には嵌合面前縁56bの
下部に沿って、係合片44bに対応する段部56dが設
けられている。
このようなホルダ54に、取付金具44の係合片44a
及び44bを内側に弾性変形させながら第5図の組立体
を押し込むと、取付金具44の前面が左右の壁の嵌合面
前縁56bに突き当たったところで停止し、同時に係合
片44a及び44bが弾性力により復帰してそれぞれ段
部56c及び56’dに係合し、第7図に示した状態で
固定される。第8図はそのようにして可動接触子41が
固定されたホルダ54を示す斜視図である。なお、54
bは開閉機構のリンクを連結するビンを挿入する貫通穴
である。
第14図は第5図の組立体を保持したホルダ54が組み
込まれた回路遮断器の中央種部分の縦断面図で、図は閉
路状態を示している。接続導体43は基部43aがバイ
メタル9aと重ねて一緒にケース1に締め付けられてい
る。図示状態で可動接触子41は固定接触子3に押圧さ
れて、軸47のまわりに図の時計方向にわずかに回動し
、それに伴って限流ビン52を介して限流ラッチ45を
限流ばね53に抗して軸51のまわりに反時計方向に回
動させている。その結果として、可動接触子41は限流
ばね53から逆に図の反時計方向に回転モーメントを受
け、接点4.42間の接触圧力を得ている。
ホルダ54及び可動接触子41は開閉運動をする際に、
第7図における開閉軸55の軸心A点のまわりに回動す
るが、軸47の軸心8点はA点から図示のとおり距離r
だけずれており、軸47はA点のまわりに半径rの回動
を行う。そのため、第9図(A)に示すように軸47を
挿通する貫通穴50を長穴として、その回動を妨げない
ようにしである。このように可動接触子41を支持する
軸心8点を開閉軸55の軸芯A点からずらせるのは、ホ
ルダ54の回動と共に可動接触子41を前後方向(第1
4図の左右方向)に僅かに移動させ、接点4.42間を
摺動させて接触面の酸化被膜を取り除くためである。
次に限流ラッチ45の作用による限流遮断について説明
する。第14図において、固定接触子3には可動接触子
5の導体と平行に位置する導体部分3bが設けら、接点
4.42を経て導体部分3b及び可動接触子31を流れ
る電流は矢印で示すようにその方向が互いに逆になって
いる。そのため、これらの電流間に働く電磁反発力によ
り可動接触子31は常に開離方向に力を受けている。
このような回路遮断器に短絡電流などの大電流が流れる
と、可動接触子41は極めて大きな駆動力を受け、限流
ばね53の力に抗して限流ラッチ45を押し退けて軸4
7のまわりに時計方向に回動する。その結果、限流ビン
52は限流ラッチ45の通常面45a上を滑って変曲点
■を越え、限流面45b上に乗り上げる。
限流ラッチ45における通常面45aと限流面45bの
角度は、限流ビン52が通常面45aと接触していると
きは、限流ばね53のばね力に基づいて限流ラッチ45
から限流ビン52に作用する力は可動接触子41を図の
反時計方向に回動させるように働き、限流ビン52が限
流面45bに移ると、その力は可動接触子41を時計方
向に回動させるように働くように設定しである。そのた
め、上に述べたように可動接触子41がある開極距離以
上に回動して変曲点■を越えると、可動接触子41は上
記電磁反発力に加えて限流ばね53による回動力を受け
、開閉機構16の動作による開離に先立って急速開離す
る。これによりアーク電圧が急速に高まり、いわゆる限
流遮断が実行される。
第7図はそのような限流遮断が行われた結果を示してい
る。限流ラッチ45のリセットは、第14図において、
過電流用外し装置9の指令により上記限流動作に引き続
いて行われる開閉機構16のトリップ動作の際に、可動
接触子41がカッ\−2に一体形成されたストッパ2a
に突き当たったまま、ホルダ54が図の時計方向の強制
回動させられることにより行われ、限流ビン52は変曲
点Vを逆方向に越えて再び通常面45aと係合する。
第10図は上に述べた限流動作時における力関係を明ら
かにする説明図で、第10図(A)は回路遮断器の閉路
状態を示し、同図(B)は開極直後の状態を示している
。また、第11図は限流動作時に限流ばね53のばね力
に基づいて可動接触子41に作用するトルクと可動接触
子41の開離距離との関係を線図で示したものである。
まず、第10図(A)において、閉路状態では限流ばね
53のばね力P、とビン52からの距離L1とにより、
限流ラッチ45にはP+ xL、のトルクが作用する。
このトルクは、はぼ垂直な通常面45aにおけるビン5
1からL2の距離の点で限流ビン52に対してPgO力
を与え(P、×Ll =F)2XL2 ) 、この力P
2は限流ビン52から軸47までの距離り、Jにより、
可動接触子41に対して反時計方向にPz Xi3のト
ルクを与える。このトルクにより、可動接点42と固定
接点4との間の接触圧力が生じる。
一方、変曲点■を越えた第10図(B)の状態では、限
流ばね53からのばね力P3に基づいて限流ラッチに作
用するトルクにより、限流面45bにおけるビン51か
ら距離L4の点で限流ビン52に対して力P4が生じる
。この力P4は限流面45bの傾斜角の関係から、軸4
7の図の上方を通って軸47までの距離り、により可動
接触子41にPa Xi、、の時計方向のトルクを与え
てその開離動作を促進する。
第11図は電磁反発力により限流ビン52が通常面45
a上を滑って変曲点■を越えた途端に可動接触子41に
作用するトルクの向きが逆転する様子を示したもので、
トルクの+側は反時計方向を、また−例は時計方向を表
している。ところで、大電流が流れて電磁反発力が接触
圧力を越えたら、できるだけ短い時間で上記トルクの逆
転が発生することが望まれる。そのためには、限流ビン
52が閉路位置から変曲点■まで移動する間の十方向ト
ルクの増加を抑え、また第10図(A)における限流ピ
ン52と限流ラッチ45との掛合量り。
をできるだけ少なくする必要がある。
十方向のトルクの上記増加を小さくするためには、通常
面45aと限流面45bとの角度差を小さくすればよい
。しかし、この角度差が小さ(なると力P2の向きが軸
47側に寄り、距離L3も小さくなって接触圧力が低下
する。また、上記掛合量Lbが余り小さくなると、遮断
器投入時の接点バウンスによって限流ビン52が変曲点
を越えてしまう危険が生じる。したがって、これらの兼
ね合いを考慮して、通常面45aの角度及び掛合量L6
を適切に決定する。
電磁反発力で可動接触子を固定接触子から開離させるよ
うに構成した回路遮断器の場合、単に接触ばねを変形さ
せるだけでは、可動接触子の開離と共に接触ばねの反力
が増大して可動接触子の運動が阻害される。これに対し
て、図示の限流機構は限流効果が大きく、例えばAC4
60V、42kAの電流を遮断した場合に、通過電流の
ピーク値が従来の約33kAから約26kAに低下する
ことが確認されている。
次に、第12図(A)は摺動接触する可動接触子41と
接続導体43の要部を示し、同図(B)はそのB部を拡
大したものである。図に示すように、電流は接触範囲内
のいくつかの接触点Pを通して流れる。この電流は第1
2図(B)に矢印iで示すように接触点Pに向かって集
まり、接触点Pを通過すると同時に拡散するため、接触
点Pの前後で電流の向きが逆になり、可動接触子41と
接続導体43の腕43bとの間には電磁反発力が作用す
る。
この電磁反発力の大きさF、は一つの接触点Pの通過電
流を1m(kA)とすると、接触点Pの数をnとして、
F、=Σ5 I J”Xio−2(kg) (j =
I 〜n)で与えられる。この電磁反発力F1は回路
遮断器の通過電流が大きくなり、したがって個々の接触
点Pを通過する電流が大きくなると加速度的に大きくな
る。その結果、ばね49の力が減殺されて接触点Pの数
が減り、残りの接触点Pの通過電流が過大となって、そ
の部分で発弧もしくは溶着が発生する可能1性が出てく
る。
このようなことから、可動接触子41と接続導体43と
を摺動接触(面接触)で接続する場合、適用可能な短絡
電流定格に限界が生じる。この限界値を高くするために
ばね49の力を大きくすると、今度は摩擦力が大きくな
り可動接触子41の常時の開閉速度が低下するという問
題が生じる。
この問題を解決する手段として、第5図(C)及び第9
図(B)に示すように、腕43bの可動接触子41との
接触部の近傍に腕43bの対向間隔が前記接触部よりも
間隔の狭い部分58を設ける。
以下、その作用について第12図(A)を参照して説明
する。
いま、上記部分58での腕43bの長さを!、その対向
間隔をS、各腕43bに分流する電流を1 (kA)と
すれば、電流Iは各腕43bを同方向に流れるから、腕
43b間には次の電磁吸引力F2が生しる。
Fz=2.04にρ/S−1” (k:定数)そこで
、この電磁吸引力F2が上述の電磁反発力F、より大き
くなるように上記間隔Sを定めれば、ばね49の力を大
