JPH04199076A - Image forming method - Google Patents
Image forming methodInfo
- Publication number
- JPH04199076A JPH04199076A JP2331494A JP33149490A JPH04199076A JP H04199076 A JPH04199076 A JP H04199076A JP 2331494 A JP2331494 A JP 2331494A JP 33149490 A JP33149490 A JP 33149490A JP H04199076 A JPH04199076 A JP H04199076A
- Authority
- JP
- Japan
- Prior art keywords
- photoreceptor
- voltage
- image
- bias
- bias voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 13
- 108091008695 photoreceptors Proteins 0.000 claims description 76
- 239000000758 substrate Substances 0.000 claims description 21
- 230000001939 inductive effect Effects 0.000 description 14
- 238000012546 transfer Methods 0.000 description 14
- 238000011161 development Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000005513 bias potential Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
- Control Or Security For Electrophotography (AREA)
- Magnetic Brush Developing In Electrophotography (AREA)
- Developing For Electrophotography (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子写真を利用した画像形成方法に間する。[Detailed description of the invention] [Industrial application field] The present invention relates to an image forming method using electrophotography.
[従来の技術]
従来の画像形成方法においては、感光体の表面をコロナ
放電手段により特定極性に一様に帯電し、次いで画像露
光により感光体上の電荷を選択的に消失して静電像を形
成し、適当な現像バイアスを印加した現像剤供給体によ
り現像剤を感光体表面に供給して静電像を現像する。[Prior Art] In conventional image forming methods, the surface of a photoreceptor is uniformly charged to a specific polarity by a corona discharge means, and then the charges on the photoreceptor are selectively erased by image exposure to form an electrostatic image. The electrostatic image is developed by supplying developer to the surface of the photoreceptor using a developer supplying member to which an appropriate developing bias is applied.
ところで、コロナ放電手段を利用した装置は、湿度や粉
塵等の使用環境の影響を受は易く、また、コロナ放電に
伴うオゾンの放出による臭気や人体への有害性の問題を
有していることが知られる。By the way, devices using corona discharge means are easily affected by the usage environment such as humidity and dust, and also have the problem of odor and toxicity to the human body due to ozone released due to corona discharge. is known.
この問題を解決するために、近年、外部電圧を印加した
帯電ローラを感光体表面に圧接することにより感光体の
帯電を行なう、いわゆる接触帯電を利用した画像形成方
法が注目されている。To solve this problem, in recent years, an image forming method using so-called contact charging has attracted attention, in which the photoreceptor is charged by pressing a charging roller to which an external voltage is applied to the surface of the photoreceptor.
従来のこの種の方法は、感光体の導電性基体を接地し、
この感光体の表面に対し、バイアス−電圧を印加した帯
電ローラを圧接して感光体表面を一様に帯電し、次いで
画像露光により画像に対応した静電像を形成する。静電
像は、適当な現像バイアス電源に連結した現像スリーブ
により所定の現像バイアスの下で現像され、現像された
像は転写コロナ放電器または転写ローラの作用により適
当な転写材上に転写される。転写されずに感光体面上に
残留した現像剤は、適当なりリーニングバイアスを印加
されたクリーニンクブラシにより感光体面上から除去さ
れる。Conventional methods of this type ground the conductive substrate of the photoreceptor;
A charging roller to which a bias voltage is applied is pressed against the surface of the photoreceptor to uniformly charge the surface of the photoreceptor, and then an electrostatic image corresponding to the image is formed by image exposure. The electrostatic image is developed under a predetermined development bias by a development sleeve connected to a suitable development bias power source, and the developed image is transferred onto a suitable transfer material by the action of a transfer corona discharger or a transfer roller. . The developer remaining on the photoreceptor surface without being transferred is removed from the photoreceptor surface by a cleaning brush to which an appropriate leaning bias is applied.
[発明が解決し・ようとする課題]
このような従来の接触帯電を利用し、た方法にあっては
、コロナ放電手段を利用した場合におけるオゾンの発生
なと上記し、たような問題を解消することができるが、
反面、画像に地かふりが発生し易い等の問題を残してい
る。[Problem to be solved by the invention] The conventional method using contact charging as described above does not solve the problem of ozone generation when using corona discharge means. It can be resolved, but
On the other hand, problems remain, such as the tendency for background blur to occur in images.
また更に、上記従来の接触帯電による方法にあっては、
画像形成の各構成手段毎にそれぞれ電源を必要とし、即
ち、帯電ローラ用p電源、現像バイアス用の電源、転写
バイアス用の電源、およびクリーナバイアス用の電源な
と、多数の電源を必要とし、安価で且つコンパクトな画
像形成装置を提供することが困難であった。Furthermore, in the above-mentioned conventional contact charging method,
A power source is required for each constituent means of image formation, that is, a large number of power sources are required, such as a p-power source for the charging roller, a power source for the developing bias, a power source for the transfer bias, and a power source for the cleaner bias. It has been difficult to provide an inexpensive and compact image forming apparatus.
それゆえ、本発明は、地かふりのない鮮明な再生画像を
形成することができ、しかも画像形成手段に要する電源
を最少として装置のコシバクト化および低価格化を可能
とさせる新規な画像形成方法を提供することを目的とす
る。Therefore, the present invention provides a novel image forming method that can form a clear reproduced image with no background blur, and that also minimizes the power required for the image forming means, thereby making it possible to make the apparatus more compact and cost-effective. The purpose is to provide
[課題を解決するための手段]
このため本発明は、感光体の導電性基体に交流電圧また
は交流電圧に直流電圧を重畳したバイアス電圧を印加し
、感光体表面に対して導電性または半導電性の接地した
部材を直接または誘電体を介して接触させることにより
感光体表面を所定の電位に帯電し、次いで画像を露光し
て静電像を形成した後、直流バイアス電源に連結された
現像スリーブにより現像剤を供給して前記静電像を現像
する画像形成方法であって、前記感光体の導電性基体へ
印加するバイアス電圧(V drum)とスリーブへ印
加する現像バイアス電圧(V 5leeve)とが、l
Vs −Vdrum l > l
Vsleevel(Vsは、現像スリーブと感光体間の
火花開始電圧)
の関係であることを特徴とする。[Means for Solving the Problems] Therefore, the present invention applies an alternating current voltage or a bias voltage in which a direct current voltage is superimposed on an alternating current voltage to the conductive substrate of a photoreceptor, thereby making the surface of the photoreceptor conductive or semiconductive. The surface of the photoreceptor is charged to a predetermined potential by contacting a grounded member directly or through a dielectric material, and then the image is exposed to form an electrostatic image, followed by a developing device connected to a DC bias power source. An image forming method in which the electrostatic image is developed by supplying developer through a sleeve, the bias voltage (V drum) being applied to the conductive substrate of the photoreceptor and the developing bias voltage (V 5leeve) being applied to the sleeve. Toga, l
Vs −Vdrum l > l
Vsleevel (Vs is the spark starting voltage between the developing sleeve and the photoreceptor).
[作 用]
このように、感光体の導電性基体に交流電圧または交流
電圧に直流電圧を重畳した電圧を印加し、誘起部材を感
光体表面に接すると、光導電層、エアー層、誘起部材の
インピーダンスに従って前記印加電圧が分圧され、感光
体表面は所定の電位に帯電される。次いで画像露光を行
なうことにより画像情報に応じた静電像が形成される。[Function] In this way, when an AC voltage or a voltage obtained by superimposing a DC voltage on an AC voltage is applied to the conductive substrate of the photoreceptor and the inducing member is brought into contact with the surface of the photoreceptor, the photoconductive layer, the air layer, and the inducing member The applied voltage is divided according to the impedance of the photoreceptor, and the surface of the photoreceptor is charged to a predetermined potential. Next, by performing image exposure, an electrostatic image is formed according to the image information.
一方、現像スリーブは上記式を満足するような直流バイ
アスが印加されており、静電像を現像する。On the other hand, the developing sleeve is applied with a DC bias that satisfies the above equation, and develops the electrostatic image.
[実施例コ
以下、図面を参照とし・ながら本発明による画像形成方
法について説明する。[Embodiment] The image forming method according to the present invention will be described below with reference to the drawings.
第1図は本発明による画像形成方法を実施した装置の一
例を示す。感光体1は、トラム状の導電性の基体(N状
のものも含めて総称する)11と、基体ll上に蒸着ま
たは塗布などにより設けられた光導電層12とを含み、
矢印Aで示す方向に回転する。光導電N12は、OPC
,Se、ZnO1CdS、a−5iなと、P型半導体ま
たはN型半導体のいずれの型でも使用に適する。また、
上記の構成に加え、光導電N12上に誘電体層を更に設
けた構成であっても良い。感光体の導電性基体】1はバ
イアス電R6に電気的に連結されており、この例では、
バイアス電源6は交流電圧に直流電圧を重畳した電圧を
導電性基体11に印加する。FIG. 1 shows an example of an apparatus implementing the image forming method according to the present invention. The photoreceptor 1 includes a tram-shaped conductive substrate (generally referred to as an N-shaped substrate) 11, and a photoconductive layer 12 provided on the substrate 11 by vapor deposition or coating,
Rotate in the direction shown by arrow A. Photoconductive N12 is OPC
, Se, ZnO1CdS, and a-5i, either a P-type semiconductor or an N-type semiconductor is suitable for use. Also,
In addition to the above configuration, a dielectric layer may be further provided on the photoconductive layer N12. The conductive substrate of the photoreceptor] 1 is electrically connected to the bias voltage R6, and in this example,
The bias power supply 6 applies a voltage obtained by superimposing a DC voltage on an AC voltage to the conductive substrate 11 .
交流電圧は80Hz〜30kHzの範囲内の周波数のも
のが特に適している。また、重畳する直流電圧は、N型
の感光体に対しては正極性、P型の感光体に対しては負
極性の電圧であることが好ましい。AC voltages with frequencies in the range 80 Hz to 30 kHz are particularly suitable. Further, it is preferable that the superimposed DC voltage has a positive polarity for an N-type photoreceptor and a negative polarity for a P-type photoreceptor.
この感光体1の表面に対し、誘起部祠2が接触して配置
される(場合に応して、必ずしも厳密に接触している必
要はない)。誘起部材2は、図示例では、回転自在に支
持された導電性の金属コア21に導電性の弾性ゴム材か
らなるN22を電気的に接して外装したローラ形状より
なり、適当な圧力により感光体表面に圧接され、感光体
の周速度とほぼ同し周速度で接触部分において順方向に
回転する。N22は、例えは、NBRやシリコンラバー
等に導電性材を含有したものであって良い。The inducing portion 2 is placed in contact with the surface of the photoreceptor 1 (depending on the case, it does not necessarily have to be in exact contact). In the illustrated example, the inducing member 2 has a roller shape in which a rotatably supported conductive metal core 21 is covered with N22 made of a conductive elastic rubber material in electrical contact with the outer surface of the conductive metal core 21. It is pressed against the surface and rotates in the forward direction at the contact portion at approximately the same circumferential speed as the photoreceptor. N22 may be, for example, NBR, silicon rubber, or the like containing a conductive material.
また、誘起部材2は、場合により、N22の外周面上に
合成樹脂等の誘電体N23〈第4図にこのような構成の
誘起部材を示す。)を設けても良い。The inducing member 2 may also include a dielectric material N23 made of synthetic resin or the like on the outer peripheral surface of N22 (FIG. 4 shows an inducing member having such a structure). ) may be provided.
またN22は、弾性の導電性物質の他、半導電性物質(
例えば105〜1011!Ωcn+)または剛性の金属
体であっても良い。コア21は直接あるいはバリスタ、
定電圧ダイオードまたはダイオード等の整流手段を介し
て接地されている。また感光体上に所望の電位を得るた
めに、適当な抵抗器を介在しても良い。また、誘起部材
2は、上記のようなローラ形状の他、導電性または半導
電性のプレートまたはブラシの形状であっても良い。In addition to elastic conductive materials, N22 can also be used for semi-conductive materials (
For example, 105 to 1011! Ωcn+) or a rigid metal body. Core 21 is directly or varistor,
It is grounded via a rectifier such as a constant voltage diode or a diode. Further, a suitable resistor may be interposed in order to obtain a desired potential on the photoreceptor. Further, the inducing member 2 may have the shape of a conductive or semiconductive plate or a brush other than the roller shape as described above.
第2図は感光体の帯電を説明するための等価回路である
。暗中において、感光体1の導電性基体11に交流に直
流を重畳した所定の値のバイアス電圧を印加し、直接ま
たはダイオード等を介して接地した誘起部材2を感光体
表面に接すると、感光体表面に電荷が誘起され、感光体
表面は、感光体1のインピーダンスと誘起部材2のイン
ピーダンスおよび両者間のエアー層のインピーダンスと
の値に従って分圧された値に帯電される。FIG. 2 is an equivalent circuit for explaining the charging of a photoreceptor. In the dark, a bias voltage of a predetermined value, which is a combination of alternating current and direct current, is applied to the conductive base 11 of the photoreceptor 1, and when the inducing member 2, which is grounded directly or through a diode, is brought into contact with the surface of the photoreceptor, the photoreceptor Electric charges are induced on the surface, and the surface of the photoreceptor is charged to a value that is a partial voltage according to the values of the impedance of the photoreceptor 1, the impedance of the inducing member 2, and the impedance of the air layer between them.
第3図はN型の光導電層を有する感光体の基体に正極性
側に偏位した重畳バイアス電圧を印加した場合における
感光体の表面電位の変化を概略的に示す。誘起部材2を
接触した感光体表面には前記したように正の電荷が誘起
されて前記分圧に従って電位が降下する。次いでレーザ
ーまたはLED等の光学手段により画像露光7を行なう
と、画像明部(露光された領域)の表面電位(VL)は
前記感光体の基体11に印加したバイアス電位の値に近
づき、画像暗部(N光されない領域)の電位(V[I)
との間に電位差を形成する。このように、本発明による
電子写真方法においては、従来のコロナ放電を用いた方
法とは逆に、画像明部の電位が感光体へのバイアス電位
となり、画像暗部の電位が低い値となる静電像を形成す
る。FIG. 3 schematically shows changes in the surface potential of a photoreceptor when a superimposed bias voltage biased toward the positive polarity side is applied to the substrate of the photoreceptor having an N-type photoconductive layer. As described above, positive charges are induced on the surface of the photoreceptor in contact with the inducing member 2, and the potential drops in accordance with the partial pressure. Next, when image exposure 7 is performed using optical means such as a laser or LED, the surface potential (VL) of the bright part of the image (exposed area) approaches the value of the bias potential applied to the base 11 of the photoreceptor, and the dark part of the image Potential (V[I) of (region not exposed to N light)
A potential difference is formed between the two. As described above, in the electrophotographic method according to the present invention, contrary to the conventional method using corona discharge, the potential of the bright part of the image becomes the bias potential to the photoreceptor, and the potential of the dark part of the image becomes a static potential of a low value. Forms an electric image.
第3図は説明の便宜上、明部電位、暗部電位を直線的に
示しているが、実際においては、バイアス印加中の感光
体の表面電位はバイアス電位が重畳されて振幅している
。第4図は、プラス400Vの直流電圧に、周波数4k
Hzの2500Vp−pの交流電圧を重畳したバイアス
電圧を感光体の基体に印加し、そののち光像を照射し静
電潜像を得た場合の暗部と明部の電位を示すが、振幅の
波形は感光体の基体に印加するバイアス電圧の波形にほ
ぼ等しく、さらに振幅の周波数は同様にバイアス電圧の
周波数と等しくなる。Although FIG. 3 shows the bright area potential and the dark area potential linearly for convenience of explanation, in reality, the surface potential of the photoreceptor during bias application is oscillated due to the superposition of the bias potential. Figure 4 shows a DC voltage of plus 400V and a frequency of 4k.
The potentials of the dark and bright areas are shown when a bias voltage superimposed with an AC voltage of 2500 Vp-p of Hz is applied to the base of the photoreceptor, and then a light image is irradiated to obtain an electrostatic latent image. The waveform is approximately equal to the waveform of the bias voltage applied to the substrate of the photoreceptor, and the frequency of the amplitude is similarly equal to the frequency of the bias voltage.
同様にP型の光導電層を有する感光体の基体に負の電位
を印加すると感光体表面には負電位の電荷が誘起され、
上記と同様にして静電像が形成される。Similarly, when a negative potential is applied to the substrate of a photoreceptor having a P-type photoconductive layer, a negative potential charge is induced on the surface of the photoreceptor.
An electrostatic image is formed in the same manner as above.
再び第1図を参照として説明する。画像露光により形成
された静電像は次順に配置された現像手段3によって現
像される。現像手段3は、感光体Iの表面に近接して配
置された導電性のスリーブ31とその内方に設けられた
磁石ローラ32を含む。スリーブ31および磁石ローラ
32は互いに独立して異なる速度で回転可能に設けられ
ており、この例では、スリーブ31および磁石ローラ3
2共に、感光体1の回転方向とは逆方向に、即ち、現像
部位において順方向に回転する。スリーブ310表面は
ショツトブラストが施され、その表面には不図示の収容
ケースから供給された現像剤が磁石ローラ32の磁力に
より吸引される。現像剤は感光体の周速度とほぼ同速度
あるいは幾分速い速度で感光体1の回転方向と逆方向(
現像部位において順方向、矢印B方向)に搬送され、感
光体1の表面と接触しまたは摺擦して静電像を交番電界
および交番磁界の作用の下で現像する。現像剤としては
一成分磁性l・ナーまたは二成分現像剤などが使用され
る。The explanation will be given again with reference to FIG. The electrostatic image formed by image exposure is developed by developing means 3 arranged in the following order. The developing means 3 includes a conductive sleeve 31 disposed close to the surface of the photoreceptor I and a magnet roller 32 provided inside the conductive sleeve 31 . The sleeve 31 and the magnet roller 32 are provided to be rotatable independently from each other at different speeds, and in this example, the sleeve 31 and the magnet roller 3
2 rotate in the opposite direction to the rotational direction of the photoreceptor 1, that is, in the forward direction at the development site. The surface of the sleeve 310 is shot blasted, and the developer supplied from a storage case (not shown) is attracted to the surface by the magnetic force of the magnet roller 32. The developer is applied in a direction opposite to the rotational direction of the photoreceptor 1 (
At the development site, the electrostatic image is conveyed in the forward direction (direction of arrow B) and comes into contact with or rubs against the surface of the photoreceptor 1 to develop an electrostatic image under the action of an alternating electric field and an alternating magnetic field. As the developer, a one-component magnetic l-toner or a two-component developer is used.
スリーブ31は直流バイアス電源33に連結され、所定
のバイアスが印加されている。例えは、デジタルプリン
タのように反転現像を要する場合、バイアス電圧は、ス
リーブ31の電位が感光体の暗部電位に近い値となるよ
う、に選択される。The sleeve 31 is connected to a DC bias power supply 33, and a predetermined bias is applied thereto. For example, when reversal development is required as in a digital printer, the bias voltage is selected so that the potential of the sleeve 31 is close to the dark potential of the photoreceptor.
ここで用いるバイアス電圧は次式を満足するようなもの
が用いられる。The bias voltage used here is one that satisfies the following equation.
l Vs −Vdrum l > l
Vsleevelここで、Vdrumは、感光体の基
体へ印加するバイアス電圧(振幅電圧の尖頭1a )、
V 5leeveは、現像スリーブに印加されるバイア
ス電圧、Vsは、感光体と現像スリーブ間の火花放電開
始電圧をいい、
V s= 23.85((71)(1+0.329/
a I))(1≦1.6 cm、σはp=760mm
Hg、t=20℃を標準状態とした空気の相対密度、σ
=0.385p/(273+t’C))このような条件
における現像により、感光体・現像スリーブ間のリーク
がなく、しかも地かぶりのない鮮明な現像剤像を得るこ
とができる。l Vs −Vdrum l > l
Vsleevel Here, Vdrum is the bias voltage (peak 1a of amplitude voltage) applied to the substrate of the photoreceptor,
V 5leeve is the bias voltage applied to the developing sleeve, Vs is the spark discharge starting voltage between the photoreceptor and the developing sleeve, and V s = 23.85 ((71) (1 + 0.329/
a I)) (1≦1.6 cm, σ is p=760 mm
Hg, relative density of air with t=20℃ as standard condition, σ
=0.385p/(273+t'C)) By developing under these conditions, it is possible to obtain a clear developer image without leakage between the photoreceptor and the developing sleeve and without background fog.
こうして可視像化された現像剤像は転写手段4により紙
等の転写材上に転写される。転写手段4は誘起部材2と
ほぼ同し構成よりなり、接地された金属コア41、導電
層42を含み、場合により、誘電体層43(第4図)を
更に含む。転写手段4は感光体に印加したバイアス電圧
により誘起される転写電位ここより感光体上の現像剤像
を転写材上に転写する。The thus visualized developer image is transferred onto a transfer material such as paper by the transfer means 4. The transfer means 4 has almost the same structure as the inducing member 2, and includes a grounded metal core 41, a conductive layer 42, and optionally further includes a dielectric layer 43 (FIG. 4). The transfer means 4 transfers the developer image on the photoreceptor onto a transfer material using a transfer potential induced by a bias voltage applied to the photoreceptor.
次いで転写材は不図示の分離手段により感光体面から分
離され、定着手段(不図示)に送られて、その上に永久
複写像を形成する。The transfer material is then separated from the photoreceptor surface by a separating means (not shown) and sent to a fixing means (not shown) to form a permanent copy image thereon.
一方、転写後の感光体は、その上に残留する現像剤をク
リーニング手段5により清掃されて、次の画像形成のた
めに/!を備される。クリーニング手段5はこの例では
導電性基体51上に導電性ブラシを植設したブラシ型ク
リーナよりなる。導電性基体51は接地され、これによ
り感光体上に残留する現像剤は静電的且つ物理的に導電
性ブラシに吸引され、感光体から除去される。ブラシに
付着した現像剤は不図示のスクレーバにより除去される
。On the other hand, the photoreceptor after the transfer is cleaned of the developer remaining thereon by the cleaning means 5, and ready for the next image formation. Equipped with: In this example, the cleaning means 5 is a brush-type cleaner in which a conductive brush is placed on a conductive base 51. The conductive substrate 51 is grounded so that developer remaining on the photoreceptor is electrostatically and physically attracted to the conductive brush and removed from the photoreceptor. The developer attached to the brush is removed by a scraper (not shown).
第5図は感光体】の導電性基体へ印加するバイアス電圧
が交流電圧のみ(直流電圧を重畳しない)の場合を示し
、この場合、誘起部材2は整流手段8を介在して接地さ
れる。その他の部分は第1図の例と同し構成である。FIG. 5 shows a case in which the bias voltage applied to the conductive substrate of the photoreceptor is only an alternating current voltage (no direct current voltage is superimposed); in this case, the inducing member 2 is grounded via the rectifying means 8. The other parts have the same structure as the example shown in FIG.
11■ユ
第1図の構成において、導電性基体上にN型の有機光導
電層を有する感光体の基体にプラス約9OOVの直流電
圧に2500 V p−pの交流電圧(周波数は80H
z〜30Hz)を重畳した電圧を印加し、感光体を周速
40 mm/ Secで回転させた。この感光体に対し
、NBRまたはシリコンラバーに導電性粉を含有させて
なる弾性層を有する接地された誘起ローラを暗中におい
て圧接させ、1欠いてレーザ光を照射して静電像を形成
し、反転現像した。11. In the configuration shown in Fig. 1, a photoreceptor substrate having an N-type organic photoconductive layer on a conductive substrate is applied with a DC voltage of about 900 V plus an AC voltage of 2500 V p-p (frequency is 80 H).
A superimposed voltage (30 Hz to 30 Hz) was applied, and the photoreceptor was rotated at a circumferential speed of 40 mm/Sec. A grounded induction roller having an elastic layer made of NBR or silicone rubber containing conductive powder is brought into pressure contact with the photoreceptor in the dark, and a laser beam is irradiated with one part to form an electrostatic image. Reverse developed.
現像剤としては、アクリル樹脂を主成分としたトナー5
部に対し、抵抗的107〜109Ω・cmて球形の平均
粒径50μのフェライトキャリアl。As a developer, toner 5 whose main component is acrylic resin is used.
A ferrite carrier l having a resistivity of 10 7 to 10 9 Ω·cm and a spherical average particle diameter of 50 μm.
0部を混合したものを用いた。また、現像スリーブは表
面を約400メツシユのショツトブラストを施した外径
IElniの5US304のスリーブを用い、直流バイ
アス電源に連結した。現像スリーブ内で6極の磁石ロー
ラを回転させスリーブ表面で約600ガウスの交番磁界
がトナーに作用するようにし、感光体・現像スリーブ間
の間隔を0゜3mmとして現像スリーブ上の現像剤を感
光体表面に接触して現像を行った。A mixture of 0 parts was used. The developing sleeve was a 5US304 sleeve with an outer diameter of IElni, the surface of which had been shot-blasted to a thickness of about 400 mesh, and was connected to a DC bias power source. A 6-pole magnetic roller is rotated within the developing sleeve so that an alternating magnetic field of about 600 Gauss acts on the toner on the sleeve surface, and the distance between the photoreceptor and the developing sleeve is 0°3 mm, and the developer on the developing sleeve is exposed to light. Development was performed by contacting the body surface.
このような構成において、スリーブへのバイアス電圧を
順次変更して実験を行ったところ、l Vs −Vdr
um l > l Vsleevelの範囲を満
たすようにバイアス電圧を採択することにより、感光体
から現像スリーブへのリークがなく、しかも地汚れがな
い鮮明な画像を得ることができた。In this configuration, when we conducted an experiment by sequentially changing the bias voltage to the sleeve, we found that l Vs - Vdr
By selecting the bias voltage so as to satisfy the range of um l > l Vsleevel, it was possible to obtain a clear image without leakage from the photoreceptor to the developing sleeve and without background smudge.
失10引2
実験例1と同し条件において、現像剤として平均粒径1
2μで1014〜l Q I5Ω’ cmの一成分磁性
トナーを用いて同様な実験を行った結果、同様に上記範
囲を満たすことにより感光体から現像スリーブへのリー
クがなく、しかも地汚れがない鮮明な画像を得ることが
できた。Loss of 10 minus 2 Under the same conditions as Experimental Example 1, the average particle size of the developer was 1
A similar experiment was conducted using a single-component magnetic toner with 2 μ and 1014 to 1 Q I5 Ω' cm, and it was found that by meeting the above range, there was no leakage from the photoconductor to the developing sleeve, and there was no background smudge. I was able to get a nice image.
支1豆ユ
実験例1と同し条件において、現像剤キャリアとして予
め現像スリーブ表面に球形で35〜60μのフェライト
粉6gを均一に付着させ、 トナーとして平均粒径】2
μで1014〜1015Ω・cmのトナーを用いて同様
な実験を行った結果実験例1と同様な結果が得られた。Under the same conditions as in Test Example 1, 6 g of spherical 35-60μ ferrite powder was uniformly adhered to the surface of the developing sleeve as a developer carrier, and the average particle size of the toner was 2.
A similar experiment was conducted using a toner having a μ of 1014 to 1015 Ω·cm, and the same results as in Experimental Example 1 were obtained.
[発明の効果]
以上本発明によれは、感光体の基体にバイアス電圧を印
加するという手段を用いることにより、帯電手段や現像
バイアスなとのための多数の高圧電源を必要とせず、実
施する装置の構成を極めて簡単且つ安価にすることがで
きる。[Effects of the Invention] As described above, according to the present invention, by using a means of applying a bias voltage to the base of the photoreceptor, the present invention can be carried out without requiring a large number of high voltage power supplies for charging means, developing bias, etc. The configuration of the device can be made extremely simple and inexpensive.
また感光体の基体へ印加するバイアス電圧と現像スリー
ブに印加するバイアス電圧の値を上記関係に保つことに
より、感光体・現像スリーブ間のリークがなく、且つ地
かふりのない鮮明な画像を得ることができる。In addition, by maintaining the values of the bias voltage applied to the base of the photoreceptor and the bias voltage applied to the developing sleeve in the above relationship, a clear image with no leakage between the photoreceptor and the developing sleeve and no background blur can be obtained. be able to.
第1図は本発明による方法を実施した画像形成装置の一
例の要部を示す概略図、第2図は感光体および誘起部材
に間する等価回路、第3図、第4図は本発明に基づきN
型の光導電層を有する感光体の基体に正の電位を印加し
た場合における感光体の表面電位の変化を説明する図、
第5図は第1図とは別の例を示す概略図である。
l・・・感光体、 2・・・誘起部材、3・・
・現像手段、 4・・・転写手段、5・・・クリ
ーニング手段、6・・・バイアス電源、11・・・導電
性基体、 12・・・光導電層、31・・・現像剤
供給体。
第2図
第3図
−〉at闇
第 5 図FIG. 1 is a schematic diagram showing the main parts of an example of an image forming apparatus implementing the method according to the present invention, FIG. 2 is an equivalent circuit between a photoreceptor and an inducing member, and FIGS. Based on N
A diagram illustrating a change in the surface potential of a photoreceptor when a positive potential is applied to the substrate of the photoreceptor having a type photoconductive layer,
FIG. 5 is a schematic diagram showing a different example from FIG. 1. l...Photoreceptor, 2...Inducing member, 3...
- Developing means, 4... Transfer means, 5... Cleaning means, 6... Bias power source, 11... Conductive substrate, 12... Photoconductive layer, 31... Developer supply body. Figure 2 Figure 3-〉at darkness Figure 5
Claims (1)
圧を重畳したバイアス電圧を印加し、感光体表面に対し
て導電性または半導電性の接地した部材を直接または誘
電体を介して接触させることにより感光体表面を所定の
電位に帯電し、次いで画像を露光して静電像を形成した
後、直流バイアス電源に連結された現像スリーブにより
現像剤を供給して前記静電像を現像する画像形成方法で
あって、前記感光体の導電性基体へ印加するバイアス電
圧(Vdrum)とスリーブへ印加する現像バイアス電
圧(Vsleeve)とが、 |Vs−Vdrum|>|Vsleeve|(Vsは、
現像スリーブと感光体間の火花 開始電圧) の関係であることを特徴とする画像形成方法。[Scope of Claims] An AC voltage or a bias voltage in which a DC voltage is superimposed on an AC voltage is applied to the conductive substrate of the photoreceptor, and a conductive or semiconductive grounded member is applied directly or dielectrically to the surface of the photoreceptor. The surface of the photoreceptor is charged to a predetermined potential by contacting the photoreceptor through the body, and then the image is exposed to form an electrostatic image, and then a developer is supplied by a developing sleeve connected to a DC bias power source to charge the photoreceptor surface to a predetermined potential. An image forming method for developing an electrostatic image, wherein a bias voltage (Vdrum) applied to the conductive substrate of the photoreceptor and a developing bias voltage (Vsleeve) applied to the sleeve are: |Vs-Vdrum|>|Vsleeve |(Vs is
An image forming method characterized by a relationship between a developing sleeve and a photoreceptor (spark starting voltage).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33149490A JP3157155B2 (en) | 1990-11-29 | 1990-11-29 | Image forming method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33149490A JP3157155B2 (en) | 1990-11-29 | 1990-11-29 | Image forming method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04199076A true JPH04199076A (en) | 1992-07-20 |
JP3157155B2 JP3157155B2 (en) | 2001-04-16 |
Family
ID=18244271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33149490A Expired - Fee Related JP3157155B2 (en) | 1990-11-29 | 1990-11-29 | Image forming method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3157155B2 (en) |
-
1990
- 1990-11-29 JP JP33149490A patent/JP3157155B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3157155B2 (en) | 2001-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5416565A (en) | Method and apparatus for forming electrophotographic image | |
JP3241411B2 (en) | Image forming device | |
JP3157155B2 (en) | Image forming method | |
JP3157154B2 (en) | Image forming method | |
JP3201613B2 (en) | Image forming method | |
JP3201612B2 (en) | Image forming method | |
JP3163097B2 (en) | Image forming method | |
JP3201631B2 (en) | Image forming method | |
JP3201633B2 (en) | Image forming method | |
JP3312738B2 (en) | Image forming device | |
JP3163096B2 (en) | Image forming method | |
JP3040222B2 (en) | Image forming device | |
JP3160284B2 (en) | Image forming method | |
JP3201632B2 (en) | Image forming method | |
JPH04348374A (en) | Image forming device | |
JP3160283B2 (en) | Image forming method | |
JP2517206B2 (en) | Electrophotographic equipment | |
JPS6217224B2 (en) | ||
JPH0374388B2 (en) | ||
JPH0121319Y2 (en) | ||
JP2517207B2 (en) | Electrophotographic equipment | |
JPS5941583B2 (en) | Developing and photoreceptor cleaning device | |
JPS58106578A (en) | Electrostatic recording and developing device | |
JPS62291673A (en) | Formation of outline image | |
JPH03156470A (en) | Color image forming method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080209 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090209 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090209 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100209 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |