[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04194561A - Adsorption type cooling apparatus - Google Patents

Adsorption type cooling apparatus

Info

Publication number
JPH04194561A
JPH04194561A JP2324856A JP32485690A JPH04194561A JP H04194561 A JPH04194561 A JP H04194561A JP 2324856 A JP2324856 A JP 2324856A JP 32485690 A JP32485690 A JP 32485690A JP H04194561 A JPH04194561 A JP H04194561A
Authority
JP
Japan
Prior art keywords
adsorbent
heat
cooling
adsorption
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2324856A
Other languages
Japanese (ja)
Other versions
JP2808488B2 (en
Inventor
Yoshio Miyairi
宮入 嘉夫
Toshihiko Yamanaka
敏彦 山中
Harunobu Mizukami
水上 春信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2324856A priority Critical patent/JP2808488B2/en
Publication of JPH04194561A publication Critical patent/JPH04194561A/en
Application granted granted Critical
Publication of JP2808488B2 publication Critical patent/JP2808488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To downsize an adsorbent-filling receptacle, and to increase the cooling capacity of the prevent arrangement, by a method wherein for each heat-medium inlet and outlet on adsorbent-filling receptacles, a heat-medium circuit for heating and a cooling water circulation circuit are changed over in parallel, through a pair of directional selection valves. CONSTITUTION:A space 101 between the inside of each of adsorbent-filling receptacle 100A, 100B and a solid adsorbent 120 is connected to a vapor line 810 through a four- way valve 700. A heating heat-medium circuit 200 and a cooling water circulation circuit 300 are respectively connected, in parallel, to a heat-exchanging member 110 at the inside of each of the adsorbent-filling receptacles, through directional selection valves 900 and directional selection valves 1000, which are at each side of an inlet and outlet on each of the receptacles. By selecting these directional selection valves, one of the adsorbent-filling receptacles is heated and the other is cooled. By selecting the four-way valve 700, adsorptive vapor desorbed at one of the adsorbent-filling receptacles, which is in a process of desorption, is supplied to the vapor line 810, toward the other, which is in a process of adsorption. That is to say, the vapor condenses by a condenser 400 and is stored in a reservoir 500, following which its liquid absorbs heat from a load 610 to be cooled and evaporates by an evaporator 600, and finally its vapor is adsorbed in an adsorbent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は吸着式冷却装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an adsorption cooling device.

〔従来の技術〕[Conventional technology]

例えば、自動車、建設機械、マリンボート等内燃機関を
動力源とする乗り物の室内及び又は冷蔵庫冷却用として
、第7図に示すように、フロンガスを冷媒とし前記機関
を動力源とする蒸気圧縮式冷却装置が従来より知られて
いる。
For example, as shown in Fig. 7, vapor compression type cooling using fluorocarbon gas as a refrigerant and using the engine as the power source is used for cooling the interior of vehicles such as automobiles, construction machines, marine boats, etc. that are powered by internal combustion engines, and/or refrigerators. Devices are known from the prior art.

この種の蒸気圧縮式冷却装置は、走行乃至作 −業を目
的とする機関の出力の一部を冷却のために使用するので
あるから、機関の負・担が増加するのみならず、燃料消
費率を低下させる不具合があり、また最近は専らフレオ
ン  を冷媒として使用するのでオゾン眉破壊の問題か
ら総量規制、生産削減等の法規制が取られるに至ってい
る。
This type of vapor compression cooling system uses part of the output of the engine for running or operating purposes for cooling, which not only increases the load on the engine but also increases fuel consumption. Recently, freon has been used exclusively as a refrigerant, which has led to the issue of ozone depletion, which has led to legal regulations such as total volume control and production reductions.

そこで、これに対処する目的で、エンジンの排熱を加熱
部の熱源とする吸着式冷凍機を用い、フロンガスを用い
ない自動車クーラーが、実開平01−126811号に
より提案されている。
Therefore, in order to solve this problem, an automobile cooler using an adsorption refrigerator that uses exhaust heat of the engine as a heat source for a heating section and does not use fluorocarbon gas has been proposed in Japanese Utility Model Application Publication No. 01-126811.

この提案は、第8図に示すように、蒸発部2と、蒸発部
2から発生する冷媒蒸気を吸着する吸着部3と、吸着し
た冷媒蟇気を加熱により蒸発(脱着の意味と解される)
させる加熱部4と、加熱部からの1気を凝縮させる凝縮
部5とを有する吸着式冷凍機1を設けるとともに、蒸発
部2の熱交換器6を自動車室内冷房用の冷房回路7に接
続し、吸着部3及び凝縮部5の熱交換器8及び9を密閉
型空冷回路10に接続し、加熱部4の熱交換器11をエ
ンジン熱供給回路12に接続し、熱源として自動車エン
ジンの冷却排熱の一部を利用するのである。
This proposal consists of an evaporator 2, an adsorbent 3 that adsorbs the refrigerant vapor generated from the evaporator 2, and evaporates the adsorbed refrigerant by heating (this can be interpreted as desorption), as shown in Figure 8. )
An adsorption refrigerator 1 is provided, which has a heating section 4 for heating the air, and a condensing section 5 for condensing 1 air from the heating section, and a heat exchanger 6 of the evaporation section 2 is connected to a cooling circuit 7 for cooling the interior of an automobile. , the heat exchangers 8 and 9 of the adsorption section 3 and the condensation section 5 are connected to a closed air cooling circuit 10, and the heat exchanger 11 of the heating section 4 is connected to an engine heat supply circuit 12. Some of the heat is used.

この構造を詳説すると、第9図に示すように、吸着式冷
凍機lはそれぞれ蒸気流路13により接続された吸着剤
槽14と蒸気槽15とを真空状態のもとに密閉したまま
両槽14.15に熱交換器を各別に設けてなる2個の吸
脱ユニットA、Bを設け、吸着剤W!14には冷媒例え
ば水を一定量吸着させたシリカ系の固体吸着剤Sを充填
する。
To explain this structure in detail, as shown in FIG. 9, the adsorption refrigerator 1 has an adsorbent tank 14 and a steam tank 15, which are connected by a steam flow path 13, while keeping both tanks sealed in a vacuum state. At 14.15, two adsorption/desorption units A and B each having a heat exchanger are installed, and the adsorbent W! 14 is filled with a silica-based solid adsorbent S that adsorbs a certain amount of a refrigerant, such as water.

そして吸脱ユニフ)Aの吸着剤槽14の熱交換器を加熱
部4の熱交換器11としてエンジン熱供給回路12に接
続し、吸脱ユニーzトAの蒸気槽15と吸脱ユニットB
の吸着剤槽14とにおける熱交換器をそれぞれ熱交換器
9,8として空冷回路lOに接続して冷却水を供給する
Then, the heat exchanger of the adsorbent tank 14 of adsorption/desorption unit A is connected to the engine heat supply circuit 12 as the heat exchanger 11 of the heating section 4, and the steam tank 15 of adsorption/desorption unit A and the adsorption/desorption unit B are connected.
The heat exchangers in the adsorbent tank 14 are connected to the air cooling circuit IO as heat exchangers 9 and 8, respectively, to supply cooling water.

更に吸脱ユニフ)Bの蒸気槽15の熱交換器を蒸発部2
の熱交換器6として冷房回路7に接続する。
Furthermore, the heat exchanger of the steam tank 15 of the adsorption/desorption unit (B) is connected to the evaporation section 2.
It is connected to the cooling circuit 7 as a heat exchanger 6.

このようにして、まず吸脱ユニッ)Aの吸着剤槽14内
の固体吸着剤Sをエンジン熱の供給により加熱し、吸着
していた冷媒水分を蒸発させつつ蒸気流路13を経て熱
交換器9で凝縮させ(これを泡出願人は脱着という)、
かつ吸脱ユニッ)Bにおいては、吸脱ユニットへの脱着
完了の下に、吸着剤槽14の熱交換器8に30℃程度の
冷水を供給し、蒸気槽15の熱交換器6には冷房回路7
の冷水を通しることにより、冷媒茶気の吸着作用を発揮
さゼて、蒸気槽15の熱交換器6に凝縮していた冷媒水
を蒸発させ、そのときの潜熱で冷房図B7の冷水を8℃
程度まで冷却する。
In this way, first, the solid adsorbent S in the adsorbent tank 14 of the adsorption/desorption unit A is heated by the supply of engine heat, and the adsorbed refrigerant moisture is evaporated while passing through the vapor flow path 13 to the heat exchanger. 9 to condense (this is called desorption by the foam applicant),
In addition, in adsorption/desorption unit) B, after completion of desorption to the adsorption/desorption unit, cold water of about 30° C. is supplied to the heat exchanger 8 of the adsorbent tank 14, and cooling water is supplied to the heat exchanger 6 of the steam tank 15. circuit 7
By passing the cold water through it, the adsorption effect of the refrigerant tea is exerted, and the refrigerant water that had been condensed in the heat exchanger 6 of the steam tank 15 is evaporated, and the latent heat at that time is used to cool the cold water in the cooling diagram B7. 8℃
Cool to a certain degree.

ここで、熱交換器11と8.9と6は対交換して運転さ
れ、蒸気流路13により接続された吸着剤槽14と蒸気
槽15とを真空状態のもとに密閉したまま両槽14.1
5に熱交換器を各別に設け、吸着剤[14には冷媒例え
ば水を一定量吸着させたシリカ系の固体吸着剤Sを充填
し、吸脱ユニットA、Bの吸着剤槽14は交互に加熱と
冷却を受け、対応する茶気槽15はそれぞれm縮部5(
凝縮器)及び蒸発部2(蒸発器)として交互に作用し、
冷房回路は常に暴発部に切り替え接続することで、蒸発
部の冷媒の暴発に伴う潜熱により効果的な冷房作用を行
うのである。
Here, the heat exchangers 11, 8, 9, and 6 are operated as a pair, and the adsorbent tank 14 and the steam tank 15, which are connected by the steam flow path 13, are kept sealed in a vacuum state. 14.1
A heat exchanger is installed in each unit 5, and the adsorbent [14] is filled with a silica-based solid adsorbent S that has adsorbed a certain amount of refrigerant, for example, water, and the adsorbent tanks 14 of adsorption/desorption units A and B are arranged alternately. Under heating and cooling, the corresponding tea tanks 15 are heated and cooled, respectively.
act alternately as a condenser) and an evaporator 2 (evaporator),
By constantly switching the cooling circuit to the explosion section, the latent heat accompanying the explosion of the refrigerant in the evaporation section provides effective cooling.

〔発明が解決しようとする技術的課題〕しかしながら、
このような吸着式冷凍機1はそれぞれ吸着剤槽14と蕉
気槽15を華気通路13で一体に連結してなる吸脱ユニ
ットA、  Bを2基必要とするので、現在入手し得る
固体吸着剤Sの吸着量特性では、吸着剤槽14はかなり
大きな容積を必要とし、蒸発の潜熱を取り出すための熱
交換器の所要面積もかなり大きくなる。
[Technical problem to be solved by the invention] However,
Such an adsorption refrigerator 1 requires two adsorption/desorption units A and B, each of which is formed by integrally connecting an adsorbent tank 14 and an air tank 15 through a flower passageway 13. Due to the adsorption amount characteristics of the adsorbent S, the adsorbent tank 14 requires a considerably large volume, and the required area of a heat exchanger for extracting the latent heat of evaporation also becomes considerably large.

自動車用のように、小型、軽量、低燃費(高性能)、無
公害を商品価値の判断尺度に持ち、各種機器の装着密度
の極めて高い用途に対しては、低燃費及びフロンガスに
対する無公害の点でこの提案は優れているが、下記のよ
うに、改善すべき点もある。
For applications such as automobiles, where small size, light weight, low fuel consumption (high performance), and non-pollution are the criteria for determining product value, and where various devices are installed with extremely high density, low fuel consumption and non-polluting with respect to fluorocarbon gas are required. Although this proposal is excellent in this respect, there are some points that should be improved as described below.

il+  内燃機関を動力源とする乗り物その低設備等
では、前記機関を冷却するための冷却水から得られる排
熱を利用するだけでは、所要温度レヘルと熱愛がアイド
リング運転時に不足する。
il+ In vehicles and other low-level equipment powered by an internal combustion engine, the required temperature level and heat are insufficient during idling operation if only the exhaust heat obtained from the cooling water for cooling the engine is used.

(2)  吸着剤槽14と蒸気槽15を一体的に構成す
ることは、装着の自由度を制約する。
(2) Integrating the adsorbent tank 14 and the steam tank 15 restricts the degree of freedom of attachment.

(3)  冷房回路の熱交換器22と吸着式冷凍機1の
蒸発部2(蒸気器)を兼用することが有利である。
(3) It is advantageous to use the heat exchanger 22 of the cooling circuit and the evaporator 2 (steamer) of the adsorption refrigerator 1.

(4)  脱着に便利な熱源としては、固体吸着剤の呼
吸量を多くして蒸発に寄与する冷媒量を多くし、冷房能
力を大きくするには、脱着温度は高いのが好ましく、機
関の冷却水に基づく機関排熱だけでは不十分の場合は機
関の排気が保有する熱も併用するのが望ましい。
(4) As a convenient heat source for desorption, a high desorption temperature is preferable in order to increase the respiration rate of the solid adsorbent and increase the amount of refrigerant that contributes to evaporation, and to increase the cooling capacity. If water-based engine exhaust heat alone is insufficient, it is desirable to also use the heat held by the engine exhaust gas.

本発明はこのような事情に鑑みて提案されたもので、吸
着剤槽を小型化して装着の自由度を大きくするとともに
冷房能力の増加を図る省エネルギかつ無公害の吸着式冷
却装置を提供することを目的とする。
The present invention has been proposed in view of these circumstances, and provides an energy-saving and pollution-free adsorption cooling device that reduces the size of the adsorbent tank, increases the degree of freedom in installation, and increases cooling capacity. The purpose is to

〔課題を解決するための技術的手段〕[Technical means to solve the problem]

そのために本発明の基本発明はそれぞれ内部に熱媒体流
路を有する筒状熱交換部材110と、同熱交換部材11
0を空所を存じて包囲する筒状容器130よりなり空所
101を残して熱交換部材110の周りに粒状多孔性固
体吸着剤120を充填してなる2基の吸着剤充填槽10
0A、100Bと、空気冷却器310を有する冷却水循
環回路300に挿入された冷媒凝縮器400と、凝縮器
400からの凝縮冷媒を凝縮液体貯溜用容器500を経
て導入し冷却負荷610と熱交換する蒸発器600と、
上記各吸着剤充填槽1OOA、100Bの空所101に
それぞれ連通ずる流路に挿入された4方切替弁7000
と、同4方切替弁700の他方の波路に挿入された上記
凝縮器400.#縮液体貯溜用容器500.葎発器60
0よりなる循環回路800と、上記各吸着剤充填槽10
0A、100Bの熱媒体供給口131A、’131Bの
入口と出口を加熱用熱媒体回路200と冷却水循環回路
300に選択的に並列接続する各1対の方向切替弁90
0.1000と、上記循環回路800内に封入された水
冷媒とを具えたことを特徴とする。
To this end, the basic invention of the present invention includes a cylindrical heat exchange member 110 each having a heat medium flow path therein, and a cylindrical heat exchange member 110 having a heat medium flow path therein.
Two adsorbent filling tanks 10 are made up of a cylindrical container 130 that surrounds a heat exchange member 110 with a granular porous solid adsorbent 120, leaving a space 101.
0A, 100B, and a refrigerant condenser 400 inserted into a cooling water circulation circuit 300 having an air cooler 310, and the condensed refrigerant from the condenser 400 is introduced through a condensed liquid storage container 500 to exchange heat with a cooling load 610. an evaporator 600;
A four-way switching valve 7000 inserted into a flow path communicating with the void 101 of each of the adsorbent filling tanks 1OOA and 100B.
and the condenser 400 inserted into the other wave path of the four-way switching valve 700. # Condensed liquid storage container 500. Seed generator 60
0 and each adsorbent filling tank 10 described above.
A pair of directional switching valves 90 each selectively connect in parallel the inlet and outlet of the heat medium supply ports 131A and 131B of 0A and 100B to the heating heat medium circuit 200 and the cooling water circulation circuit 300.
0.1000 and a water refrigerant sealed in the circulation circuit 800.

〔作用〕 このような第1項の発明の構成によれば、吸着剤充填槽
100A、100Bの熱媒体供給口131A、131B
の人口、出口をそれぞれ加熱用熱媒体回路200冷却水
循環回路300に各1対の方向切換弁900.1000
により並列接続的に切替えることで、吸着剤槽を小型化
して配置及び装着の自由度を大きくするとともに冷房能
力を増加して省エネルギかつ無公害の吸着式冷却装置気
(得られる。
[Operation] According to the configuration of the invention of item 1, the heat medium supply ports 131A and 131B of the adsorbent filling tanks 100A and 100B
A pair of directional control valves 900 and 1000 are connected to the heating heat medium circuit 200 and the cooling water circulation circuit 300, respectively.
By switching in parallel connection, the adsorbent tank can be made smaller and the degree of freedom in placement and installation can be increased, and the cooling capacity can be increased, resulting in an energy-saving and non-polluting adsorption cooling system.

〔実施例〕〔Example〕

本発明の一実施例を図面について説明すると、第1図は
その全体系統図、第2図は第1図の変形例を示す同しく
全体系統図、第3図、第4図。
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an overall system diagram thereof, FIG. 2 is an overall system diagram showing a modification of FIG. 1, and FIGS. 3 and 4.

第5図はそれぞれ吸着剤の吸着等温線を示す線図、第6
図は吸着質の呼吸量の比較例を示す線図である。
Figure 5 is a diagram showing the adsorption isotherm of the adsorbent, and Figure 6 is a diagram showing the adsorption isotherm of the adsorbent.
The figure is a diagram showing a comparative example of the respiration amount of adsorbate.

まず、第1図において、100A、100Bはそれぞれ
吸着剤充填槽、101は吸着剤充填槽内の空所、110
は熱交換部材、120は固体吸着剤、130は筒状容器
、131A、131Bは熱媒体供給口、200は加熱用
熱媒体回路、210は機関の冷却水循環回路、211は
機関、212はラジェーター、213は分流弁、214
はポンプ、215はパイピング、220は排気熱交換器
、300は冷却水循環回路、310は空気冷却器、32
0はポンプ、400は凝縮器、500は凝縮液体貯溜容
器、600は蒸発器、601はドレン、611はダクト
、612は送風機、700は4方切替弁、800は密閉
循環系形成手段、810は蒸気通路、811は絞り弁、
900、は加熱用熱媒体回路200I!I陪 の方向切替弁、1000は冷却水循環M 300の方向
切替弁、1100は水冷媒(吸着質)である。
First, in FIG. 1, 100A and 100B are respectively adsorbent filling tanks, 101 is a void inside the adsorbent filling tank, and 110
is a heat exchange member, 120 is a solid adsorbent, 130 is a cylindrical container, 131A, 131B are heat medium supply ports, 200 is a heating heat medium circuit, 210 is an engine cooling water circulation circuit, 211 is an engine, 212 is a radiator, 213 is a diversion valve, 214
is a pump, 215 is a piping, 220 is an exhaust heat exchanger, 300 is a cooling water circulation circuit, 310 is an air cooler, 32
0 is a pump, 400 is a condenser, 500 is a condensed liquid storage container, 600 is an evaporator, 601 is a drain, 611 is a duct, 612 is a blower, 700 is a four-way switching valve, 800 is a closed circulation system forming means, 810 is Steam passage, 811 is a throttle valve,
900 is a heating medium circuit 200I! 1000 is a directional switching valve for cooling water circulation M 300, and 1100 is a water refrigerant (adsorbent).

本発明の吸着式冷却装置は2基の吸着剤充填槽100A
、100Bのそれぞれ内部と固体吸着剤120のなす空
所101は、4方切替弁9゜Oを介して単一の蒸気通路
810で連結され、各吸着剤充填槽100A、100B
の熱交換部材110は入口及び出口側で夫々加執用熱媒
体回路200と冷却水循環回路300に、方向切替弁9
00及び1000を介して並列接続され、方向切替弁の
選択的切替えにより、一方の吸着剤充填槽を加熱し他方
を冷却することができる。
The adsorption cooling device of the present invention has two adsorbent filling tanks 100A.
, 100B and the space 101 formed by the solid adsorbent 120 are connected by a single steam passage 810 via a 4-way switching valve 9°O, and each adsorbent filling tank 100A, 100B
The heat exchange member 110 is connected to the cooling heat medium circuit 200 and the cooling water circulation circuit 300 on the inlet and outlet sides, respectively, and the direction switching valve 9
00 and 1000, and by selectively switching the directional valve it is possible to heat one adsorbent-filled tank and cool the other.

凝縮器400、凝縮液体貯溜容器500.蒸発器600
は一方の吸着剤充填槽の空所から他方の吸着剤充填槽の
空所へ、密閉循環系形成手段800と4方切替弁700
を介して密閉的に連結され、4方切替弁700の切替え
操作により、脱着工程にある吸着剤充填槽から脱着(又
は放出)される吸着質蒸気を、吸着工程にある吸着剤充
填槽に向は一方向的に蒸気通路810へ蒸気を供給する
。蒸気通路810へ゛供給された蒸気は凝縮器400で
凝縮され、−旦m縮液体貯溜容器500に溜められた後
、蒸発器600で冷却負荷610から草発熱を奪って蒸
発し、吸着工程にある吸着剤充填槽内の吸着剤に吸着さ
れる。
Condenser 400, condensed liquid storage container 500. evaporator 600
is a closed circulation system forming means 800 and a four-way switching valve 700 from the empty space of one adsorbent filling tank to the empty space of the other adsorbent filling tank.
By switching the four-way switching valve 700, the adsorbate vapor desorbed (or released) from the adsorbent-filled tank in the desorption process is directed to the adsorbent-filled tank in the adsorption process. supplies steam to steam passage 810 in one direction. The steam supplied to the steam passage 810 is condensed in the condenser 400, and then stored in the condensed liquid storage container 500.The steam is then evaporated in the evaporator 600, taking heat from the cooling load 610, and enters the adsorption process. It is adsorbed by the adsorbent in the adsorbent filling tank.

加熱用熱媒体回路200は例えば乗り物の動力源となる
内燃機関211を冷却するための、ラジェーター212
.ポンプ214.パイピング215よりなり、冷却水循
環回路210に排気熱交換器220を直列又は並列に接
続して、分流弁213を介して、ラジェーター212と
吸着剤充填槽を並列接続する。
The heating heat medium circuit 200 includes, for example, a radiator 212 for cooling an internal combustion engine 211 that serves as a power source for a vehicle.
.. Pump 214. An exhaust heat exchanger 220 is connected in series or in parallel to a cooling water circulation circuit 210, and a radiator 212 and an adsorbent filling tank are connected in parallel via a diversion valve 213.

このようにして、機関211のシリンダ一部を冷却して
得られるより高温の熱源が得られる。
In this way, a heat source with a higher temperature than that obtained by cooling a portion of the cylinder of the engine 211 is obtained.

蒸発器600からの蒸気通路810の上流又は下流側に
は、負荷に適合した蒸気供給を行うため適宜絞り811
を設ける。蒸発器600の負荷は、例えばダク)611
を介し送風機612により送られる車室内の空気であり
、冷却に伴って当然ドレンが発生するので、これを空気
冷却器310及び/又は凝縮器400すなわち冷却水循
環回路300の冷却に用いて性能向上を図る。なお、4
方切替弁700、方向切替弁900.1000は2方向
弁を用いて第2図示すようにしても良い。
On the upstream or downstream side of the steam passage 810 from the evaporator 600, a throttle 811 is installed as appropriate to supply steam in accordance with the load.
will be established. The load of the evaporator 600 is, for example, duct) 611
This is the air inside the vehicle that is sent by the blower 612 via the air blower 612. Naturally, drain is generated with cooling, so this is used to cool the air cooler 310 and/or condenser 400, that is, the cooling water circulation circuit 300, to improve performance. Plan. In addition, 4
The direction switching valve 700 and the direction switching valve 900.1000 may be two-way valves as shown in FIG.

このような装置によれば、下記の作用が行われる。According to such a device, the following actions are performed.

ia)  固体吸着剤の吸着特性と蒸気移動気体と固体
を接触させると、気相から分子の消失が生し、消失分子
が固体内に入ったとめL きを吸着、表面に溜っているときを吸着(Adosor
ption ) 、吸着分子が気相に戻ることを脱着と
すると、吸着は2相の接する界面で1つの相の濃度がそ
の内部の濃度と異なる現象といえる。この場合、濃度が
変化した物質が他方の物質に吸着される訳で、吸着する
物質を吸着剤(Adsorbent ) 、吸着される
物質を吸着質ということは一般に知られている。
ia) Adsorption properties of solid adsorbents and vapor transfer When a gas and a solid come into contact, molecules disappear from the gas phase, and when the molecules enter the solid, they adsorb and accumulate on the surface. Adsorption
If desorption is defined as the return of adsorbed molecules to the gas phase, then adsorption can be said to be a phenomenon in which the concentration of one phase differs from the concentration inside the phase at the interface where two phases meet. In this case, the substance whose concentration has changed is adsorbed by the other substance, and it is generally known that the adsorbing substance is called an adsorbent, and the adsorbed substance is called an adsorbate.

吸着剤単位重量当たりの吸着質の量は吸着量(CCat
O℃、 1ate /g、 Mol/g、 I1g/g
)と定義され、重量%で定義される場合もある。
The amount of adsorbate per unit weight of adsorbent is adsorption amount (CCat
O℃, 1ate/g, Mol/g, I1g/g
), and may also be defined in weight percent.

吸着現象は、物理吸着と化学吸着に大別され、物理吸着
は主に吸着剤と吸着質の分子間に作用するファンデルワ
ールス(van der Waals)の力に基づき、
吸着に際し吸着熱を放出する可逆現象であり分子吸着と
いわれる。
Adsorption phenomena can be broadly classified into physical adsorption and chemisorption. Physical adsorption is mainly based on van der Waals forces that act between adsorbent and adsorbate molecules.
This is a reversible phenomenon in which heat of adsorption is released during adsorption and is called molecular adsorption.

化学吸着は主に原子価力に基づく吸着剤と吸着質の分子
の結合現象と考えられ、不可逆現象である。
Chemical adsorption is considered to be a binding phenomenon between adsorbent and adsorbate molecules mainly based on valence force, and is an irreversible phenomenon.

吸着量は吸着剤と吸着質の組み合わせにより大きな差巽
があるが、その組み合わせが特定されれば、吸着量qは
圧力Pと温度Tの関数として決まる。
The amount of adsorption varies greatly depending on the combination of adsorbent and adsorbate, but once that combination is specified, the amount of adsorption q is determined as a function of pressure P and temperature T.

すなわち q =q(P、T)         (11温度一定
の時の吸着量は圧力のみの関数で、これをqtとすれば Qt −Qt  (P)      [21であり咬着
等基線と呼ばれる。
That is, q = q (P, T) (11 The amount of adsorption when the temperature is constant is a function only of pressure, and if this is qt, then Qt - Qt (P) [21, which is called the occlusal isobaseline.

圧カ一定の時の吸着量をq2とすれば、これは Qp  −Ql  (T)         +31で
現わされ、各温度での吸着等基線が測定されれば求まる
。またこのとき、等吸着量線と呼ばれる吸着量が一定の
特性は P=  q、(T)           14>とし
て求まる。
If the amount of adsorption when the pressure is constant is q2, this is expressed as Qp - Ql (T) +31, which can be determined by measuring the adsorption isobase line at each temperature. Further, at this time, a characteristic in which the amount of adsorption is constant, which is called an isosorption amount line, can be found as P=q, (T) 14>.

冷媒として作用させる水を吸着質とし、吸着剤を (イ)JIS  A型シリカゲル (ロ)モレキュラシブ13X (ハ)モレキュラシブ 4X としたときの吸着等温線を示すと、それぞれ第3図、第
4図、第5図に示す通りである。
The adsorption isotherms when water acting as a refrigerant is used as the adsorbent and the adsorbent is (a) JIS A type silica gel (b) Molecular Sib 13X (c) Molecular Sib 4X are shown in Figures 3 and 4, respectively. As shown in FIG.

例えばJIS  A型シリカゲルと水の場合は第3図に
示すように、水蒸気分圧42.2 wHg(相当飽和温
度35℃) 吸着剤温度85℃ の時q1工、S=5% 水蒸気分圧 6.5mHg(相当飽和温度5℃)吸着温
度35℃ の時qta3s=9% とそれぞれ異なった吸着量を示す。
For example, in the case of JIS A-type silica gel and water, as shown in Figure 3, when the water vapor partial pressure is 42.2 wHg (equivalent saturation temperature 35°C) and the adsorbent temperature is 85°C, the water vapor partial pressure is q1, S = 5%, water vapor partial pressure 6 .5mHg (equivalent saturation temperature 5°C) and adsorption temperature 35°C, qta3s=9%, showing different adsorption amounts.

そしてこの変化は前述の通り可逆変化であるから、吸着
剤の温度とそれに対応する吸着  ・質の圧力を適宜選
択すれば、所定量の吸着質の出し入れが可能となり、上
記の例では吸着量の変化量(呼吸量とも表現できる)Δ
qは4%、すなわち吸着剤IKg当たり40gの水分量
移動となる。
As mentioned above, this change is a reversible change, so if the temperature of the adsorbent and the corresponding pressure of the adsorbent are selected appropriately, it is possible to put in and take out a predetermined amount of adsorbent. Amount of change (also expressed as respiration rate) Δ
q is 4%, that is, 40 g of moisture is transferred per IKg of adsorbent.

本発明では吸着剤と吸着質を充填した容器の2基を設け
、それぞれ容器内の吸着剤と吸着質の界面の上記2水準
の圧力と温度を、−方が高い水準で脱着工程にあるとき
他方が低い水準の吸着工程になるように選択的に切り替
えることで、脱着工程にある一方の容器内(又は容器内
の吸着剤)から放出される蒸気は吸着工程にある他方の
容器内(又は容器内の吸着剤)に吸引され、他方の容器
(又は容器内の吸着剤)は一種の吸引ポンプ的作用をす
る。容器へ又は容器からの吸着質の移動は気相で進行す
るから、これが円滑に進むように、つまり吸着質の吸着
剤への接触と吸着剤からの分離の均一化のために、容器
内には吸着質1気の通路となる空所が設けここに連結す
る流路を介して蒸気移動がなされる。
In the present invention, two containers filled with an adsorbent and an adsorbate are provided, and the above two levels of pressure and temperature at the interface between the adsorbent and adsorbate in each container are maintained at the higher level during the desorption process. By selectively switching the other to a lower level adsorption process, the vapor released from one vessel (or the adsorbent in the vessel) undergoing the desorption process is transferred to the other vessel (or the adsorbent within the vessel) undergoing the adsorption process. The other container (or the adsorbent in the container) acts like a kind of suction pump. Since the transfer of adsorbate to and from the container proceeds in the gas phase, in order to ensure that this process proceeds smoothly, that is, to ensure uniform contact of the adsorbate with the adsorbent and its separation from the adsorbent, there is a A cavity is provided as a passage for adsorbate 1, and vapor is transferred through a flow path connected to this cavity.

(bl  吸着剤界面への熱量の供給と除去吸着剤の温
度を上げ下げするためには、加熱のための熱源と冷却の
ための冷却源を要し、そのために筒状容!1130の内
部にく吸着剤が熱交換部材110の表面を覆うように熱
交換部材110を設け、その内部に熱媒体通路を内蔵し
熱媒体供給口131A、131Bを介して外部と連通す
る。
(bl) Supply of heat to the adsorbent interface and removal In order to raise and lower the temperature of the adsorbent, a heat source for heating and a cooling source for cooling are required. The heat exchange member 110 is provided so that the adsorbent covers the surface of the heat exchange member 110, and has a heat medium passage built therein and communicates with the outside via heat medium supply ports 131A and 131B.

この外部をそれぞれ吸着剤充填槽100A。This outside is filled with an adsorbent tank 100A.

と冷却水循環回路300に並列的に1選択接続する1対
の方向切り替弁900.1000に接続することで、加
熱源である高温液状の加熱用熱媒体回路200と冷却源
である空気冷却器310を有する冷却水循環回路300
に選択的に接続し加熱と冷却を行う、その結果、一方の
吸着剤の界面では脱着、他方の吸着剤の界面では吸着が
進行する。
By connecting to a pair of directional switching valves 900 and 1000 selectively connected in parallel to the cooling water circulation circuit 300, the high temperature liquid heating medium circuit 200 which is a heating source and the air cooler 310 which is a cooling source are connected. A cooling water circulation circuit 300 having
As a result, desorption progresses at the interface of one adsorbent and adsorption progresses at the interface of the other adsorbent.

tel  吸着質蒸気の凝縮と蒸発 脱着と吸着に伴う吸着質蒸気の単なる移動では熱力学的
冷却作用は起こらないので、吸着質の潜熱を取り出すに
は脱着により得られる吸着質蒸気を冷却して一旦凝縮さ
せた後、これを蒸発させる工程が不可欠である。
tel Condensation of adsorbate vapor, evaporative desorption, and mere movement of adsorbate vapor due to adsorption do not cause a thermodynamic cooling effect, so in order to extract the latent heat of adsorbate, it is necessary to cool the adsorbate vapor obtained by desorption and then After condensation, a step of evaporating it is essential.

本発明ではこの脱着蒸気の凝縮を、空気冷却器310を
有する冷却水循環回路300で冷却される凝縮器400
を介して行い、avM器40′0で凝縮した液化吸着質
を蒸発器600で蒸発させ、所望の媒体から熱を奪う、
すなわち冷却作用を取り出す。
In the present invention, this desorption vapor is condensed in a condenser 400 cooled by a cooling water circulation circuit 300 having an air cooler 310.
The liquefied adsorbate condensed in the avM device 40'0 is evaporated in the evaporator 600 to remove heat from the desired medium.
In other words, the cooling effect is taken out.

その際、凝縮器400と蒸発器600の圧力は動作変数
として気液平衡の関係から、例えば凝縮温度35℃なら
42.2 m Hg 。
At this time, the pressures of the condenser 400 and the evaporator 600 are operating variables, from the relationship of vapor-liquid equilibrium, for example, 42.2 m Hg if the condensing temperature is 35°C.

蒸発温度 5℃なら 6.5日Hgと なり、熱の授受を伴うこの条件を満たすように、凝縮器
400と蒸発器600を設計する。
If the evaporation temperature is 5° C., it will be 6.5 days of Hg, and the condenser 400 and evaporator 600 are designed to satisfy this condition involving exchange of heat.

伺 蒸気流路の切り替え 2基の吸着剤充填槽の内部は4方切替弁700の2つの
2i!L路を介して連通し、4方切替弁700の流路の
うち他の2つの2it路は、−方から他方に向かって、
凝縮器400、液体貯溜用容器500、蒸発器600の
順に連結する密閉循環系形成手段800により密閉的に
連結されて単一の蒸気流路を形成する。
Switching of the steam flow path Inside the two adsorbent filling tanks are two 2i! four-way switching valves 700! The other two 2it paths of the flow paths of the four-way switching valve 700 communicate through the L path, from the − side toward the other side,
The condenser 400, liquid storage container 500, and evaporator 600 are connected in this order in a closed circulation system forming means 800 to form a single vapor flow path.

そしてこれらは単一の蒸気流路を形成し。These form a single vapor flow path.

2基の吸着剤充填槽がそれぞれ脱着と吸着を交互に繰り
返すのに対し、常に脱着例の吸着剤充填槽の空所は凝縮
n 400の人口側に、吸着側の吸着剤充填槽の空所は
暴発器600の出口側に連結され、一方向茶気流を生成
する。
While the two adsorbent-filled tanks alternately repeat desorption and adsorption, the empty space in the adsorbent-filled tank in the desorption example is always on the condensation n 400 population side, and the empty space in the adsorbent-filled tank on the adsorption side is always on the condensation side. is connected to the outlet side of the ignition device 600 to generate a one-way brown air flow.

tel  脱着と吸着作用切替えに伴う蒸気流量変動の
抑制 液体貯溜用界8500は2基の吸着剤充填槽の脱着と吸
着に交互に切替えしたとき、蒸気流路内の蒸気量変動を
抑制するバフファーの作用を行う。
tel Suppression of vapor flow rate fluctuations due to switching between desorption and adsorption The liquid storage application 8500 is a buffer that suppresses vapor flow fluctuations in the vapor flow path when switching alternately between desorption and adsorption in two adsorbent-filled tanks. perform an action.

(f)  冷却作用 凝縮器400で液化された吸着質は蒸発器600の入口
部でその圧力飽和温度まで自己冷却し、その後、冷却負
荷である媒体から熱を奪って蒸発する。
(f) Cooling effect The adsorbate liquefied in the condenser 400 is self-cooled to its pressure saturation temperature at the inlet of the evaporator 600, and then evaporates by taking heat from the medium that is the cooling load.

例えば蒸発圧力飽和温度が5℃のとき、水の蒸発潜熱は
1968日本機械学会蒸気表により594. 6Kca
k /bであるから、単位重量(1瞳)の吸着割当たり
23.8Kcalの冷却効果を得る。
For example, when the evaporation pressure saturation temperature is 5°C, the latent heat of vaporization of water is 594. 6Kca
Since it is k /b, a cooling effect of 23.8 Kcal is obtained per unit weight (1 pupil) adsorption rate.

(g)  内燃機関の排熱回収 自動車、建設側1マリンボート等内燃機関を動力源とす
る乗り物の、又はディーゼル発電機等を装備する設備等
に用いられる内燃機関の冷却は冷却水循環回路210に
より、機関のシリンダー周りに冷却水を循環的に流して
なされる。
(g) Exhaust heat recovery from internal combustion engines The cooling water circulation circuit 210 cools internal combustion engines used in vehicles powered by internal combustion engines, such as automobiles and marine boats, or in equipment equipped with diesel generators, etc. This is done by circulating cooling water around the engine's cylinders.

此の冷却水循環回路210に排気熱交換機220を直列
又は並列接続して、機関の排熱を゛回収し従来の冷却水
循環回路210で回収されるより高温かつ所定量の熱回
収を行い、吸着剤の脱着温度を高め、吸着質の呼吸量を
増加し、以て吸着剤単位重量当たりの蒸気発生量を増加
させ、冷却効果を高める。
An exhaust heat exchanger 220 is connected in series or parallel to this cooling water circulation circuit 210 to recover engine exhaust heat and recover a predetermined amount of heat at a higher temperature than that recovered in the conventional cooling water circulation circuit 210. This increases the desorption temperature of the adsorbent, increases the respiration rate of the adsorbate, thereby increasing the amount of steam generated per unit weight of adsorbent, and enhancing the cooling effect.

更に付言すれば、同じ冷却効果を得るのに対し少ない唆
看荊量で済吸着剤充填槽の小型化、軽重化をもたらす。
Furthermore, while obtaining the same cooling effect, the adsorbent filling tank can be made smaller and lighter with less consideration.

また、車両の冷房負荷は、車種、運転条件、気象条件に
より異なるが、−例を挙げると次の如くなる。すなわち
、排気量2000ccクラスの乗用車の場合、 外気温度 35℃ 車室内温度25℃ とすると、 車速40Km/h 走行特約3500Kcal/、h アイドリング運転時 約2500 Kcal、/hとな
る。
Although the cooling load of a vehicle varies depending on the type of vehicle, driving conditions, and weather conditions, the following examples are given. That is, in the case of a passenger car with a displacement of 2000 cc, assuming that the outside air temperature is 35° C. and the interior temperature is 25° C., the vehicle speed is 40 km/h and the running special rate is 3500 Kcal/h, and the idling time is approximately 2500 Kcal/h.

一方、特にアイドリング運転時に着目すると、既設の冷
却水系に於けるラジェーターの放熱量は約2600 K
ca!/h と見積もられる。
On the other hand, if we pay particular attention to idling, the amount of heat dissipated by the radiator in the existing cooling water system is approximately 2600 K.
ca! It is estimated that /h.

加熱に用いられる熱量に対し冷却に寄与する熱量は、こ
の種の冷却装置の成績係数が0.5〜゛0.7であるこ
とを考慮すれば、不足することが解る。
Considering that the coefficient of performance of this type of cooling device is 0.5 to 0.7, it can be seen that the amount of heat contributing to cooling is insufficient compared to the amount of heat used for heating.

ここで、排気の保有する熱量を、200を程度まで回収
すれば、内燃機関から全体として回収される熱量は約4
500 Kcal/h と見積られ、冷房負荷を十分賄
い得る熱量である。
Here, if the amount of heat held by the exhaust gas is recovered to the extent of 200, the total amount of heat recovered from the internal combustion engine is approximately 4.
It is estimated to be 500 Kcal/h, which is enough heat to cover the cooling load.

走行条件に付いても同様に熱勘定でき、排気熱回収が必
要である。
Heat can be calculated in the same way under running conditions, and exhaust heat recovery is necessary.

(h)空気冷却器及び又は凝縮能力増加蒸発器600に
は冷却負荷として水蒸気を含んだ空気が作用するので、
蒸発器で冷却された空気中の水蒸気の飽和分圧は下がり
、余分の水蒸気はドレン601として分離される。この
冷えたドレン601を冷却水循環回路300の空気冷却
器310及び又は冷却水循環口8300で冷却される凝
縮器400の冷却に使えば、冷熱の損失防止と空気冷却
器及びまたは凝縮の能力増加に役立つ。
(h) Since air containing water vapor acts on the air cooler and/or the condensing capacity increasing evaporator 600 as a cooling load,
The saturated partial pressure of water vapor in the air cooled by the evaporator decreases, and excess water vapor is separated as a drain 601. If this cooled drain 601 is used to cool the air cooler 310 of the cooling water circulation circuit 300 and/or the condenser 400 cooled by the cooling water circulation port 8300, it will help prevent loss of cold heat and increase the capacity of the air cooler and/or condensation. .

(i)吸着剤の選定 吸着質が決まり、吸着温度、脱着温度、蒸発圧力、凝縮
圧力が決まると、吸着剤の選定いかんは吸着式冷却器の
単位重量当たりの冷却能力を支配する要因となる。
(i) Selection of adsorbent Once the adsorbate has been determined, and the adsorption temperature, desorption temperature, evaporation pressure, and condensation pressure have been determined, the selection of adsorbent becomes a factor that controls the cooling capacity per unit weight of the adsorption cooler. .

吸着質を水とし、吸着温度/脱着温度−35785℃ 
蒸発温度飽和圧力/凝縮温度飽和圧力= 6.5 / 
42.2 tm Hgに対するll!!!著荊の呼吸量
は下記の通りであり、 (イ)4,0%  (ロ)3.2%  (ハ)25%(
ニ)1.5゜% ただし、 (イ)JISA型シリカシリ カゲル活性アルミナ (ハ)ゼオライト4A (ニ)ゼオライト13X であり、久オーダーの粒状多孔のJISA型シリカゲル
〜活性アルミナが吸着剤として好適である。− このような装置によれば、下記の効果が奏せられる。
Adsorbate is water, adsorption temperature/desorption temperature -35785℃
Evaporation temperature saturation pressure / condensation temperature saturation pressure = 6.5 /
42.2 tm against Hg! ! ! The amount of respiration of the fish is as follows: (a) 4.0% (b) 3.2% (c) 25% (
d) 1.5°% However, (a) JISA type silica silica gel activated alumina (c) Zeolite 4A (d) Zeolite 13X, and JISA type silica gel to activated alumina with granular pores on the order of 100 to 1000 yen is suitable as an adsorbent. . - According to such a device, the following effects can be achieved.

(11吸着剤槽14(第9図)と菓気槽15(第9図)
は互いに分離構成されているので、その設置はかなり自
由になる。
(11 Adsorbent tank 14 (Fig. 9) and condensate tank 15 (Fig. 9)
Since they are configured separately from each other, their installation is quite flexible.

(2)  冷却回路の熱交換器22(第9図)と吸着式
冷凍機1の薫発部2(蒸発器)(第9図)を兼用するこ
とにより構造が簡単になる。
(2) The structure is simplified by using the heat exchanger 22 (FIG. 9) of the cooling circuit and the smoke generator 2 (evaporator) (FIG. 9) of the adsorption refrigerator 1.

(3)  脱着のための熱源としては、固有吸着剤の呼
吸量を多くして暴発に寄与する冷媒量を多くし、冷房能
力を大きくするには、脱着温度は高いのが好ましく機関
の冷却水に基づく機関排熱だけでは不十分の場合には機
関の排気が保有する熱も利用して吸着質の呼吸量増加に
寄与し、冷却装置の単位重量当の冷却能力は向上する。
(3) As a heat source for desorption, in order to increase the respiration rate of the unique adsorbent and increase the amount of refrigerant that contributes to explosions, and to increase the cooling capacity, it is preferable that the desorption temperature is high. When the exhaust heat from the engine is insufficient, the heat held in the exhaust gas from the engine is also used to contribute to an increase in the amount of adsorbate respiration, improving the cooling capacity per unit weight of the cooling device.

(4)茶気流路は唯一であり、この種の冷却装置として
は極めて簡素な構成であり小型化及び軽量化に寄与する
ところ大であるとともに、極めて簡素な構成による信転
性増加も期待できる。
(4) The tea air flow path is unique and has an extremely simple configuration for this type of cooling device, which greatly contributes to miniaturization and weight reduction, and can also be expected to increase reliability due to the extremely simple configuration. .

(51軽量化とエンジン動力を要しないことに伴い乗り
物の運搬動力は低減され燃費向上になる。
(51) Due to the weight reduction and no need for engine power, the transportation power of the vehicle is reduced and fuel efficiency is improved.

(6)  フロン系冷媒を使わずに冷却能力を取り出す
ことができるので、オゾン層破壊の防止に寄与するとこ
ろ大である。
(6) Since cooling capacity can be extracted without using fluorocarbon-based refrigerants, it greatly contributes to preventing ozone layer depletion.

〔発明の効果〕〔Effect of the invention〕

要するに第1項の発明によれば、吸@荊槽を小型化して
装着の配置の自由度を大きくするとともに冷房能力の増
加を図る省エネルギかつ無公害の吸着式冷却装置を得る
In short, according to the invention set forth in item 1, an energy-saving and pollution-free adsorption cooling device is obtained which reduces the size of the suction tank, increases the degree of freedom in mounting arrangement, and increases the cooling capacity.

第2項の発明によれば、内燃機関の排熱回収量を増加す
ることで吸熱剤の脱着温度を高め、吸着量の呼吸量を増
加し、もって吸着剤単位重量当たりの茶気発生量を増加
し、冷却効果を高め、延いては吸着剤充填量の小型化及
び軽量化を図ることができる。
According to the invention set forth in Item 2, by increasing the amount of exhaust heat recovered from the internal combustion engine, the desorption temperature of the endothermic agent is increased, and the respiration rate of the adsorbed amount is increased, thereby reducing the amount of brown fumes generated per unit weight of the adsorbent. The cooling effect can be increased, and the amount of adsorbent packed can be reduced in size and weight.

第3項の発明によれば、蒸発器の凝縮水を冷却水循環回
路の空気冷却器及び又は冷却水循環回路で冷却される凝
縮器の冷却に使うことで、冷熱の損失防止と空気冷却器
及び又は凝縮器の能力増加を図ることができる。
According to the invention of item 3, by using the condensed water of the evaporator to cool the air cooler of the cooling water circulation circuit and/or the condenser cooled by the cooling water circulation circuit, loss of cold heat can be prevented and the air cooler and/or It is possible to increase the capacity of the condenser.

第4項の発明によれば、吸着剤としてはJIS−A型シ
リカゲル乃至活性アルミナが吸着剤として好適なことが
判明する。
According to the fourth aspect of the invention, it has been found that JIS-A type silica gel or activated alumina is suitable as the adsorbent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す全体系統図、第2図は
第1図の変形例を示す同しく全体系統□  図、第3図
〜第5図は代表的な吸着剤の吸着等基線を示す線図、第
6図は吸着質の呼吸量の比較例を示す線図である。 第7図は公知のフロンガスを使用したカーク−ラージス
テムを′示す系統図、第8図は公知の吸着式カークーラ
ーを示す系統図、第9図は第8図の詳細図である。 100A、100B・・・吸着剤充填槽、101・・・
吸着剤充填槽内の空所、110・・・熱交換部材120
・・・固体吸着剤、130・−・筒状容器、131A、
131B・・・熱媒体供給口、20’0・・・加熱用熱
媒体回路、210・・・機関の冷却水循環回路、211
・・・機関、212・・・ラジェーター、213・・・
分流弁、214−・・ポンプ、215・・・パイピング
、220・・・排気熱交換器、300・・・冷却水循環
回路、310・・・空気冷却器、320・・・ポンプ、
400・・・凝縮器、500・・・凝縮液体貯溜容器、
600・・・蒸発器、601・・・ドレン、610・・
・冷却負荷、611・・・ダクト、612・・・送風機
、700・・・4方切替弁、800・・・密閉循環系形
成手段、810・・・蒸気il路、811・・・絞り弁
、9゜O・・・方向切替弁、1000・・・方向切替弁
、1100・・・水冷媒(吸着質)、 代理人 弁理士 塚 本 正 文 第1図 第2図 第3図 ンリ〃でル−ボ今吸111直°ル會tlc’自する〃)
第4図 水分圧(mmHz) 水分g /ll#HJ ) 第6図 dA       IJ八      1第7図 第β図
Fig. 1 is an overall system diagram showing one embodiment of the present invention, Fig. 2 is an overall system diagram showing a modification of Fig. 1, and Figs. 3 to 5 are representative adsorption system diagrams. A line diagram showing isobase lines, and FIG. 6 is a line diagram showing a comparative example of the respiration rate of adsorbate. FIG. 7 is a system diagram showing a known car-large system using fluorocarbon gas, FIG. 8 is a system diagram showing a known adsorption type car cooler, and FIG. 9 is a detailed diagram of FIG. 100A, 100B...adsorbent filling tank, 101...
Vacant space in the adsorbent filling tank, 110...heat exchange member 120
... solid adsorbent, 130 ... cylindrical container, 131A,
131B... Heat medium supply port, 20'0... Heating heat medium circuit, 210... Engine cooling water circulation circuit, 211
...engine, 212...radiator, 213...
Diversion valve, 214 - pump, 215 - piping, 220 - exhaust heat exchanger, 300 - cooling water circulation circuit, 310 - air cooler, 320 - pump,
400... Condenser, 500... Condensed liquid storage container,
600...Evaporator, 601...Drain, 610...
- Cooling load, 611... Duct, 612... Blower, 700... Four-way switching valve, 800... Closed circulation system forming means, 810... Steam IL path, 811... Throttle valve, 9゜O... Directional switching valve, 1000... Directional switching valve, 1100... Water refrigerant (adsorbent), Agent: Patent attorney Masa Tsukamoto Figure 1 Figure 2 Figure 3 - I'm going to have a 111th meeting tlc' myself)
Figure 4 Water pressure (mmHz) Moisture g/ll#HJ) Figure 6 dA IJ8 1 Figure 7 Figure β

Claims (4)

【特許請求の範囲】[Claims] (1)それぞれ内部に熱媒体流路を有する筒状熱交換部
材110と、同熱交換部材110を空所を存して包囲す
る筒状容器130よりなり空所101を残して熱交換部
材110の周りに粒状多孔性固体吸着剤120を充填し
てなる2基の吸着剤充填槽100A、100Bと、空気
冷却器310を有する冷却水循環回路300に挿入され
た冷媒凝縮器400と、凝縮器400からの凝縮冷媒を
凝縮液体貯溜用容器500を経て導入し冷却負荷610
と熱交換する蒸発器600と、上記各吸着剤充填槽10
0A、100Bの空所101にそれぞれ連通する流路に
挿入された4方切替弁7000と、同4方切替弁700
の他方の流路に挿入された上記凝縮器400、凝縮液体
貯溜用容器500、蒸発器600よりなる循環回路80
0と、上記各吸着剤充填槽100A、100Bの熱媒体
供給口131A、131Bの入口と出口を加熱用熱媒体
回路200と冷却水循環回路300に選択的に並列接続
する各1対の方向切替弁900、1000と、上記循環
回路800内に封入された水冷媒とを具えたことを特徴
とする吸着式冷却装置。
(1) Consisting of a cylindrical heat exchange member 110 each having a heat medium flow path inside, and a cylindrical container 130 surrounding the heat exchange member 110 with a space left, the heat exchange member 110 leaves a space 101. two adsorbent filling tanks 100A and 100B filled with granular porous solid adsorbent 120 around the refrigerant condenser 400 inserted into a cooling water circulation circuit 300 having an air cooler 310; The condensed refrigerant from is introduced through the condensed liquid storage container 500 and the cooling load 610
an evaporator 600 that exchanges heat with the adsorbent filling tank 10;
A four-way switching valve 7000 inserted into a flow path communicating with the spaces 101 of 0A and 100B, and the same four-way switching valve 700.
A circulation circuit 80 comprising the condenser 400, a condensed liquid storage container 500, and an evaporator 600 inserted into the other flow path of the
0, and a pair of directional switching valves that selectively connect in parallel the inlets and outlets of the heat medium supply ports 131A and 131B of each of the adsorbent filling tanks 100A and 100B to the heating heat medium circuit 200 and the cooling water circulation circuit 300. 900, 1000, and a water refrigerant sealed in the circulation circuit 800.
(2)特許請求の範囲第1項の加熱用熱媒体回路200
が自動車等の内燃機関を動力源とし同内燃機関冷却用の
冷却水循環回路210に直列又は並列的に付設された排
気熱交換器220を介して機関冷却水出口温度よりも高
温の加熱用熱媒体を供給するようにしたことを特徴とす
る内燃機関の冷却水を利用する吸着式冷却装置。
(2) Heating heat medium circuit 200 according to claim 1
is powered by an internal combustion engine of an automobile or the like, and is heated through an exhaust heat exchanger 220 that is connected in series or in parallel to a cooling water circulation circuit 210 for cooling the internal combustion engine, and is heated to a heating medium at a temperature higher than the engine cooling water outlet temperature. An adsorption cooling device that uses cooling water for an internal combustion engine, characterized in that the cooling water is supplied from an internal combustion engine.
(3)冷却水循環回路300の空気冷却器310が冷却
空気中に蒸発器600から流出するドレン601と熱交
換するようにしたことを特徴とする特許請求の範囲第1
項乃至第2項記載の吸着式冷却装置。
(3) The air cooler 310 of the cooling water circulation circuit 300 exchanges heat with the drain 601 flowing out from the evaporator 600 into cooling air.
The adsorption cooling device according to items 1 to 2.
(4)水冷媒に対する吸着剤の組み合わせがシリカゲル
又は活性アルミナを選択吸着剤とする特許請求の範囲第
1項、第2項又は第3項記載の吸着式冷却装置。
(4) The adsorption type cooling device according to claim 1, 2, or 3, wherein the adsorbent combination for the water refrigerant is silica gel or activated alumina as the selective adsorbent.
JP2324856A 1990-11-27 1990-11-27 Adsorption cooling device Expired - Lifetime JP2808488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2324856A JP2808488B2 (en) 1990-11-27 1990-11-27 Adsorption cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2324856A JP2808488B2 (en) 1990-11-27 1990-11-27 Adsorption cooling device

Publications (2)

Publication Number Publication Date
JPH04194561A true JPH04194561A (en) 1992-07-14
JP2808488B2 JP2808488B2 (en) 1998-10-08

Family

ID=18170417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2324856A Expired - Lifetime JP2808488B2 (en) 1990-11-27 1990-11-27 Adsorption cooling device

Country Status (1)

Country Link
JP (1) JP2808488B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626727A (en) * 1992-05-13 1994-02-04 Daikin Ind Ltd Adsorption type refrigerating plant
JPH08510045A (en) * 1993-05-11 1996-10-22 ロッキー・リサーチ Improved heat transfer apparatus and method for solid vapor sorption system
US5768908A (en) * 1995-10-05 1998-06-23 Nippondenso Co., Ltd. Adsorption type air conditioning using adsorbent and liquid refrigerant
JP2008111592A (en) * 2006-10-30 2008-05-15 Chiba Univ Chemical heat pump, hybrid refrigeration system using it, and hybrid refrigeration car
WO2011016809A1 (en) * 2009-08-06 2011-02-10 Oxicool, Inc. Air conditioning system
US9513037B2 (en) 2007-04-30 2016-12-06 Oxicool, Inc. Motor cycle air conditioning system
US10240823B2 (en) 2008-06-10 2019-03-26 Oxicool Inc Air conditioning system
CN112078228A (en) * 2020-09-27 2020-12-15 宜昌南玻显示器件有限公司 Membrane separation device and membrane separation method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101360975B1 (en) * 2012-04-19 2014-02-12 대우조선해양 주식회사 Adsorption cooling system using marine engine waste heat
KR101533348B1 (en) * 2012-12-05 2015-07-03 한라비스테온공조 주식회사 Absorption type air conditioning system for automotive vehicles
KR101578492B1 (en) 2013-01-31 2015-12-17 한온시스템 주식회사 Air conditioning system for automotive vehicles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238657A (en) * 1984-05-11 1985-11-27 株式会社クボタ Air conditioner
JPS61143666A (en) * 1984-12-18 1986-07-01 三洋電機株式会社 Chemical heat pump
JPH02272268A (en) * 1989-04-11 1990-11-07 Babcock Hitachi Kk Absorbing type freezing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238657A (en) * 1984-05-11 1985-11-27 株式会社クボタ Air conditioner
JPS61143666A (en) * 1984-12-18 1986-07-01 三洋電機株式会社 Chemical heat pump
JPH02272268A (en) * 1989-04-11 1990-11-07 Babcock Hitachi Kk Absorbing type freezing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626727A (en) * 1992-05-13 1994-02-04 Daikin Ind Ltd Adsorption type refrigerating plant
JPH08510045A (en) * 1993-05-11 1996-10-22 ロッキー・リサーチ Improved heat transfer apparatus and method for solid vapor sorption system
US5768908A (en) * 1995-10-05 1998-06-23 Nippondenso Co., Ltd. Adsorption type air conditioning using adsorbent and liquid refrigerant
JP2008111592A (en) * 2006-10-30 2008-05-15 Chiba Univ Chemical heat pump, hybrid refrigeration system using it, and hybrid refrigeration car
US9513037B2 (en) 2007-04-30 2016-12-06 Oxicool, Inc. Motor cycle air conditioning system
US10240823B2 (en) 2008-06-10 2019-03-26 Oxicool Inc Air conditioning system
WO2011016809A1 (en) * 2009-08-06 2011-02-10 Oxicool, Inc. Air conditioning system
CN112078228A (en) * 2020-09-27 2020-12-15 宜昌南玻显示器件有限公司 Membrane separation device and membrane separation method

Also Published As

Publication number Publication date
JP2808488B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
US7578143B2 (en) Thermal compressive device
Saha et al. Computational analysis of an advanced adsorption-refrigeration cycle
KR930008821B1 (en) Refrigerating system
US5359864A (en) Cooling apparatus
US5845507A (en) Thermal compressive device
US9618238B2 (en) Adsorption refrigerator
JPH11514733A (en) Balance adsorption refrigeration equipment
JPH04194561A (en) Adsorption type cooling apparatus
JP5761205B2 (en) Adsorber and adsorption heat pump
JPH08240357A (en) Adsorption frezeer
WO2012085605A1 (en) Adsorption thermal compressor technology and apparatuses
JPH11223411A (en) Adsorption heat pump
CN102072584B (en) Compact absorption refrigeration device
JP2744712B2 (en) Adsorption cooling device
JP2744714B2 (en) Adsorption cooling device
Critoph Adsorption refrigerators and heat pumps
JP2846134B2 (en) Adsorption cooling device
JPH05118695A (en) Adsorptive cooling device
JPH04292753A (en) Adsorption type cooling device
JP2744713B2 (en) Adsorption cooling device
JPH074776A (en) Adsorption type refrigerator and adsorption type refrigerating machine and its defrosting method
CN202442430U (en) Automobile air conditioning system with solar cooling tubes
JPH05113271A (en) Absorption cooling device
JPH05126430A (en) Adsorption type cooler
JPH05113268A (en) Absorption type cooling device