きくすることなく適用可能な短絡電流定格を向上させる
ことができる。第17図に上記電磁反発力F1及び電磁
吸引力F2が回路遮断器を通過する短絡電流とともに変
化して行く様子を示す。また、図の接触力ばばね49及
び接続導体43の弾性によって得られる力である。
また、第9図(B)に示すように、腕43bの接触部に
設けた環状凸部43cは、その外側で腕43bと可動接
触子41との間の距離を隔て、接触部の前後で互いに逆
方向に流れる電流の間隔を太きして上記電磁反発力F1
を小さくする作用をする。
更に、可動接触子及び接続導体の少なくとも一方の摺動
接触面に銀(Ag )と炭素(C)の複合材料による被
膜処理を施すことにより、回路遮断器の無負荷開閉の繰
り返しや大電流遮断に伴う接触面の茜りや溶着を防止し
、通電性能を大幅に向上させることができる。
そこで、第5図に示す構造の可動接触子41及び接続導
体43に上記被膜処理を施した実験例について、以下に
試験結果を説明する。
まず、可動接触子41及び接続導体43にそれぞれAg
−6%C(体積%)の被膜を厚さ7μmに電気めっきし
た。その際、Ag中に分散させる0粒は長径0.5〜2
μm、短径0.2〜0.56m0片状のものを使用した
(実験例1)。
同様に、可動接触子41及び接続導体43にそれぞれA
g−3%C(体積%)の被膜を厚さ7μmに電気めっき
した。その際、Ag中に分散させる0粒は長径0.8〜
5μm、短径0.3〜1μmの片状のものを使用した(
実験例2)。
また、比較例として、Agめっき7μmを施した同様の
可動接触子及び接続導体を用意した。
これらの可動接触子及び接続導体を回路遮断器に組み込
み、無負荷開閉試験及び大電流遮断試験を実施した結果
を第1表に示す。これによれば、Ag−C複合材料のめ
っきを施したものは、通常のめっきのものに比べて銅素
地が露出しにくいことが分かる。
第1表
上記実験例では2つの例を示したが、この発明の効果は
Cの性質に依存しているので、0%や0粒の大きさはこ
れらに限ったものではない。また、摺動接触部の冨り易
さや溶融し易さは接触部の広さや面圧力によっても影響
されるので、0%や0粒の大きさはこれらを総合して決
める。ただ、Cは導電性を有するものの電気抵抗がAg
の数百倍〜数千倍である。したがって、いたずらに0%
を大きくしたり、めっき厚さを貫通するような大きな0
粒を使用することは、摺動接触部の発熱を増加させ、回
路遮断器の端子部温度を上げることになるので好ましく
ない。
上記実験例では電気めっき被膜の場合を示したが、被膜
がAgとCとの複合材であることが重要であり、被膜形
成方法は電気めっきに限られるものではない。
膜を形成しても効果がある。その場合、他方の部品はA
gめっきをすることが望ましいが、Cは酸化防止作用が
あるので、銅のままでもある程度の通電特性は得られる
。なお、上記被膜は導体全面に施す必要はなく、摺動接
触面に限定して形成してもよい。
更に、Ag−Cに第3の粒子として微細な硬質粒子、例
えばS i C、W CSZ r B 、 A l z
O3、Zr0z 、CrzO,、、Ti0z 、Rz
Os 、Thoz、YzO3、Mo5s 、WzC,T
iC,B−C,CrBzなどの粒子を分散させれば、被
膜全体の硬度を上げて、より磨耗しにくい長寿命の接触
部を構成することができる。
最後に第15図は可動接触子とこれに摺動接触する接続
導体とを更にリード線で接続したこの発明の第4の実施
例を示すもので、第15図(A)は可動接触子部分の平
面図、同(B)はその側面図、同(C)はその背面図で
ある。図において、59は可動接触子41と接続導体4
3との間の摺動接触部とほぼ同等の抵抗値を有する可撓
性のリード線で、その一端は可動接触子41の後端部の
下面に、また他端は接続導体43の基部43aのされて
いる。
これにより、可動接触子41と接続導体43との間を流
れる電流は摺動接触部とリード線59とにほぼ部分され
、短絡電流などの大電流が流れた際の摺動接触部の熱的
負荷が半減し、その分、回路遮断器全体としての限界電
流値の増加が可能となる。Hereinafter, the present invention will be explained in detail based on the drawings. In addition,
In the drawings showing the embodiment, parts that are substantially the same as those in the conventional example are given the same reference numerals. First, FIG. 1 is a perspective view of a movable contact portion of a central pole of a first embodiment which shows the principle of the present invention. The movable contact 31 is formed by punching a copper strip into a predetermined shape, and has a movable contact 32 brazed to its tip. The connecting conductor 33 is integrally formed with the bimetal 9a, and is fastened to the case 1 by a screw (not shown) passing through the hole 34. In this case, the fixed conductor 9b (FIG. 16) for fixing the bimetal 9a is unnecessary. Connection conductor 3
A pair of arms 33a facing each other are formed by bending.The arms 33a elastically sandwich the ends of the movable contact 31 and come into sliding contact with the movable contact 31 which makes an opening/closing motion. Although not shown, a common hole is bored in the movable contactor 31 and the arm 33a, and the shaft 35 is inserted therethrough as shown. On the other hand, the resin molded holder 36 is formed with a recess 36a into which the movable contact 31 is received, and both ends of the shaft 35 are fitted into the walls at both ends of the recess 36a. Further, at this time, compression springs 37 made of coil springs are inserted into the shaft 35 on both sides of the arm 33a, and press the inner wall surface of the arm 33a against the side surface of the movable contact 31 between the arm 33a and the holder 36. Reference numeral 38 denotes an integrally formed opening/closing shaft that connects the holder 36 and right and left holders (not shown) on both sides thereof.The holder 36 is rotatably supported by the case 1 via the opening/closing shaft 38. When the movable contact 31 is driven by the opening/closing mechanism 16, it opens and closes around the connecting shaft 38, and the left and right movable contacts similarly held in a holder (not shown) also open and close in unison. The overcurrent tripping device 9 of the conventional example shown in FIG. 16 and the embodiment shown in FIG. There is an indirect heating type that transfers heat to bonded bimetals. FIG. 2 shows a basic embodiment of a circuit breaker using such an overcurrent tripping device, in which the connecting conductor 33 is constructed integrally with the heater conductor 39. The rest of the configuration is the same as that of the embodiment shown in FIG. 1, so the explanation will be omitted. 3 and 4 are longitudinal sectional views of the circuit breaker equipped with the movable contact 31 and the connecting conductor 33 shown in the embodiment of FIG. 1, with FIG. 3 showing the closed circuit state, and FIG. indicates an open circuit state. In the figure, the current flowing from the fixed contact 3 to the movable contact 31 via the fixed contact 4 and the movable contact 8 is directly connected to the connecting conductor 33 due to sliding contact between the side surface of the movable contact 31 and the inner wall surface of the arm 33a. Flow, bimetal 9a, flexible conductor 15
The terminal 13 is reached through the terminal 13. A contact spring 40 is a compression spring inserted between the movable contact 31 and the case 1, which urges the movable contact 31 toward the fixed contact 3 and applies appropriate contact pressure. . Other configurations,
Since the operation is the same as the conventional example, the explanation will be omitted. Next, FIGS. 5 to 9 show a third practical embodiment of the present invention. This will be explained in detail below. First, Fig. 5 shows a combination of a movable contact and a connecting conductor that makes sliding contact with the movable contact, and Fig. 5 (A)
is a plan view with the upper plate of the mounting bracket 44 (described later) partially removed, (B) is a side view with the front side plate of the mounting bracket 44 partially removed, and (C) is a rear view. . In the figure, 41 is a movable contact punched out from a copper strip in the shape shown, 42 is a movable contact brazed to its tip, and 43
Reference numeral 44 designates a connecting conductor formed by bending a copper plate; reference numeral 44 designates a mounting bracket formed by bending a thin steel plate with high springiness into a gate shape; and reference numeral 45 designates a current limiting latch made of a steel plate constituting a current limiting mechanism. The connecting conductor 43 has a pair of opposing arms 43b raised from a base 43a which is fastened to the circuit breaker case l (Fig. 3) with a screw passing through a hole 46.
is bent into the shape shown in the figure to a distance slightly narrower than the plate thickness of the movable contact 41, and is pushed out to elastically sandwich the rear end of the inserted movable contact 41, and is in sliding contact with the side surface of the movable contact 41. It looks like this. Further, as shown in FIG. 5(A), a hole 46 is provided in the base 43a from the left end of the figure along the center line.
A slit 43c is cut in front of the arm 43.
b is designed to be easily elastically deformed in the lateral direction. A common through hole is formed in the sliding contact portion between the movable contactor 41 and the arm 43b, and the shaft 47 is inserted through a slight gap. Then, a spring 49 made of a compression spring is inserted into the shaft 47 with a washer 48 in between on both sides of the arm 43b.
Both ends of 7 are joined to the side plates of the mounting bracket 44 by caulking. As a result, the movable contact 41 can be rotated around the shaft 47, and the arm 43b can be rotated around the movable contact 41 by the spring 49.
1 and a suitable contact pressure is applied. Here, FIG. 9(A) is a side view of the connecting conductor 43, and FIG. 9(B) is a side view of the connecting conductor 43.
) is a sectional view taken along the line BB. As shown in FIG. 9, an annular convex portion 43c is formed on the inside of the arm 43b surrounding the through hole 50 through which the shaft 47 passes, and comes into contact with the movable contact 41 at this portion. As a result, the contact range between the movable contact 41 and the arm 43b is specified within the range of a small average radius, and the braking torque applied to the movable contact 41 due to frictional force can be suppressed to a small level, the contact pressure is increased, and the opening/closing movement is further suppressed. Even after repeated contact, the contact surface remains constant and stable contact is maintained. Returning again to FIG. 5, a current-limiting latch 45 is rotatably supported on the mounting bracket 44 by another shaft 51 having both ends fixed to its side plate in the same way as the shaft 47. Current limiting latch 4
Reference numeral 5 denotes a bifurcated hard member bent into a U-shape at the part where the shaft 51 passes through, and has a nearly perpendicular normal surface 45a with an inflection point (■) in between on the side opposite to the shaft 47; A current limiting surface 45b is provided which is inclined counterclockwise in the figure. In the normal opening/closing state, the current limiting latch 45 engages with the current limiting pin 52 implanted in the movable contact 41 so as to protrude left and right at its normal surface 45a, and its upper end and the upper part of the mounting bracket engage with each other. The bridge is pressed against the current limiting pin 52 by a pair of left and right current limiting springs 53. On the other hand, the movable contact 41 is connected to the shaft 4 via the current limiting bottle 52 by the current limiting spring 53.
7, a torque is applied to rotate it in the counterclockwise direction of FIG. 5(B). This torque is applied when the movable contact 42 is connected to the fixed contact 4 when installed in a circuit breaker as described later.
Generates contact pressure that presses toward. In other words, the current limiting spring 53 has the function of a contact spring. Engagement pieces 44a and 44b are formed by cutting and bending on the upper plate and the lower side plate of the mounting bracket 44, respectively, so as to project outward. Illustrated movable contactor 41 and connection conductor 43
The assembly with the engagement piece 44a. 44b, and the holder will be explained next. FIG. 6 is a plan view of the holder, and FIG. 7 is a cross-sectional view thereof taken along the line ■-■. As shown in FIG. 6, various holders 54 made of molded resin are connected to each other by an opening/closing shaft 55. As shown in FIG. 55a is an interphase barrier formed integrally with the opening/closing shaft 55. The holder 54 is rotatably supported by a connecting shaft 55 fitted into a bearing groove (not shown) formed in the interphase wall 1a of the case 1, indicated by a chain double-dashed line. Note that cutouts 54a for connecting links of the opening/closing mechanism are formed on the left and right side surfaces of the holder 54 of the central bridge. The assembly of FIG. 5 is mounted in holder 54 as shown in FIG. That is, the holder 54 is formed with a recess 56 into which the assembly is inserted from the back side, and a window 57 is formed in the front wall through which the movable contact 41 is inserted so as to be able to open and close. Mounting brackets 44 are installed on the left and right walls of the recess 56.
A fitting surface 56a is formed according to the width of the front edge 56.
b is shaped like the outline of the front surface of the mounting bracket 44. Further, a stepped portion 5 is provided on the ceiling wall of the recessed portion 56 corresponding to the engaging piece 44a.
6c, and furthermore, a step portion 56d corresponding to the engagement piece 44b is provided on the left and right walls along the lower part of the front edge 56b of the fitting surface. The engagement piece 44a of the mounting bracket 44 is attached to such a holder 54.
When the assembly shown in FIG. 5 is pushed in while elastically deforming the fittings 44b and 44b inward, it stops when the front surface of the mounting bracket 44 abuts the front edges 56b of the fitting surfaces of the left and right walls, and at the same time, the engaging pieces 44a and 44b elastically deform. They are returned by force and engaged with the stepped portions 56c and 56'd, respectively, and are fixed in the state shown in FIG. 7. FIG. 8 is a perspective view showing the holder 54 to which the movable contact 41 is fixed in this manner. Furthermore, 54
b is a through hole into which a bottle connecting links of the opening/closing mechanism is inserted. FIG. 14 is a longitudinal sectional view of the central part of the circuit breaker incorporating the holder 54 holding the assembly shown in FIG. 5, and shows the circuit breaker in a closed state. The base portion 43a of the connecting conductor 43 overlaps the bimetal 9a and is fastened to the case 1 together. In the illustrated state, the movable contact 41 is pressed by the fixed contact 3 and slightly rotates around the shaft 47 in the clockwise direction in the figure, thereby causing the current limiting latch 45 to limit the current through the current limiting bottle 52. It is rotated counterclockwise around a shaft 51 against a spring 53. As a result, the movable contactor 41 receives a rotational moment from the current limiting spring 53 in the counterclockwise direction in the drawing, thereby obtaining contact pressure between the contacts 4 and 42. When the holder 54 and the movable contact 41 perform opening and closing movements,
The opening/closing shaft 55 rotates around the axial center point A in FIG.
The shaft 47 rotates around the point A with a radius r. Therefore, as shown in FIG. 9(A), the through hole 50 through which the shaft 47 is inserted is made into an elongated hole so as not to impede its rotation. The reason why the eight axial centers supporting the movable contactor 41 are shifted from the axial center point A of the opening/closing shaft 55 is that the movable contactor 41 is moved in the front-rear direction (the first
This is to remove the oxide film on the contact surface by slightly moving it in the left-right direction in Figure 4 and sliding between the contacts 4 and 42. Next, the current limiting and shutting off by the action of the current limiting latch 45 will be explained. In FIG. 14, the fixed contact 3 is provided with a conductor portion 3b located parallel to the conductor of the movable contact 5, and the current flowing through the conductor portion 3b and the movable contact 31 via the contact 4.42 is indicated by an arrow. The directions are opposite to each other. Therefore, the movable contactor 31 is always subjected to force in the direction of separation due to the electromagnetic repulsion force acting between these currents. When a large current such as a short-circuit current flows through such a circuit breaker, the movable contact 41 receives an extremely large driving force, resists the force of the current-limiting spring 53, pushes away the current-limiting latch 45, and closes the shaft 4.
Rotate clockwise around 7. As a result, the current-limiting bottle 52 slides on the normal surface 45a of the current-limiting latch 45, crosses the inflection point (3), and rides on the current-limiting surface 45b. The angle between the normal surface 45a and the current limiting surface 45b in the current limiting latch 45 is determined based on the spring force of the current limiting spring 53 when the current limiting bottle 52 is in contact with the normal surface 45a.
The force acting on the current-limiting bottle 52 acts to rotate the movable contact 41 counterclockwise in the figure, and when the current-limiting bottle 52 moves to the current-limiting surface 45b, the force causes the movable contact 41 to rotate clockwise. It is set so that it rotates in the direction. Therefore, as described above, when the movable contact 41 rotates beyond a certain opening distance and crosses the inflection point (■), the movable contact 41 is rotated by the rotational force due to the current limiting spring 53 in addition to the electromagnetic repulsive force described above. In response to this, the opening/closing mechanism 16 quickly opens and closes prior to opening due to the operation of the opening/closing mechanism 16. As a result, the arc voltage increases rapidly, and so-called current-limiting interruption is performed. FIG. 7 shows the result of such current limiting interruption. The current limiting latch 45 is reset as shown in FIG.
When the tripping operation of the opening/closing mechanism 16 is performed following the current limiting operation by a command from the overcurrent disconnection device 9, the movable contact 41 is attached to the stopper 2a integrally formed in the cup \-2.
This is done by forcibly rotating the holder 54 in the clockwise direction in the figure while the current limiting bottle 52 crosses the inflection point V in the opposite direction and engages with the normal surface 45a again. Figure 10 is an explanatory diagram that clarifies the force relationship during the current limiting operation described above. Figure 10 (A) shows the closed state of the circuit breaker, and Figure 10 (B) shows the state immediately after opening. It shows. Further, FIG. 11 is a diagram showing the relationship between the torque acting on the movable contact 41 based on the spring force of the current limiting spring 53 during the current limiting operation and the separation distance of the movable contact 41. First, in FIG. 10(A), in the closed circuit state, due to the spring force P of the current limiting spring 53 and the distance L1 from the bottle 52,
A torque of P+xL acts on the current limiting latch 45. This torque is applied to the bottle 5 in the almost vertical normal plane 45a.
Apply a PgO force to the current limiting bottle 52 at a distance from 1 to L2 (P, x Ll = F)2XL2), and this force P
2 is the distance from the current-limiting bottle 52 to the axis 47, and by J,
A torque of Pz Xi3 is applied to the movable contact 41 in a counterclockwise direction. This torque creates contact pressure between the movable contact 42 and the fixed contact 4. On the other hand, in the state shown in FIG. 10(B) where the inflection point ■ has been exceeded, the torque acting on the current limiting latch based on the spring force P3 from the current limiting spring 53 causes a distance L4 from the bottle 51 on the current limiting surface 45b. A force P4 is generated on the current limiting bottle 52 at the point . This force P4 is caused by the axis 4 due to the inclination angle of the current limiting surface 45b.
7 to the shaft 47, a clockwise torque of Pa Xi, . FIG. 11 shows that the current limiting bottle 52 is moved to the normal surface 45 due to electromagnetic repulsion.
This figure shows how the direction of the torque acting on the movable contact 41 is reversed as soon as it slides on the point a and crosses the inflection point ■.
The positive side of the torque represents counterclockwise direction, and the negative example represents clockwise direction. By the way, when a large current flows and the electromagnetic repulsion force exceeds the contact pressure, it is desired that the torque reversal occurs in as short a time as possible. In order to do this, it is necessary to suppress the increase in ten-direction torque while the current limiting pin 52 moves from the closing position to the inflection point (2), and to reduce the engagement between the current limiting pin 52 and the current limiting latch 45 in FIG. 10(A). . need to be minimized as much as possible. In order to reduce the increase in torque in the ten directions, the angular difference between the normal surface 45a and the current limiting surface 45b may be reduced. However, if this angular difference becomes small (when the direction of the force P2 shifts toward the shaft 47 side, the distance L3 also becomes small, and the contact pressure decreases. Also, if the above-mentioned engagement amount Lb becomes too small, the contact bounce occurs when the circuit breaker is closed). Therefore, there is a risk that the current limiting bottle 52 will exceed the inflection point. Therefore, in consideration of these balances, the angle of the normal surface 45a and the engagement amount L6 are adjusted.
Decide appropriately. In the case of a circuit breaker configured to separate the movable contact from the fixed contact using electromagnetic repulsion, simply deforming the contact spring will cause the reaction force of the contact spring to increase as the movable contact separates. Movement of the movable contact is inhibited. On the other hand, the illustrated current limiting mechanism has a large current limiting effect, for example, AC4
It has been confirmed that when a current of 60V and 42kA is interrupted, the peak value of the passing current decreases from about 33kA in the conventional case to about 26kA. Next, FIG. 12(A) shows the main parts of the movable contactor 41 and the connecting conductor 43 which are in sliding contact, and FIG. 12(B) is an enlarged view of the B part. As shown in the figure, the current flows through several contact points P within the contact range. This current is the first
As shown by the arrow i in Fig. 2 (B), the current gathers toward the contact point P and diffuses as soon as it passes the contact point P, so the direction of the current is reversed before and after the contact point P, and the movable contact 41 and An electromagnetic repulsive force acts between the connecting conductor 43 and the arm 43b. The magnitude of this electromagnetic repulsion force F is calculated as follows, assuming that the current passing through one contact point P is 1 m (kA), and the number of contact points P is n. =
I to n). This electromagnetic repulsion force F1 increases at an accelerating rate as the current passing through the circuit breaker increases and therefore the current passing through each contact point P increases. As a result, the force of the spring 49 is reduced and the number of contact points P is reduced, and the current passing through the remaining contact points P becomes excessive, creating a possibility that arcing or welding will occur at that part. . For this reason, when the movable contactor 41 and the connection conductor 43 are connected by sliding contact (surface contact), there is a limit to the applicable short circuit current rating. If the force of the spring 49 is increased in order to increase this limit value, a problem arises in that the frictional force increases and the normal opening/closing speed of the movable contact 41 decreases. As a means to solve this problem, Figures 5 (C) and 9
As shown in Figure (B), a portion 58 is provided in the vicinity of the contact portion of the arm 43b with the movable contact 41, where the opposing distance between the arms 43b is narrower than that of the contact portion. The effect will be explained below with reference to FIG. 12(A). Now, the length of the arm 43b at the above portion 58! , the opposing interval is S, and the current divided into each arm 43b is 1 (kA). Since the current I flows through each arm 43b in the same direction, the following electromagnetic attractive force F2 is generated between the arms 43b. Ru. Fz=2.04, ρ/S-1'' (k: constant) Therefore, if the above-mentioned interval S is determined so that this electromagnetic attractive force F2 is larger than the above-mentioned electromagnetic repulsive force F, the force of the spring 49 can be reduced to The applicable short-circuit current rating can be improved without increasing the current rating. Fig. 17 shows how the electromagnetic repulsive force F1 and the electromagnetic attractive force F2 change with the short-circuit current passing through the circuit breaker. , is a force obtained by the elasticity of the contact force spring 49 and the connection conductor 43 in the figure.In addition, as shown in FIG. By increasing the distance between the arm 43b and the movable contact 41 and increasing the interval between the currents flowing in opposite directions before and after the contact portion, the electromagnetic repulsion force F1 is increased.
acts to reduce the Furthermore, by coating the sliding contact surface of at least one of the movable contactor and the connecting conductor with a composite material of silver (Ag) and carbon (C), it is possible to prevent the circuit breaker from repeating no-load opening/closing or interrupting large currents. This prevents warping and welding of the contact surface caused by this, and greatly improves current carrying performance. Therefore, the test results will be explained below regarding an experimental example in which the movable contactor 41 and the connecting conductor 43 having the structure shown in FIG. 5 were subjected to the above coating treatment. First, the movable contact 41 and the connection conductor 43 are each
A coating of -6% C (vol%) was electroplated to a thickness of 7 μm. At that time, the major diameter of the 0 grains dispersed in Ag is 0.5 to 2.
A piece with a short diameter of 0.2 to 0.56 m0 was used (Experimental Example 1). Similarly, the movable contact 41 and the connecting conductor 43 are each
A coating of g-3% C (vol%) was electroplated to a thickness of 7 μm. At that time, the major diameter of the 0 grains dispersed in Ag is 0.8~
Pieces with a diameter of 5 μm and a short axis of 0.3 to 1 μm were used (
Experimental example 2). In addition, as a comparative example, a similar movable contact and a connecting conductor with 7 μm Ag plating were prepared. Table 1 shows the results of a no-load switching test and a large current interrupting test conducted by incorporating these movable contacts and connecting conductors into a circuit breaker. According to this, it can be seen that the copper substrate is less likely to be exposed in the Ag-C composite material plated plate compared to the normal plated plate. Although two examples were shown in the above experimental examples in Table 1, since the effects of this invention depend on the properties of C, the size of 0% and 0 grains is not limited to these. Furthermore, the ease of thickening and melting of the sliding contact portion is also influenced by the width of the contact portion and the surface pressure, so the size of 0% and 0 grains is determined by taking these factors into consideration. However, although C has conductivity, the electrical resistance is lower than that of Ag.
It is several hundred to several thousand times larger. Therefore, 0%
or large zero that penetrates the plating thickness.
The use of grains is undesirable because it increases the heat generation of the sliding contact and raises the temperature of the terminals of the circuit breaker. Although the above experimental example shows the case of an electroplated film, it is important that the film is a composite material of Ag and C, and the film forming method is not limited to electroplating. Forming a film is also effective. In that case, the other part is A
It is preferable to use G plating, but since C has an anti-oxidation effect, a certain degree of current-carrying properties can be obtained even if copper is used as is. Note that the above coating does not need to be applied to the entire surface of the conductor, and may be formed only to the sliding contact surface. Furthermore, fine hard particles such as SiC, WCSZrB, Alz are added to Ag-C as third particles.
O3, Zr0z, CrzO,, Ti0z, Rz
Os, Thoz, YzO3, Mo5s, WzC,T
By dispersing particles such as iC, B-C, CrBz, etc., the hardness of the entire coating can be increased and a contact portion that is less likely to wear out and has a longer life can be constructed. Finally, FIG. 15 shows a fourth embodiment of the present invention in which a movable contact and a connecting conductor that makes sliding contact with the movable contact are further connected by a lead wire, and FIG. 15 (A) shows the movable contact portion. FIG. 2B is a plan view, FIG. 1B is a side view, and FIG. 1C is a rear view. In the figure, 59 indicates the movable contact 41 and the connecting conductor 4.
3, one end of which is attached to the lower surface of the rear end of the movable contact 41, and the other end is attached to the base 43a of the connecting conductor 43. It is being carried out. As a result, the current flowing between the movable contactor 41 and the connecting conductor 43 is almost divided between the sliding contact portion and the lead wire 59, and the thermal loss of the sliding contact portion when a large current such as a short circuit current flows. The load is halved, and the limit current value of the circuit breaker as a whole can be increased accordingly.
この発明によれば、可動接触子と接続導体とを可撓導体
を用いることなく電気的に接続することができ、信転性
に優れかつ遮断性能の高し)回路遮断器を小形に構成す
ることが可能となる。また、その際、可動接触子あるい
は接続導体の摺動接触面に銀と炭素との複合材料よりな
る被膜処理を施すことにより、長期間にわたって良好な
通電状態を維持することができる。更に、必要に応じて
上記摺動接触部の電流の一部をリード線に分流させて、
電流容量の増大を図ることが可能である。According to this invention, the movable contact and the connecting conductor can be electrically connected without using a flexible conductor, and the circuit breaker has excellent reliability and high breaking performance. becomes possible. Further, in this case, by applying a film treatment made of a composite material of silver and carbon to the sliding contact surface of the movable contactor or the connecting conductor, a good current conduction state can be maintained for a long period of time. Furthermore, if necessary, part of the current in the sliding contact portion is shunted to the lead wire,
It is possible to increase the current capacity.
第1図はこの発明の第1の実施例の可動接触子部分の斜
視図、第2図はこの発明の第2の実施例の可動接触子部
分の斜視図、第3図は第1図の可動接触子部分を備えた
回路遮断器の中央極部分の閉路状態の縦断面図、第4図
は同しく開路状態の縦断面図、第5図(A)はこの発明
の第3の実施例の可動接触子部分の平面図、第5図(B
)(まその側面図、第5図(C)はその背面図、第6図
1よ第5図の可動接触子部分を保持するホルダの平面図
、第7図は第6図の■−■線に沿う断面図、第8図は第
6図のホルダに第5図の可動接触子部分を装着した状態
の斜視図、第9図(A)は第5図における接続導体の拡
大側面図、第9図(B)はそのB−B線に沿う断面図、
第10図(A)は閉路状態における限流ラッチと限流ビ
ンとの間の力関係を説明する図、第10図(B)は同じ
く開極直後の力関係を説明する図、第11図は限流ばね
に基づいて可動接触子に作用するトルクと可動接触子の
開極距離との関係を示す線図、第12図(A)は可動接
触子と接続導体との間に働く力を説明するための第5図
(C)に相当する背面図、第12図(B)はそのB部拡
大図、第13図は第12図の接触部での磁気反発力及び
磁気吸引力と短絡電流との関係を示す線図、第14図は
第5図の可動接触子部分を備えた回路遮断器の中央極部
分の閉路状態の縦断面図、第15図(A)はこの発明の
第4の実施例の可動接触子部分の平面図、第15図(B
)はその側面図、第15図(C)はその背面図、第16
図は従来の回路遮断器の中央極部分の閉路状態の縦断面
図、第17図は同じく開路状態の縦断面図である。
1・・・ケース、16・・・開閉機構、31・・・可動
接触子、33・・・接続導体、33a・・・腕、35・
・・ばね、36・・・ホルダ、37・・・開閉軸、41
・・・可動接触子、43・・・接続導体、43a・・・
腕、44・・・取付金具、44a、44b・・・係合片
、49・・・ばね、54・・・ホルダ、55・・・開閉
軸、56・・・凹部、56c、56d・・・段部、59
・・・リード線。
第
図
第
図
第
図
第
図
(A)
(B)
第
図
(A)
(B)
第
図
P艮jlL’″l・ソ+L二文寸オろ戸史lLご′ノの
011躍)り5第
図
(A)
(B)
第
]2
図
第
図FIG. 1 is a perspective view of a movable contact portion of a first embodiment of the invention, FIG. 2 is a perspective view of a movable contact portion of a second embodiment of the invention, and FIG. 3 is a perspective view of a movable contact portion of a second embodiment of the invention. FIG. 4 is a vertical cross-sectional view of the center pole portion of a circuit breaker with a movable contact portion in a closed state, FIG. 4 is a vertical cross-sectional view of the center pole portion in an open state, and FIG. A plan view of the movable contact portion of FIG. 5 (B
) (A side view of the main body, FIG. 5(C) is a rear view thereof, FIG. 6 is a plan view of the holder that holds the movable contact portions shown in FIGS. 1 to 5, and FIG. 8 is a perspective view of the movable contact portion of FIG. 5 attached to the holder of FIG. 6, FIG. 9(A) is an enlarged side view of the connecting conductor in FIG. 5, FIG. 9(B) is a cross-sectional view along the line B-B,
FIG. 10(A) is a diagram explaining the force relationship between the current limiting latch and the current limiting bottle in the closed circuit state, FIG. 10(B) is a diagram also explaining the force relationship immediately after opening, and FIG. 11 12(A) is a diagram showing the relationship between the torque acting on the movable contact based on the current limiting spring and the opening distance of the movable contact, and FIG. 12(A) shows the force acting between the movable contact and the connecting conductor. For illustrative purposes, the rear view corresponds to FIG. 5(C), FIG. 12(B) is an enlarged view of part B, and FIG. 13 shows the magnetic repulsion force, magnetic attraction force, and short circuit at the contact part in FIG. 12. 14 is a diagram showing the relationship with current; FIG. 14 is a vertical cross-sectional view of the central pole portion of the circuit breaker equipped with the movable contact portion shown in FIG. 5 in a closed circuit state; FIG. FIG. 15 (B) is a plan view of the movable contact portion of Example 4
) is its side view, Fig. 15 (C) is its rear view, Fig. 16
The figure is a longitudinal sectional view of the central pole portion of a conventional circuit breaker in a closed state, and FIG. 17 is a longitudinal sectional view of the center pole portion of a conventional circuit breaker in an open state. DESCRIPTION OF SYMBOLS 1... Case, 16... Opening/closing mechanism, 31... Movable contact, 33... Connection conductor, 33a... Arm, 35...
...Spring, 36...Holder, 37...Opening/closing shaft, 41
... Movable contact, 43... Connection conductor, 43a...
Arm, 44... Mounting bracket, 44a, 44b... Engaging piece, 49... Spring, 54... Holder, 55... Opening/closing shaft, 56... Recess, 56c, 56d... Danbe, 59
···Lead. (A) (B) (A) (B) (A) (B) (A) (B) (A) (B) (A) (B) (A) (B) (A) (B) (A) (B) (B) Figure (A) (B) Figure 2 Figure
Claims (1)
物のホルダに可動接触子が保持され、この可動接触子は
開閉機構に駆動されて前記ホルダと一緒に前記開閉軸の
まわりに開閉運動する回路遮断器において、可動接触子
とケースに固定した接続導体とを摺動接触により電気的
に接続したことを特徴とする回路遮断器。 2)請求項1記載の回路遮断器において、接続導体の可
動接触子との接続端に対向する一対の腕を形成して前記
可動接触子を挟ませ、前記腕を前記可動接触子の側面に
圧接するばねをその両側に設けたことを特徴とする回路
遮断器。 3)請求項2記載の回路遮断器において、接続導体の腕
の可動接触子との接触部の近傍に対向間隔が前記接触部
よりも狭い部分を設けたことを特徴とする回路遮断器。 4)請求項1〜請求項3のいずれかに記載の回路遮断器
において、可動接触子を係合片を切り曲げ形成した薄板
からなる取付金具に取り付け、この取付金具を前記係合
片と対応する係合段部を有する凹部を形成したホルダに
圧入して前記可動接触子を前記ホルダに保持させたこと
を特徴とする回路遮断器。 5)請求項1〜請求項4のいずれかに記載の回路遮断器
において、可動接触子及び接続導体の少なくとも一方の
摺動接触面に、銀と炭素との複合材料からなる皮膜処理
を施したことを特徴とする回路遮断器。 6)請求項1〜請求項5のいずれかに記載の回路遮断器
において、可動接触子と接続導体とをこれらの間の摺動
接触部に対して並列回路を構成するように可撓性のリー
ド線で接続したことを特徴とする回路遮断器。[Claims] 1) A movable contact is held in an insulating holder rotatably supported by the case via an opening/closing shaft, and this movable contact is driven by the opening/closing mechanism to move along with the holder. A circuit breaker that opens and closes around the opening and closing shaft, characterized in that a movable contact and a connecting conductor fixed to a case are electrically connected by sliding contact. 2) In the circuit breaker according to claim 1, a pair of arms are formed opposite to the connecting end of the connecting conductor to the movable contact so as to sandwich the movable contact, and the arms are attached to a side surface of the movable contact. A circuit breaker characterized in that pressure-contacting springs are provided on both sides of the circuit breaker. 3) The circuit breaker according to claim 2, wherein a portion of the arm of the connecting conductor that contacts the movable contact is provided with a portion having a narrower facing distance than the contact portion. 4) In the circuit breaker according to any one of claims 1 to 3, the movable contact is attached to a mounting bracket made of a thin plate formed by cutting and bending an engagement piece, and the mounting bracket corresponds to the engagement piece. A circuit breaker characterized in that the movable contact is held in the holder by being press-fitted into a holder having a recessed portion having an engagement step. 5) In the circuit breaker according to any one of claims 1 to 4, the sliding contact surface of at least one of the movable contact and the connecting conductor is treated with a film made of a composite material of silver and carbon. A circuit breaker characterized by: 6) The circuit breaker according to any one of claims 1 to 5, in which the movable contact and the connecting conductor are arranged in a flexible manner so as to form a parallel circuit with respect to the sliding contact between them. A circuit breaker characterized by being connected by a lead wire.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19914103584 DE4103584A1 (en) | 1990-02-09 | 1991-02-06 | Small line of earthing switch with coupling conductor on frame - has flexible conductive wire as parallel connection for movable contact and coupling conductor |
KR1019910002119A KR910016028A (en) | 1990-02-09 | 1991-02-08 | Circuit breaker |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25858489 | 1989-10-03 | ||
JP1-258584 | 1989-10-03 | ||
JP1-266588 | 1989-10-14 | ||
JP26658889 | 1989-10-14 | ||
JP1-324289 | 1989-12-14 | ||
JP32428989 | 1989-12-14 | ||
JP3121590 | 1990-02-09 | ||
JP2-31215 | 1990-02-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0419938A true JPH0419938A (en) | 1992-01-23 |
JP2762704B2 JP2762704B2 (en) | 1998-06-04 |
Family
ID=27459396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2134482A Expired - Fee Related JP2762704B2 (en) | 1989-10-03 | 1990-05-24 | Circuit breaker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2762704B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5566818A (en) * | 1993-02-16 | 1996-10-22 | Fuji Electric Co., Ltd. | Movable contactor device in circuit breaker |
KR100425188B1 (en) * | 2001-12-04 | 2004-03-30 | 엘지산전 주식회사 | structure for slide-contacting a moving contact terminal of Circuit Breaker |
US6717089B1 (en) * | 1999-10-08 | 2004-04-06 | Abb Service S.R.L. | Electric pole for low-voltage power circuit breaker |
WO2013171837A1 (en) * | 2012-05-15 | 2013-11-21 | 三菱電機株式会社 | Circuit breaker |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102243943A (en) * | 2010-05-13 | 2011-11-16 | 上海华联低压电器有限公司 | Falling-prevention contact mechanism of low-voltage circuit breaker |
CN102243953A (en) * | 2010-05-13 | 2011-11-16 | 上海华联低压电器有限公司 | Plastic shell type low-voltage circuit breaker |
KR101193450B1 (en) * | 2010-10-05 | 2012-10-24 | 엘에스산전 주식회사 | Slide type movable contactor assembly for balanced contact force |
JP5554210B2 (en) * | 2010-11-19 | 2014-07-23 | 三菱電機株式会社 | Circuit breaker |
KR101367153B1 (en) * | 2010-12-16 | 2014-02-25 | 엘에스산전 주식회사 | Small circuit breaker with qucik making mechanism |
KR101216914B1 (en) * | 2011-03-22 | 2012-12-31 | 엘에스산전 주식회사 | Circuit breaker |
CN102427001B (en) * | 2011-11-08 | 2014-09-24 | 江苏辉能电气有限公司 | Contact pressure control mechanism for molded case low-voltage circuit breaker |
CN107123579B (en) * | 2017-06-16 | 2019-09-13 | 天津京人电器有限公司 | A kind of contact system and low-voltage circuit breaker of low-voltage circuit breaker |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63174238A (en) * | 1986-12-15 | 1988-07-18 | ゼネラル・エレクトリック・カンパニイ | Wire breaker contactor |
-
1990
- 1990-05-24 JP JP2134482A patent/JP2762704B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63174238A (en) * | 1986-12-15 | 1988-07-18 | ゼネラル・エレクトリック・カンパニイ | Wire breaker contactor |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5566818A (en) * | 1993-02-16 | 1996-10-22 | Fuji Electric Co., Ltd. | Movable contactor device in circuit breaker |
DE4404706B4 (en) * | 1993-02-16 | 2005-09-15 | Fuji Electric Co., Ltd., Kawasaki | Mobile contactor device in a circuit breaker |
US6717089B1 (en) * | 1999-10-08 | 2004-04-06 | Abb Service S.R.L. | Electric pole for low-voltage power circuit breaker |
KR100425188B1 (en) * | 2001-12-04 | 2004-03-30 | 엘지산전 주식회사 | structure for slide-contacting a moving contact terminal of Circuit Breaker |
WO2013171837A1 (en) * | 2012-05-15 | 2013-11-21 | 三菱電機株式会社 | Circuit breaker |
CN104303252A (en) * | 2012-05-15 | 2015-01-21 | 三菱电机株式会社 | Circuit breaker |
Also Published As
Publication number | Publication date |
---|---|
JP2762704B2 (en) | 1998-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920008726B1 (en) | Circuit breaker | |
JP2762704B2 (en) | Circuit breaker | |
JPS63174238A (en) | Wire breaker contactor | |
US5199553A (en) | Sliding contactor for electric equipment | |
KR0150272B1 (en) | Movable contactor device in circuit breaker | |
JP2965025B1 (en) | Circuit breaker | |
JP3054628B2 (en) | Sliding contacts for electrical equipment | |
US6437266B1 (en) | Electrical contact arm assembly for a circuit breaker | |
JP2633959B2 (en) | Circuit breaker | |
EP0482197B1 (en) | Circuit breaker | |
US6770828B2 (en) | System and method for electrical contacts and connections in switches and relays | |
JP3206696B2 (en) | Movable contact device for circuit breakers | |
JPH04126314A (en) | Sliding contact of electric device | |
JP3097467B2 (en) | Movable contact mechanism for circuit breakers | |
JP2959216B2 (en) | Switch contacts | |
JP2734678B2 (en) | Contact device | |
JP7384180B2 (en) | circuit breaker | |
JP2700040B2 (en) | Current limiting mechanism of circuit breaker | |
JP2828077B2 (en) | Circuit breaker | |
JP4387075B2 (en) | Circuit breaker | |
JPH11260235A (en) | Circuit breaker | |
JP2734677B2 (en) | Contact device | |
JP2734615B2 (en) | Contact device | |
JP4533009B2 (en) | Circuit breaker instantaneous trip device | |
JPS62100913A (en) | Contact switch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080327 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090327 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090327 Year of fee payment: 11 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090327 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090327 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100327 Year of fee payment: 12 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100327 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |