[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0418934A - Carbonaceous material for reduction of nitrogen oxide - Google Patents

Carbonaceous material for reduction of nitrogen oxide

Info

Publication number
JPH0418934A
JPH0418934A JP2123140A JP12314090A JPH0418934A JP H0418934 A JPH0418934 A JP H0418934A JP 2123140 A JP2123140 A JP 2123140A JP 12314090 A JP12314090 A JP 12314090A JP H0418934 A JPH0418934 A JP H0418934A
Authority
JP
Japan
Prior art keywords
carbon
carbonaceous
spinel
compound
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2123140A
Other languages
Japanese (ja)
Inventor
Takeshi Yoshida
剛 吉田
Hiroaki Kuroki
黒木 裕昭
Tadashi Kesen
気仙 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2123140A priority Critical patent/JPH0418934A/en
Publication of JPH0418934A publication Critical patent/JPH0418934A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a carbonaceous material for reduction of NOx having high activity and SO2 resistance by supporting a spinel type compd. contg. specified metals as a catalytic component on a carbonaceous material. CONSTITUTION:A spinel type compd. represented by a general formula AB2O4 (where A is Cu, Co or Ni and B is Al, Cr, Fe or Co) is supported on a carbonaceous material such as coal or coke. The resulting denitrating agent has high activity to the reduction and removal of NOx and the consumption of carbon by O2 coexisting with NOx is remarkably inhibited. Since the agent has improved SO2 resistance, denitration is stably and effectively carried out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、窒素酸化物還元用炭素材に関し、詳しくは、
0□との反応による炭素の消費が少なく、耐SO2性に
優れており、排ガス処理をはじめとする窒素酸化物の除
去分野に有利に利用することができる脱硝剤である窒素
酸化物還元用炭素材に関〔従来の技術] 近年、炭素(炭素質物質)を還元剤とする脱硝剤を用い
、排ガス中等の窒素酸化物(NOX )を除去する技術
が注目されており、そのための脱硝剤である窒素酸化物
還元用炭素材の開発が進められている。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a carbon material for reducing nitrogen oxides, and in detail,
Nitrogen oxide reducing carbon is a denitration agent that consumes less carbon due to reaction with 0□, has excellent SO2 resistance, and can be advantageously used in the field of nitrogen oxide removal such as exhaust gas treatment. Regarding materials [Conventional technology] In recent years, a technology that uses denitrification agents that use carbon (carbonaceous materials) as a reducing agent to remove nitrogen oxides (NOX) from exhaust gas has been attracting attention. Development of a carbon material for reducing nitrogen oxides is underway.

この炭素を還元剤とするNOつの除去技術においては、
排ガス等の被処理ガスを触媒成分を担持していない炭素
質物質と400″C以上の高温で接触させる方法と、触
媒成分を担持した炭素質物質と400°C以下という比
較的低温で接触させる方法がある。これらのうち、後者
の方法が熱的にも有利であることから実用性が高く、担
持する触媒成分の種類の違いや担持される炭素質物質の
違い、あるいは調製方法の違い等に応じて、各種の窒素
酸化物還元用炭素材が提案されてきている。
In this NO removal technology that uses carbon as a reducing agent,
A method in which a gas to be treated such as exhaust gas is brought into contact with a carbonaceous material that does not support a catalyst component at a high temperature of 400"C or more, and a method in which a gas to be treated such as exhaust gas is brought into contact with a carbonaceous material that supports a catalyst component at a relatively low temperature of 400"C or less. Among these methods, the latter method is more practical because it is thermally advantageous, and there are differences in the type of supported catalyst components, differences in supported carbonaceous materials, and differences in preparation methods. Various carbon materials for reducing nitrogen oxides have been proposed depending on the situation.

従来のこの種の窒素酸化物還元用炭素材においては、担
体兼還元剤となる炭素質物質として石炭、木炭、活性炭
等の各種の炭素材料やその加工品が用いられており、一
方、こうした炭素質物質に担持する触媒成分としては、
従来、K等のアルカリ金属やCu等の遷移金属の硝酸塩
、炭酸塩、酢酸塩、水酸化物といった化合物が用いられ
てきた(特開昭54−1.61582号公報、同58−
79522号公報、同5E179523号公報、同62
193633号公報、特公昭47−50981号公報、
同47−50982号公報等)。
In conventional carbon materials for reducing nitrogen oxides of this type, various carbon materials such as coal, charcoal, and activated carbon, as well as their processed products, are used as carbonaceous materials that serve as carriers and reducing agents. The catalyst component supported on the substance is
Conventionally, compounds such as nitrates, carbonates, acetates, and hydroxides of alkali metals such as K and transition metals such as Cu have been used (JP-A-54-1.61582, JP-A No. 58-58).
Publication No. 79522, Publication No. 5E179523, Publication No. 62
Publication No. 193633, Japanese Patent Publication No. 47-50981,
Publication No. 47-50982, etc.).

しかしながら、これら従来のアルカリ金属又は遷移金属
化合物を担持した窒素酸化物還元用炭素材において、■
排ガス等の被処理ガス中に共存する02による炭素(炭
素質物質)の消費が多い;■SO□による被毒を受けや
すいなどの問題点があった。
However, in these conventional carbon materials for nitrogen oxide reduction supporting alkali metal or transition metal compounds,
There were problems such as large consumption of carbon (carbonaceous material) by 02 coexisting in the gas to be treated such as exhaust gas; ■susceptibility to poisoning by SO□.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、前記事情を鑑みてなされたものである。 The present invention has been made in view of the above circumstances.

本発明の目的は、前記問題点を解決し、窒素酸化物(N
OX >の還元除去活性が高い触媒成分含有窒素酸化物
還元用炭素材であって、しかも、排ガス等の被処理ガス
中に共存する02による炭素(炭素質物質)の消費が著
しく抑制されており、また、耐SO2性が著しく向上し
ているなどの優れた性能を有する実用上著しく有利な脱
硝剤である窒素酸化物還元用炭素材を提供することにあ
る。
The purpose of the present invention is to solve the above problems and to
This is a carbon material for reducing nitrogen oxides containing a catalyst component with high reduction removal activity of OX>, and in addition, the consumption of carbon (carbonaceous substances) by 02 coexisting in the gas to be treated such as exhaust gas is significantly suppressed. Another object of the present invention is to provide a carbon material for reducing nitrogen oxides, which is a practically advantageous denitration agent having excellent performance such as significantly improved SO2 resistance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、前記目的を達成すべく、鋭意研究を重ね
た結果、各種の炭素質物質(炭素又は炭素を主成分とす
る炭素材)に、触媒成分として特定の金属からなるスピ
ネル型化合物という特定の成分が担持された窒素酸化物
還元用炭素材が、前記目的を満足する優れた脱硝剤であ
ることを見出し、その知見に基づいて本発明を完成する
に至った。
In order to achieve the above object, the present inventors have conducted intensive research and found that various carbonaceous materials (carbon or carbonaceous materials containing carbon as a main component) have a spinel-type compound consisting of a specific metal as a catalyst component. The inventors have discovered that a carbon material for reducing nitrogen oxides on which a specific component is supported is an excellent denitration agent that satisfies the above objectives, and based on this knowledge, the present invention has been completed.

すなわち、本発明は、次の一般式 %式%(1) (ただし、式(1)中のAはCu、 Go又はNiを表
し、Bは旧、Cr、 Fe又はCOを表す。)で表され
るスピネル型化合物が炭素質物質に担持されていること
を特徴とする窒素酸化物還元用炭素材をIπ供するもの
である。
That is, the present invention has the following general formula: This invention provides a carbon material for reducing nitrogen oxides, which is characterized in that a spinel type compound is supported on a carbonaceous material.

以下、本発明の窒素酸化物還元用炭素材について、その
好適な調製法を示しながら、詳細に説明する。
Hereinafter, the carbon material for reducing nitrogen oxides of the present invention will be described in detail while showing a suitable method for preparing it.

本発明の窒素酸化物還元用炭素材において、前記スピネ
ル型化合物が担持される前記炭素質物質の調製原料(以
下、これを炭素質原料と称すことがある。)としては、
NOxの還元剤として使用可能な炭素若しくは炭素を主
成分とするものであれば、通常この分野で使用されるも
のなど各種のものを使用することができる。具体的には
、例えば、亜炭、褐炭等の石炭類及び石炭類の加工品(
例えば、コークス、カーボンブラック、チャー、活性炭
等)、石油系炭素材料(例えば、石油コークス、カーボ
ンブラック、チャー、活性炭、樹脂炭化物等)、植物系
炭素材料(例えば、木炭及びその加工品、各種の活性炭
等)、動物系炭素材料などを挙げることができる。これ
らは、1種単独で用いてもよいし、2種以上を併用して
もよい。
In the carbon material for reducing nitrogen oxides of the present invention, the raw material for preparing the carbonaceous material on which the spinel type compound is supported (hereinafter, this may be referred to as a carbonaceous raw material) includes:
As long as it is carbon that can be used as a NOx reducing agent or has carbon as its main component, various materials such as those commonly used in this field can be used. Specifically, for example, coals such as lignite and brown coal, and processed products of coals (
(e.g., coke, carbon black, char, activated carbon, etc.), petroleum-based carbon materials (e.g., petroleum coke, carbon black, char, activated carbon, resin carbide, etc.), plant-based carbon materials (e.g., charcoal and its processed products, various (activated carbon, etc.), animal-based carbon materials, etc. These may be used alone or in combination of two or more.

前記スピネル型化合物を担持させるべく使用に供する前
記炭素質原料の形状としては特に制限はないが、取り扱
い易さ、担持されるスピネル型化合物の分散性等の観点
から、通常、平均粒径が1011ITo以下の粒状ある
いは粉末状のものが望ましい。
There is no particular restriction on the shape of the carbonaceous raw material used to support the spinel compound, but from the viewpoint of ease of handling, dispersibility of the spinel compound to be supported, etc., the average particle size is usually 1011 ITo. The following granular or powder forms are preferable.

なお、粉末状若しくは微粒子状のものに前記スピネル型
化合物若しくはその原料成分を担持した後、これを適当
な形状に成形することにより、触媒となるスピネル型化
合物の均一分散性を著しく向上させることもできる。
In addition, by supporting the spinel type compound or its raw material components on powder or fine particles and then molding it into an appropriate shape, the uniform dispersibility of the spinel type compound serving as a catalyst can be significantly improved. can.

本発明の窒素酸化物還元用炭素材は、前記炭素質物質に
少なくとも前記一般式〔1〕すなわち、AB20.で表
されるスピネル型化合物(複合酸化物)が担持されてい
ることが重要である。
The nitrogen oxide reducing carbon material of the present invention has at least the above general formula [1], that is, AB20. It is important that the spinel type compound (complex oxide) represented by is supported.

このAB、04におけるAは、前記したようにCu、C
o又はNiであるが、これらの中でも特にCu及びC。
As mentioned above, A in AB, 04 is Cu, C
o or Ni, but especially Cu and C.

が好ましい。なお、これらの金属元素のうちの2種以上
がAB20.におけるAとして混在していてもよい。
is preferred. Note that two or more of these metal elements are AB20. may be mixed as A in .

前記AB、04におけるBは、前記したようにAI、C
r、 Fe又はCoである。なお、これらの金属元素の
うちの2種以上が八B204におけるBとして混在して
いてもよい。
AB, B in 04 is AI, C as described above.
r, Fe or Co. Note that two or more of these metal elements may be mixed as B in 8B204.

前記スピネル型化合物(ABz04)の具体例としては
、例えば、C0Al2O4、C0Al2O4、N1Ah
O4、CuCrzOa 、CoCrzOa 、N1Cr
zOs 、CuFezO4、CoFe、Oa 、N1F
ezC14、CuCo、Oa 、N1CozO4などを
挙げることができる。これらの中でも、特にCuAlz
On、CuC0zOn 、CuFezO4、CoFez
Oaなどが好ましい。
Specific examples of the spinel compound (ABz04) include C0Al2O4, C0Al2O4, N1Ah
O4, CuCrzOa, CoCrzOa, N1Cr
zOs, CuFezO4, CoFe, Oa, N1F
Examples include ezC14, CuCo, Oa, N1CozO4, and the like. Among these, especially CuAlz
On, CuC0zOn, CuFezO4, CoFez
Oa etc. are preferable.

一般にABZO,型のスピネル型化合物は、そのA又は
Bの一部が、ほかの元素に置換されたり、あるいは欠陥
となるなどの変形を住じる場合があるが、本発明におけ
るスピネル型化合物においても、本発明の目的に支障の
ない範囲で、A又はBの一部が、それぞれ前記以外の元
素によって置換されたり、欠陥となっているものであっ
てもよい。
Generally, ABZO type spinel compounds may have deformations such as a part of A or B being substituted with another element or becoming defective, but in the spinel compound of the present invention, Also, a part of A or B may be substituted with an element other than the above, or may be defective, within a range that does not impede the purpose of the present invention.

なお、これらのスピネル型化合物は、1種単独で担持さ
れていてもよく、2種以上が担持されていてもよい。
In addition, these spinel type compounds may be supported singly or in combination of two or more types.

本発明の窒素酸化物還元用炭素材において、前記スピネ
ル型化合物の担持率は、そのスピネル型化合物の種類等
のほかの条件によるので一様に規定することができない
が、通常、0.5〜50重量%、好ましくは1〜20重
量%の範囲↓こ設定するのが適当である。この担持率が
あまり低いと、十分な触媒性能を確保することができず
、一方、あまり高すぎるとNOXの還元剤となる炭素質
物質の割合が低くなるので、効率が低下する。
In the carbon material for reducing nitrogen oxides of the present invention, the supporting rate of the spinel type compound cannot be uniformly defined because it depends on other conditions such as the type of the spinel type compound, but it is usually 0.5 to 0. It is appropriate to set the content to 50% by weight, preferably in the range of 1 to 20% by weight. If this loading rate is too low, sufficient catalytic performance cannot be ensured, while if it is too high, the ratio of carbonaceous material that serves as a NOx reducing agent will be low, resulting in a decrease in efficiency.

また、本発明の窒素酸化物還元用炭素材における前記炭
素質物質には、本発明の目的に支障のない範囲で、前記
スピネル型化合物以外のほかの触媒成分や助触媒成分等
のほかの成分を担持させることもできる。
In addition, the carbonaceous substance in the carbon material for reducing nitrogen oxides of the present invention may contain other components other than the spinel compound, such as catalyst components and co-catalyst components, to the extent that it does not impede the purpose of the present invention. can also be carried.

前記スピネル型化合物を担持する方法としては、特に制
限はなく、例えば、(a)予め形成したあるいは用意し
た所定のスピネル型化合物を前記炭素質物質となる炭素
質原料に担持する方法、(b)所定のスピネル型化合物
の原料化合物を前記炭素質物質上こ担持し、その後の調
製過程のいずれかの段階(通常、焼成段階)において、
炭素質物質上にスピネル型化合物を形成せしめる方法、
あるいはこれらの組み合わせ法などを適宜採用すること
ができる。
There are no particular limitations on the method of supporting the spinel compound, and examples include (a) a method of supporting a predetermined spinel compound formed or prepared in advance on the carbonaceous raw material that becomes the carbonaceous material; (b) A raw material compound for a predetermined spinel type compound is supported on the carbonaceous material, and in any stage of the subsequent preparation process (usually the firing stage),
A method for forming a spinel compound on a carbonaceous material,
Alternatively, a combination of these methods can be adopted as appropriate.

上記の(a)の方法を採用する場合には、担持に供する
スピネル型化合物として、通常、粉末状のものが好適に
使用される。この粉末の大きさは、分散性の向上の観点
から小さい方が望ましく、通常、10μm以下、好まし
くは1μm以下のものが好適である。こうしたスピネル
型化合物を担持する方法としては、特に制限はないが、
通常は、上記のスピネル型化合物粉末を前記炭素質原料
、好ましくは粉末状の炭素質原料とを混練する混練方法
などが好適に採用することができる。
When the above method (a) is employed, a powdered spinel compound is usually suitably used as the spinel compound for supporting. The size of this powder is desirably small from the viewpoint of improving dispersibility, and is usually 10 μm or less, preferably 1 μm or less. There are no particular restrictions on the method of supporting these spinel compounds, but
Usually, a kneading method in which the spinel type compound powder described above is kneaded with the carbonaceous raw material, preferably a powdered carbonaceous raw material, etc. can be suitably employed.

一方、前記ら)の担持方法を採用する場合、所定のスピ
ネル型化合物(ABzOs )の原料となるそれぞれの
化合物すなわち金属Aの化合物(化合物A)と金属Bの
化合物(化合物B)の混合物若しくは組成物(AとBの
複合化合物でもよい。)、好ましくは所定のスピネル型
化合物の構成成分となる各々の金属イオンを含有する混
合水溶液を前記所定の炭素質原料に含浸法あるいは混練
法等によって担持する方式、あるいは、化合物Aと化合
物B、好ましくは金属Aからなる適当なイオンを含有す
る水溶液と金属Bからなる適当なイオンを含有する水溶
液を、所定の炭素質原料に別々乙こ(逐次的に)含浸又
は混練法等によって担持する方式、あるいは、上記を組
み合わせた担持方式などを用い、所定の成分を担持後、
その後の焼成工程において、炭素質物質上にスピネル型
化合物を形成する方法など各種の方法が採用可能である
On the other hand, when adopting the supporting method mentioned above, the respective compounds that are the raw materials for the predetermined spinel type compound (ABzOs), that is, a mixture or composition of a compound of metal A (compound A) and a compound of metal B (compound B), are used. A mixed aqueous solution containing a compound (a composite compound of A and B may also be used), preferably each metal ion constituting a predetermined spinel type compound, is supported on the predetermined carbonaceous raw material by an impregnation method, a kneading method, etc. Alternatively, an aqueous solution containing appropriate ions consisting of compound A and compound B, preferably metal A, and an aqueous solution containing appropriate ions consisting of metal B are separately added to a predetermined carbonaceous raw material (sequentially). 2) After supporting the predetermined components using a method of supporting such as impregnation or kneading, or a method of supporting using a combination of the above,
In the subsequent firing step, various methods can be employed, such as a method of forming a spinel type compound on the carbonaceous material.

スピネル型化合物の原料として使用する前記へ又はBの
化合物としては、前記例示のそれぞれの金属の、硝酸塩
、炭酸塩、酢酸塩、シュウ酸塩等の塩類などを挙げるこ
とができる。
Examples of the compounds listed above and B used as raw materials for spinel-type compounds include salts such as nitrates, carbonates, acetates, and oxalates of the respective metals listed above.

具体的には、化合物への好適な例として、例えば、硝酸
w4(II)、硝酸コハル)(II)、硝酸ニッケル(
■)、硝酸鉄(■)、酢酸銅(■)、酢酸コバルト(I
I)、酢酸ニンケル(II)などを挙げることができ、
化合物Bの好適な例としては、例えば、硝酸アルミニウ
ム、硝酸コバル) (III)、硝酸クロム(■)、硝
酸鉄(■)、酢酸コノλルト(■)、酢酸クロム(II
I)などを挙げることができる。
Specifically, suitable examples of compounds include nitric acid w4 (II), nitrate w4 (II), nickel nitrate (II), nickel nitrate (
■), iron nitrate (■), copper acetate (■), cobalt acetate (I
I), nickel(II) acetate, etc.
Suitable examples of compound B include aluminum nitrate, cobal nitrate (III), chromium nitrate (■), iron nitrate (■), conolate acetate (■), and chromium acetate (II).
I), etc.

これらの中でも、特にそれぞれの硝酸塩が好ましい。Among these, each nitrate is particularly preferred.

担持する各成分の割合は、通常、原子比A/Bが1/2
付近になるように選定するのが好ましいが、これに限定
されるものではなく、所定のスピネル型化合物が十分な
量形成されるならばいずれか一方が過剰になってもかま
わない。
The ratio of each component supported is usually an atomic ratio of A/B of 1/2.
Although it is preferable to select the amounts so that they are close to each other, the present invention is not limited to this, and as long as a sufficient amount of the predetermined spinel type compound is formed, one or the other may be in excess.

以上のようにして所定の成分を担持した後、必要に応じ
て、得られた担持物を所望の形状に成形する。成形手法
としては、特に制限はなく、公知の手法等の各種の手法
を用いて行うことができる。
After the predetermined components are supported as described above, the obtained supported material is molded into a desired shape, if necessary. The molding method is not particularly limited, and various methods such as known methods can be used.

成形前に、担持物を成形するのにふされしいように適宜
乾燥させたり、水分を調整してもよい。
Before molding, the carrier may be dried or its moisture content may be adjusted to make it suitable for molding.

前記炭素質原料として、粉末若しくは微粒子状のものを
用いた場合など、得られた担持物が粉末状若しくは微粒
子状の場合には、通常、水や油、樹脂等の適当なバイン
ダーを加えて、例えば、押出成形法、攪拌造粒法、転勤
造粒法等の成形手法を用いて成形するのが好適である。
When the carbonaceous raw material is a powder or fine particles, and the obtained support is in the form of powder or fine particles, an appropriate binder such as water, oil, or resin is usually added. For example, it is suitable to mold using a molding method such as an extrusion molding method, an agitation granulation method, or a transfer granulation method.

バインダーの使用量は、炭素質原料、バインダーの種類
、成形手法等によっても異なるが、おおむね炭素質成分
に対して0.5〜50重量%重量%節囲に選定するのが
適当である。
The amount of the binder to be used varies depending on the carbonaceous raw material, the type of binder, the molding method, etc., but it is generally appropriate to select it in the range of 0.5 to 50% by weight based on the carbonaceous component.

成形体の大きさは、通常、0.5〜15髄程度の大きさ
のものが望ましいが、これに限定されるものではない。
The size of the molded body is usually preferably about 0.5 to 15 mm, but is not limited to this.

すなわち、本発明の窒素酸化物還元用炭素材の形状及び
大きさは、特に制限はなく、これを使用する反応装置、
反応操作、反応方式等によって適宜定めればよい。例え
ば、本発明の窒素酸化物還元用炭素材を移動床等の流動
状態で使用する場合には、通常、0.5 mm程度〜数
閣程度の粒径のもの(好ましくは球形状のもの)などが
好適に使用できる。こうした球形状のものは、前記造粒
による成形手法によって容易に得ることができる。
That is, the shape and size of the carbon material for reducing nitrogen oxides of the present invention are not particularly limited, and the reaction apparatus using the same,
It may be determined as appropriate depending on the reaction operation, reaction method, etc. For example, when the carbon material for reducing nitrogen oxides of the present invention is used in a fluidized state such as in a moving bed, the particle size is usually about 0.5 mm to about 100 mm (preferably spherical). etc. can be suitably used. Such a spherical shape can be easily obtained by the above-mentioned granulation molding method.

なお、適当な形状の炭素質原料に前記所定の成分を担持
して得た担持物に対しては、こうした成形操作は、省略
することができる。
Note that such a molding operation can be omitted for a supported material obtained by supporting the above-mentioned predetermined components on a carbonaceous raw material having an appropriate shape.

また、適当な大きさに成形されるならば、炭素質原料や
担持物に対して、必要に応じて適宜粉砕や分級操作を施
してもよい。
Further, if the carbonaceous raw material and the supported material are formed into an appropriate size, the carbonaceous raw material and the supported material may be subjected to appropriate pulverization or classification operations as necessary.

以上のようにして得られた適当な形状及び大きさの担持
物は、必要に応じて乾燥した後、焼成処理を施して本発
明の窒素酸化物還元用炭素材として仕上げられる。
The supported material having an appropriate shape and size obtained as described above is dried if necessary and then subjected to a firing treatment to be finished as the carbon material for reducing nitrogen oxides of the present invention.

この乾燥は、その方法としては特に制限はなく、各種の
方法によってなすことができるが、工程の簡略化等の点
から、次の焼成処理に先駆けて焼成炉中で行うのが効率
的である。
There are no particular restrictions on the method for this drying, and various methods can be used, but from the standpoint of simplifying the process, it is efficient to carry out this drying in a firing furnace prior to the next firing process. .

この焼成処理は、前記所定の担持物を、例えば乾留炉等
の不活性雰囲気が実現できる焼成器中に入れ、必要に応
じて乾燥後、通常、窒素、アルゴン、ヘリウム等の不活
性ガス雰囲気若しくは気流中あるいは真空排気状態にお
いて、好ましくは窒素気流中において、下記に示すよう
な適当な条件で実施すればよい。
In this firing process, the predetermined support is placed in a firing device capable of realizing an inert atmosphere, such as a carbonization furnace, and after drying if necessary, it is usually placed in an inert gas atmosphere such as nitrogen, argon, helium, etc. It may be carried out under appropriate conditions as shown below, in an air stream or in a vacuum evacuation state, preferably in a nitrogen stream.

なお、この焼成処理を不活性ガス等の不活性雰囲気で行
うのは、炭素質成分の燃焼等により避けるためであるの
で、このことが満足されるならば、種々の雰囲気で実施
することができる。
The reason why this firing treatment is performed in an inert atmosphere such as an inert gas is to avoid combustion of carbonaceous components, so if this is satisfied, it can be performed in various atmospheres. .

この焼成条件は、担持した触媒成分がまだスピネル型化
合物となっていない場合とスピネル型化合物として担持
しである場合によって、−Cに異なる。
The firing conditions differ depending on whether the supported catalyst component has not yet become a spinel type compound or whether it is supported as a spinel type compound.

前者の場合には、この焼成は、担持したスピネル型化合
物の原料成分からスピネル型化合物が有効に形成される
温度等の条件において実施される。
In the former case, the calcination is carried out under conditions such as a temperature at which the spinel type compound is effectively formed from the supported spinel type compound raw material components.

スピネル型化合物を有効に形成せしめつつ行う焼成の温
度は、通常、700〜1000°C程度、好ましくは8
00〜900°Cである。この温度があまり低すぎると
触媒原料成分のスピネル型化合物への転化が十分に行わ
れず、その場合、得られた窒素酸化物還元用炭素材がN
OXの還元活性を有していたとしても、0□の共存化で
はその02による炭素X物質の燃焼の抑制効果が十分に
得られず、また耐SO□性の改善効果も十分に得られな
い。
The temperature of firing while effectively forming a spinel type compound is usually about 700 to 1000°C, preferably 8°C.
00-900°C. If this temperature is too low, the catalyst raw material component will not be sufficiently converted into a spinel type compound, and in that case, the obtained carbon material for reducing nitrogen oxides will be
Even if it has OX reduction activity, the coexistence of 0□ does not sufficiently suppress the combustion of carbon X substances by 02, nor does it sufficiently improve SO□ resistance. .

一方、触媒成分として前記スピネル型化合物を前記炭素
質原料に担持して得た担持物(すなわち、前記(a)の
担持方式で得た担持物)等の所定のスピネル型化合物が
既に担持されている担持物に対しては、スピネル型化合
物を形成することに注目した焼成処理は、必ずしも必要
としないのであるが、この場合においても、窒素酸化物
還元用炭素材の硬度等の機械的強度や耐摩耗性の向上な
どの点から、上記同様の温度範囲で焼成を行うことが望
ましい。
On the other hand, a predetermined spinel type compound such as a supported material obtained by supporting the spinel type compound on the carbonaceous raw material (i.e., a supported material obtained by the supporting method of (a)) as a catalyst component is already supported. However, in this case as well, the mechanical strength such as hardness of the carbon material for reducing nitrogen oxides and the From the viewpoint of improving wear resistance, it is desirable to perform the firing in the same temperature range as above.

上記のいずれの焼成処理においても、焼成温度があまり
高すぎると触媒活性が低下したり、炭素質物質の還元性
能が低下することがある。
In any of the above-mentioned calcination treatments, if the calcination temperature is too high, the catalytic activity may decrease or the carbonaceous material reduction performance may decrease.

上記のどちらの焼成処理に対しても、焼成時間は、温度
や触媒成分の種類等によって異なるが、通常1〜10時
間程度、好ましくは2〜5時間程度とするのが適当であ
る。
For both of the above firing treatments, the firing time varies depending on the temperature, the type of catalyst component, etc., but is usually about 1 to 10 hours, preferably about 2 to 5 hours.

なお、これらの焼成処理は、前記温度範囲での焼成に先
駆けて、例えば、200〜500°C程度といった比較
的低温での予備焼成を行うなど段階的、あるいは連続的
な種々の温度モートで行ってもよい。こうした比較的低
温での予備焼成を行うことにより、担持物中の低沸点成
分や熱分解成分を比較的低温のうちに有効に除去するこ
とができるので、窒素酸化物還元用炭素材における触媒
性能をより一層向上させることができるなどの効果が得
られることがある。
These firing treatments may be performed in stages or continuously at various temperature modes, such as pre-firing at a relatively low temperature of about 200 to 500°C, prior to firing in the above temperature range. You can. By performing pre-calcination at a relatively low temperature, low boiling point components and thermal decomposition components in the support can be effectively removed at a relatively low temperature, resulting in improved catalytic performance in carbon materials for reducing nitrogen oxides. Effects such as being able to further improve the results may be obtained.

以上のようにして、所望の形状を有する本発明の窒素酸
化物還元用炭素材(脱硝剤)を好適に製造することがで
きる。
In the manner described above, the carbon material for reducing nitrogen oxides (denitration agent) of the present invention having a desired shape can be suitably produced.

本発明の窒素酸化物還元用炭素材は、少なくとも前記ス
ピネル型化合物の触媒作用を利用し、少なくともその炭
素(炭素質物質)を還元剤としてN0X(NOやNO□
等)を有効に還元除去する高活性脱硝剤であり、その上
、0□の共存化でもその0□による炭素(炭素質物質)
の燃焼による消費が著しく抑制されており、また、耐S
O2性も著しく改善されているなどの利点を有している
実用上著しく有用な脱硝剤であり、したがって、特に0
□やSO2が共存する排ガス等の脱硝処理に対しても安
定にかつ有効に利用することができる。もちろん、本発
明の窒素酸化物還元用炭素材は、これに限らず、各種の
排ガスのNOX含有ガスの脱硝剤としても好適に利用す
ることができる。
The carbon material for reducing nitrogen oxides of the present invention utilizes at least the catalytic action of the spinel compound, and uses at least the carbon (carbonaceous material) as a reducing agent to reduce NOX (NO and NO□).
It is a highly active denitrification agent that effectively reduces and removes carbon (carbonaceous substances) due to the coexistence of 0□.
Consumption by combustion is significantly suppressed, and S-resistant
It is a practically extremely useful denitrification agent that has the advantage of significantly improved O2 properties, and therefore, it is especially
It can also be stably and effectively used for denitrification treatment of exhaust gas, etc. in which □ and SO2 coexist. Of course, the carbon material for reducing nitrogen oxides of the present invention is not limited to this, and can be suitably used as a denitrification agent for NOX-containing gases of various exhaust gases.

本発明の窒素酸化物還元用炭素材を、こうした脱硝剤と
して利用する際の反応条件は、触媒成分や炭素質物質の
特性(炭素質原料の種類)等によって異なるが、本発明
の窒素酸化物還元用炭素材は、通常は、従来のこの種の
触媒成分含有窒素酸化物還元用炭素材と同様に、例えば
、400°C前後、あるいはそれ以下の温度といった比
較的温和な条件で好適に使用することができる。
The reaction conditions when using the carbon material for reducing nitrogen oxides of the present invention as such a denitration agent vary depending on the catalyst components and the characteristics of the carbonaceous material (type of carbonaceous raw material). The reducing carbon material is usually suitably used under relatively mild conditions, for example, at a temperature of around 400°C or lower, similar to the conventional carbon material for reducing nitrogen oxides containing a catalyst component of this type. can do.

〔実施例〕〔Example〕

次に、本発明を実施例及び比較例によって、更に詳細に
説明するが、本発明は、これらの実施例に限定されるも
のではなく、本発明の思想を逸脱しない範囲で種々の変
形及び応用が可能である。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited to these Examples, and various modifications and applications can be made without departing from the spirit of the present invention. is possible.

実施例1 硝酸銅145g及び硝酸アルミニウム349gをIPの
水に熔解したものに重版の活性炭(比表面積1000n
(/g)1kgを浸漬し、芸発乾固したものを窒素気流
中800 ’Cで2時間焼成し、本発明の窒素酸化物還
元用炭素材(脱硝剤)を得た。
Example 1 145 g of copper nitrate and 349 g of aluminum nitrate were dissolved in IP water, and activated carbon (specific surface area: 1000 n) was added to the solution.
(/g) was immersed and dried to dryness, which was then calcined at 800'C for 2 hours in a nitrogen stream to obtain a carbon material for reducing nitrogen oxides (denitration agent) of the present invention.

このときX線回折により、触媒がスピネル型構造(Cu
CozOa )となっていることを確認した。
At this time, X-ray diffraction revealed that the catalyst had a spinel structure (Cu
CozOa).

二のもの20ccを固定床流通式マイクロリアクターに
入れ380°Cでの脱硝性能を調べた。NO8の分析に
は化学感光式窒素酸化物分析酊を用いC01CO2の分
析にはガスクロマトグラフを用いた。なお、脱硝反応に
おけるガス組成はNO= 300 ppm、0□−3%
、SO□−oppm、窒素バランスとし、空間速度(S
V)は1500 h−1とした。
20 cc of the second product was placed in a fixed bed flow microreactor and its denitrification performance at 380°C was investigated. A chemiphotographic nitrogen oxide analyzer was used for the analysis of NO8, and a gas chromatograph was used for the analysis of CO1CO2. In addition, the gas composition in the denitrification reaction is NO = 300 ppm, 0□-3%
, SO□-oppm, nitrogen balance, and space velocity (S
V) was set to 1500 h-1.

結果を第1表に示す。The results are shown in Table 1.

比較何重 硝酸銅145g及び硝酸アルミニウム450gを用いて
実施例1と同様に製造評価を行った。ただし焼成温度は
500°Cとした。このときX線回折にはスピネル型構
造は確認されず、触媒は2種類の単純酸化物の混合物で
あった。
Manufacturing evaluation was conducted in the same manner as in Example 1 using 145 g of comparative multilayer copper nitrate and 450 g of aluminum nitrate. However, the firing temperature was 500°C. At this time, no spinel structure was confirmed by X-ray diffraction, and the catalyst was a mixture of two types of simple oxides.

結果を第1表に示す。The results are shown in Table 1.

第1表に示すようにSO2のない条件では、本発明によ
らなくても触媒寿命はあるが、本発明の脱硝剤(窒素酸
化物還元用炭素材)の場合、炭素消費率の面で大幅に改
善されていることがわかる。
As shown in Table 1, under conditions without SO2, the catalyst has a long life even without the use of the present invention, but in the case of the denitrification agent (carbon material for reducing nitrogen oxides) of the present invention, the carbon consumption rate is significantly reduced. It can be seen that this has been improved.

第1表 実施例2 実施例1で用いたものと同し脱硝剤を用いて、ガス組成
を、NO= 300 ppm 、Oz= 3%、SO□
−3ooppm、窒素バランスとした以外は同様にして
反応を行い脱硝性能を評価した。
Table 1 Example 2 Using the same denitrification agent as that used in Example 1, the gas composition was changed to NO = 300 ppm, Oz = 3%, SO□
The reaction was carried out in the same manner except that the nitrogen balance was -3ooppm and the denitrification performance was evaluated.

結果を第2表に示す。The results are shown in Table 2.

1脱硝率=(1−出ロNOX濃度/入ロ濃度)×100
(この値が小さいほど性能がよい。) 実施例3 硝酸銅145g及び硝酸コバルト450gを用いたほか
は、実施例1と同様にして脱硝剤を調製し、これを用い
て実施例2と同様にして評価を行った。
1 Denitrification rate = (1 - Outgoing NOx concentration / Incoming NOx concentration) x 100
(The smaller this value is, the better the performance is.) Example 3 A denitration agent was prepared in the same manner as in Example 1, except that 145 g of copper nitrate and 450 g of cobalt nitrate were used. We conducted an evaluation.

結果を第2表に示す。The results are shown in Table 2.

実施例4 硝酸銅45g及び硝酸鉄438gを用いたほかは、実施
例1と同様にしてCuFezOa含を脱硝剤を調製し、
これを用いて実施例2と同様に評価を行った。
Example 4 A denitration agent containing CuFezOa was prepared in the same manner as in Example 1 except that 45 g of copper nitrate and 438 g of iron nitrate were used.
Evaluation was performed in the same manner as in Example 2 using this.

結果を第2表に示す。The results are shown in Table 2.

第2表 比較例2 比較例】で用いたスピネル化合物を含有しない従来型の
脱硝剤を用いて実施例2と同様にして評価を行った。
Table 2 Comparative Example 2 Evaluation was carried out in the same manner as in Example 2 using the conventional denitration agent that did not contain the spinel compound used in Comparative Example.

(以下余白) 第2表に示すようにSO□存在下においおでは、従来型
の脱硝剤は速やかに劣化するのに対して、本発明の脱硝
剤は、その寿命が著しく改善されていることがわかる。
(Left below) As shown in Table 2, conventional denitrification agents deteriorate rapidly in the presence of SO□, whereas the denitrification agent of the present invention has a significantly improved lifespan. I understand.

すなわち、本発明のスピネル化合物含有脱硝剤は、SO
□存在下におい≠でも長時間触媒性能を持続しうること
かわかる。
That is, the spinel compound-containing denitrification agent of the present invention has SO
□It can be seen that the catalyst performance can be maintained for a long time even in the presence of odor≠.

〔発明の効果〕〔Effect of the invention〕

本発明によると、炭素又は炭素を主成分とする炭素質物
質に、特定の金属元素からなるスピネル型化合物という
特定の触媒成分が担持されているので、窒素酸化物(N
OX )の還元除去に対して高い活性を有している上に
、0□の共存化でもその02による炭素(炭素質物質)
の燃焼による消費が著しく抑制されており、また、耐S
O2性も著しく改善されているなどの優れた性能を有し
ており、特に02やSO□が共存する排ガス等の脱硝処
理に対しても安定にかつ有効に利用することができると
いう利点を有する実用上著しく有利な脱硝剤である窒素
酸化物還元用炭素材を提供することができる。
According to the present invention, since a specific catalyst component called a spinel type compound made of a specific metal element is supported on carbon or a carbonaceous material mainly composed of carbon, nitrogen oxides (N
In addition to having high activity for the reduction and removal of OX ), even when 0□ coexists, carbon (carbonaceous material) due to 0
Consumption by combustion is significantly suppressed, and S-resistant
It has excellent performance such as significantly improved O2 properties, and has the advantage of being able to be stably and effectively used for denitration treatment of exhaust gas, etc. where 02 and SO□ coexist. It is possible to provide a carbon material for reducing nitrogen oxides which is a practically advantageous denitration agent.

Claims (1)

【特許請求の範囲】 1、次の一般式 AB_2O_4〔 I 〕 (ただし、式〔 I 〕中のAはCu、Co又はNiを表
し、BはAl、Cr、Fe又はCoを表す。)で表され
るスピネル型化合物が炭素質物質に担持されていること
を特徴とする窒素酸化物還元用炭素材。
[Claims] 1. Expressed by the following general formula AB_2O_4 [I] (wherein A in the formula [I] represents Cu, Co or Ni, and B represents Al, Cr, Fe or Co). A carbon material for reducing nitrogen oxides, characterized in that a spinel type compound is supported on a carbonaceous material.
JP2123140A 1990-05-15 1990-05-15 Carbonaceous material for reduction of nitrogen oxide Pending JPH0418934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2123140A JPH0418934A (en) 1990-05-15 1990-05-15 Carbonaceous material for reduction of nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2123140A JPH0418934A (en) 1990-05-15 1990-05-15 Carbonaceous material for reduction of nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH0418934A true JPH0418934A (en) 1992-01-23

Family

ID=14853180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2123140A Pending JPH0418934A (en) 1990-05-15 1990-05-15 Carbonaceous material for reduction of nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH0418934A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124045A (en) * 1994-11-01 2000-09-26 Daikin Industries, Ltd. Fluoropolymer coating composition and coated article
JP2011045840A (en) * 2009-08-27 2011-03-10 Daihatsu Motor Co Ltd Catalyst composition
CN116408096A (en) * 2023-01-16 2023-07-11 常州大学 CuM (CuM) 2 O 4 Preparation method and application of spinel type catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124045A (en) * 1994-11-01 2000-09-26 Daikin Industries, Ltd. Fluoropolymer coating composition and coated article
JP2011045840A (en) * 2009-08-27 2011-03-10 Daihatsu Motor Co Ltd Catalyst composition
CN116408096A (en) * 2023-01-16 2023-07-11 常州大学 CuM (CuM) 2 O 4 Preparation method and application of spinel type catalyst

Similar Documents

Publication Publication Date Title
JP2682628B2 (en) Nitrogen oxide removal method and removal catalyst
CN1269566C (en) Catalyst for decomposing nitrous oxide and method for performing processes comprising formation of nitrous oxide
TW200414920A (en) Adsorption composition and process for removing carbon monoxide from substance streams
Liu et al. Transition-metal‐doped ceria carried on two-dimensional vermiculite for selective catalytic reduction of NO with CO: experiments and density functional theory
US5164351A (en) Carrier-supported catalyst for the removal of nitrogen-oxides, carbon monoxide and organic compounds from exhaust gases
JP7469581B2 (en) Hydrocarbon Adsorbents
CN1300238A (en) Regeneration method of molybdenum-containing oxide fluidized bed catalyst
JPH02169032A (en) New catalyst usable for selective
US3819535A (en) Catalyst for oxidation of hydrocarbons and carbon monoxide
JPS63291628A (en) Method for removing nitrogen oxide
CN108671934A (en) A kind of preparation method of the Hydrobon catalyst of high mechanical properties
CN101121131B (en) Ammoxidation method to manufacturing unsaturated nitrile fluid-bed catalyst
JPH0418934A (en) Carbonaceous material for reduction of nitrogen oxide
CN106984259B (en) Multi-component high-activity component carbon monoxide adsorbent and preparation method and application thereof
US4883647A (en) Use of manganese nodules or deep-sea ores containing manganese for the reduction of nitrogen oxides in exhaust gases
JP3436425B2 (en) Exhaust gas purification catalyst carrier and exhaust gas purification catalyst
KR20030032833A (en) Purification catalyst, preparation process therefor and gas-purifying apparatus
JPH11555A (en) Desulfurizing and denitrating agent
CN115779916B (en) Catalyst, method for reducing nitrogen oxides and application of catalyst
CN110404557A (en) A kind of active carbon fibre Wiki catalyst and its preparation method and application
JP3760076B2 (en) Adsorbent such as nitrogen oxide, method for producing the same, and method for removing nitrogen oxide and the like
CN117085679B (en) Noble metal catalyst for sulfur-containing waste gas treatment and preparation method thereof
CN115845867B (en) For NH3Preparation method and application of Mn-based denitration catalyst degraded by SCR (selective catalytic reduction)
JPH0673613B2 (en) Exhaust gas purification method
JPH05115751A (en) Method and catalyst for treating gas combustion exhaust gas