[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0418784A - Protective film for semiconductor laser element - Google Patents

Protective film for semiconductor laser element

Info

Publication number
JPH0418784A
JPH0418784A JP3213490A JP3213490A JPH0418784A JP H0418784 A JPH0418784 A JP H0418784A JP 3213490 A JP3213490 A JP 3213490A JP 3213490 A JP3213490 A JP 3213490A JP H0418784 A JPH0418784 A JP H0418784A
Authority
JP
Japan
Prior art keywords
film
thickness
al2o3
refractive index
laser element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3213490A
Other languages
Japanese (ja)
Inventor
Yasumasa Watanabe
泰正 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3213490A priority Critical patent/JPH0418784A/en
Publication of JPH0418784A publication Critical patent/JPH0418784A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable a film to possess an expected refractive index formed through a simple method by a method wherein Al2O3 and MgF2 are laminated in four layers on the light emission face of a laser element, where each of the laminated films is as thick as lambda/4n, and Al2O3 and Si are formed in five layers on the opposite face of the laser element, where the four layers out of the five layers are all lambda/4n in thickness and the fifth layer is formed as thick as lambda/2n. CONSTITUTION:Al2O3 (n=1.62) of high refractive index and MgF2 (n=1.38) of low refractive index are formed in a multilayer on the front of a laser element as combined to constitute a multilayered film where each film is formed as thick as lambda/4n so as to lessen the front side of the laser element in refractive index and to absorb the refractive index change caused by the dispersion of the films concerned in thickness. A five-layered film composed of Al2O3, Si, Al2O3, Si, and Al2O3 is formed on the rear side of the laser element, where the outermost layer is formed as thick as lambda/2n and each of the rest is formed lambda/4n in thickness. That is, a single layer of Al2O3 is used in place of a two-layer film composed of Si and Al2O3 and has an equivalent effect. That is, by protective materials and a combination of them, the refractive index fluctuation caused by the dispersion of the films formed on the front side in thickness can be absorbed, and the multilayered film formed on the rear side is reduced in the number of layers by two as compared with a conventional one, so that a thin film having an expected refractive index can be easily formed in a simple process and a semiconductor laser of this design can be improved in productivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザー素子の共振器面に形成する保護
膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a protective film formed on a resonator surface of a semiconductor laser device.

〔従来の技術〕[Conventional technology]

半導体レーザー素子の共振器面には、ダングリングボン
ドや結晶格子の乱れなどに起因する界面順位が存在する
ので、バンドギャップは共振器内部に比べて小さくなっ
ている。そのため共振器面近傍では、レーザー光吸収に
よる局部的温度上昇が起こり、酸化が促進され、半導体
レーザー素子は遂には破壊に至る。そこで発振効率と信
軌性を高め素子の寿命を長期間保持するためには、共振
器面を保護することが重要である。
On the cavity surface of a semiconductor laser element, there is an interface order caused by dangling bonds, disordered crystal lattice, etc., so the band gap is smaller than inside the cavity. Therefore, in the vicinity of the resonator surface, a local temperature rise occurs due to absorption of laser light, oxidation is promoted, and the semiconductor laser element is eventually destroyed. Therefore, it is important to protect the resonator surface in order to increase the oscillation efficiency and reliability and maintain the lifetime of the device for a long time.

そこで、通常半導体レーザー素子の両端面に、SiO□
やM2O3などの誘電体をスパッタ法または電子ビーム
蒸着法などにより形成し、高効率でレーザー光を出射さ
せるために光出射面側(以下フロント側とする)を低反
射率とし、反対面側(以下リアー側とする)を高反射率
として光を有効利用する。高出力半導体レーザー素子は
Singより熱伝導率の大きいklzo*を使うことが
多い。k!tOsは電子ビーム蒸着法によりピンホール
を生ずることなく、熱伝導の大きい保護膜として、緻密
なアモルファス状の安定した屈折率を持つ膜を容易に得
ることができる。
Therefore, SiO□
A dielectric material such as or M2O3 is formed by sputtering or electron beam evaporation, and in order to emit laser light with high efficiency, the light emitting surface side (hereinafter referred to as the front side) has a low reflectance, and the opposite surface side (hereinafter referred to as the front side) has a low reflectance. (hereinafter referred to as the rear side) has a high reflectance to effectively utilize light. High-power semiconductor laser elements often use klzo*, which has a higher thermal conductivity than Sing. k! By using tOs, a dense amorphous film having a stable refractive index can be easily obtained as a protective film with high thermal conductivity without producing pinholes by electron beam evaporation.

第4図は保護膜を備えた半導体レーザー素子の側面から
見た模式断面図であり、レーザー光の出射方向を矢印で
示しである。第4図においてこの素子は、化合物半導体
基板上にリブ型構造となるように、各化合物半導体薄膜
を積層した半導体ウェハ1のフlコント側臂開面に、保
護膜としてに!zL薄膜2を形成し、リアー個装開面に
は、M2O3薄膜2.Si薄膜3を交互に積層して7層
膜とし、7層目をSi薄膜3より酸化し難いAf 、0
3薄膜2として形成したものである。第4図中5は活性
層を示している。
FIG. 4 is a schematic cross-sectional view of a semiconductor laser element provided with a protective film, viewed from the side, and the direction of laser light emission is indicated by an arrow. In FIG. 4, this element is applied as a protective film to the open side of a semiconductor wafer 1 on which compound semiconductor thin films are laminated so as to form a rib-type structure on a compound semiconductor substrate. zL thin film 2 is formed, and M2O3 thin film 2. The Si thin films 3 are alternately stacked to form a 7-layer film, and the seventh layer is Af, 0, which is more difficult to oxidize than the Si thin films 3.
3 thin film 2. 5 in FIG. 4 indicates an active layer.

第5図は、これら保護膜の光学膜厚と反射率の関係を示
す線図であり、レーザー光の発振波長λ−780nm、
八zzoxN膜2の屈折率n =1.62. Si薄膜
3の屈折率n=1.7とし、曲線(イ)はフロント側。
FIG. 5 is a diagram showing the relationship between the optical film thickness and reflectance of these protective films, and shows the relationship between the oscillation wavelength of laser light λ-780 nm,
Refractive index n of the 8zzoxN film 2 = 1.62. The refractive index n of the Si thin film 3 is assumed to be 1.7, and the curve (A) is on the front side.

曲線(ロ)はリアー側を表わす。これら曲線に各保護膜
領域に対応する材料名を付記しである。
The curve (b) represents the rear side. The material names corresponding to each protective film area are appended to these curves.

ところで、半導体レーザー素子の反射率は、フロント側
で10%程度に設定するが、第5図のように、反射率は
保護膜の膜厚に関して周期性を持っており、この条件を
満たすものに、85nm、 1.55++mなどの組み
合わせがある。反射率の変動によって素子の動作電流や
モニターダイオードの光量が変化するので、歩留まりを
上げるためにも反射率は10±3%以内にすることが望
ましい。そのためAl2O3′gJ膜2の膜厚を155
±3nmに制御する必要がある。膜厚のばらつきを±1
0%(155±15nm)とすると、反射率は5〜16
%まで変動する。
By the way, the reflectance of the semiconductor laser element is set to about 10% on the front side, but as shown in Figure 5, the reflectance has periodicity with respect to the thickness of the protective film, and the , 85nm, 1.55++m, etc. Since the operating current of the element and the amount of light from the monitor diode change due to variations in the reflectance, it is desirable to keep the reflectance within 10±3% in order to increase yield. Therefore, the thickness of Al2O3'gJ film 2 is set to 155
It is necessary to control it within ±3 nm. ±1 variation in film thickness
If it is 0% (155 ± 15 nm), the reflectance is 5 to 16
It varies up to %.

一方リアー側の反射率は、光の利用効率をあげるため、
90%程度に設定するのが好ましい。反射率をこれ以上
大きくすると、レーザー光制御用のモニターダイオード
の光量が減少し制御性が悪くなる。リアー側は前述の7
層膜のそれぞれの膜厚をλ/4nにして、90%の反射
率を得ている。
On the other hand, the reflectance on the rear side increases the efficiency of light use.
It is preferable to set it to about 90%. If the reflectance is increased more than this, the amount of light from the monitor diode for laser light control will decrease, resulting in poor controllability. The rear side is the 7 mentioned above.
The thickness of each layer was set to λ/4n to obtain a reflectance of 90%.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかU7ながら、以上のように形成される半導体レーザ
ー素子の保護膜について、なお次のような問題がある。
However, the protective film of the semiconductor laser element formed as described above still has the following problems.

即ち、保tlt膜を電子ビーム蒸着するとき、ソースの
穴掘り現象、真空度の変動、基板の不均一・加熱などに
より、蒸着槽内で膜厚は±10%の分布を持つことが避
けられない。このため現状では、光学式膜厚モニターを
導入し、ソースを大口径とし、ビームスキャンを行なう
などの工夫を行なって、膜厚を15%に収めている。し
たがって高価な光学装置を必要とし、操作が複雑になる
などの欠点があり、またSi薄膜は蒸着が難しく、成膜
速度が遅いなどの点から、これを3回も積層しなければ
ならないのは、生産性を低下させる原因となるという問
題もある。
That is, when depositing a TLT film with an electron beam, it is difficult to prevent the film thickness from having a ±10% distribution in the deposition tank due to the drilling phenomenon of the source, fluctuations in the degree of vacuum, non-uniformity and heating of the substrate, etc. do not have. For this reason, at present, the film thickness is kept within 15% by introducing an optical film thickness monitor, using a large diameter source, and performing beam scanning. Therefore, there are drawbacks such as the need for expensive optical equipment and complicated operation.Also, Si thin films are difficult to evaporate and the film formation speed is slow, so it is difficult to stack them three times. , there is also the problem that it causes a decrease in productivity.

本発明は上述の点に鑑みてなされたものであり、その目
的は所期の反射率を有し、簡単な方法で形成することが
可能な半導体レーザー素子の保護膜を提供することにあ
る。
The present invention has been made in view of the above points, and its object is to provide a protective film for a semiconductor laser element that has a desired reflectance and can be formed by a simple method.

〔課題を解決するだめの手段〕[Failure to solve the problem]

上記の課題を解決するために、本発明は半導体レーザー
素子の両共振器面、即ち光出射面とその反対面に設ける
保護膜を、光出射面には、半導体ウェハ側からAf 2
03.MgFz、 At z(hlMgFzの各薄膜を
この順に4層積層膜として形成し、各薄膜の厚さをいず
れもλ/4n(λ:発振波長、n:屈折率)とし、また
は半導体ウェハ側から”zo3.MgFzの各薄膜をこ
の順に積層して、Al2O3薄膜の厚さをλ/2n、M
HF□薄膜の厚さをλ/4nとして形成し、光出射面と
反対側の面には、半導体ウェハ側からAl 203+ 
31 + Al2O3′ Sl 1A’ tOsの各薄
膜をこの順に5層積層膜として形成し、始めの4層の各
薄膜の厚さをいずれもλ/4n、5層目のAl2O3薄
膜の厚さをλ/2nとしたものである。
In order to solve the above problems, the present invention provides a protective film provided on both resonator surfaces of a semiconductor laser element, that is, the light emitting surface and the opposite surface thereof, and the light emitting surface is provided with an Af 2 protection film from the semiconductor wafer side.
03. Each thin film of MgFz, At z (hlMgFz is formed in this order as a four-layer laminated film, and the thickness of each thin film is set to λ/4n (λ: oscillation wavelength, n: refractive index), or from the semiconductor wafer side. zo3.MgFz thin films are stacked in this order, and the thickness of the Al2O3 thin film is set to λ/2n, M
The thickness of the HF□ thin film is λ/4n, and the surface opposite to the light exit surface is coated with Al 203+ from the semiconductor wafer side.
31 + Al2O3' Sl 1A' tOs thin films are formed in this order as a 5-layer laminated film, and the thickness of each of the first four thin films is λ/4n, and the thickness of the fifth Al2O3 thin film is λ. /2n.

〔作用〕[Effect]

本発明の保護膜は、上記のように構成したために、厚さ
!/4nの薄膜は例えば第5図の曲線において、反射率
の極大または極小値を与える。この曲線上の谷部や山部
における膜厚10%の変動に対して、反射率の変化は余
り効かない。膜厚変動によって反射率が変わらないよう
に保護膜材料を組み合わせることができ、フロント側は
高屈折率物質であるAl203(n = 1.62)と
低屈折率物質であるMgFz (n =1.38)を組
み合わせて反射率を下げている。フロント側を厚さλ/
4nの繰り返し多層膜とすることにより、膜厚のばらつ
きによる反射率変化を吸収することができる。またリア
ー側は、従来より2層少ないAl 20 、J+ S 
+ + Alz 03 + S i+ u z 03の
5層構造で最外層をλ/4nX2−λ/2nとしてあり
、即ちSi、 AI!o、の2層膜をλ/20.の単層
膜で代替し、同等の効果を得ることができる。
Since the protective film of the present invention is constructed as described above, it has a very small thickness. A thin film of /4n gives a maximum or minimum value of reflectance, for example in the curve of FIG. Changes in reflectance have little effect on changes in film thickness of 10% at valleys and peaks on this curve. It is possible to combine the materials of the protective film so that the reflectance does not change due to changes in film thickness, and on the front side, a high refractive index material Al203 (n = 1.62) and a low refractive index material MgFz (n = 1.62) are used. 38) in combination to lower the reflectance. Front side thickness λ/
By forming a 4n repeating multilayer film, changes in reflectance due to variations in film thickness can be absorbed. In addition, the rear side has two fewer layers of Al 20 and J+S than before.
It has a five-layer structure of + + Alz 03 + S i + u z 03, with the outermost layer being λ/4nX2-λ/2n, that is, Si, AI! o, two-layer film of λ/20. The same effect can be obtained by replacing it with a single layer film.

〔実施例〕〔Example〕

以下、本発明を実施例に基づき説明する。 Hereinafter, the present invention will be explained based on examples.

第1図は、本発明による保護膜を備えた半導体レーザー
素子の側面からみた模式断面図であり、第4図と共通部
分を同一符号で表わし、レーザー光の出射方向を矢印で
示しである。第1図が第4図と異なる所は、フロント側
の保護層は、半導体ウェハ側からλ/20.薄膜2.門
gFz薄膜4.klxos薄膜2.MgFz薄膜4をこ
の順に4層積層膜として形成し、リアー側の保護層は、
半導体ウェハ側からλ/203薄膜2.Si薄膜3.A
l2O3薄膜2.St薄膜3=A1203薄膜2の5層
積層膜として形成したことである。第3図は第5図に倣
ってこれら保護層の膜厚と反射率の関係線図を示したも
のである。
FIG. 1 is a schematic cross-sectional view of a semiconductor laser device provided with a protective film according to the present invention, seen from the side. Parts common to those in FIG. 4 are denoted by the same reference numerals, and the direction of laser light emission is indicated by an arrow. The difference between FIG. 1 and FIG. 4 is that the protective layer on the front side is λ/20. Thin film 2. Gate gFz thin film 4. klxos thin film 2. The MgFz thin film 4 is formed as a 4-layer laminated film in this order, and the rear side protective layer is
λ/203 thin film from the semiconductor wafer side 2. Si thin film 3. A
l2O3 thin film 2. It was formed as a five-layer laminated film of St thin film 3 = A1203 thin film 2. FIG. 3 shows a relationship diagram between the film thickness and reflectance of these protective layers, based on FIG. 5.

第3図の曲線(イ)はフロント側3曲線(ロ)はリアー
側を表わす。これら保護層は次のようにして形成するこ
とができる。例えば化合物半導体基板上に、リブ型構造
となるように各化合物半導体薄膜を形成した活性層2を
存する半導体ウェハ】を襞間装置により臂関し、長さ2
0mのパー状に成形した後、このバーを襞間面が現われ
るように並べる。そしてフロント側には、電子ビーム蒸
着によりM2O。
The curve (A) in FIG. 3 represents the front side, and the third curve (B) represents the rear side. These protective layers can be formed as follows. For example, a semiconductor wafer having an active layer 2 in which compound semiconductor thin films are formed to have a rib-type structure on a compound semiconductor substrate is placed between the arms with a folding device, and the length is 2.
After forming into a par shape of 0 m, the bars are arranged so that the inter-fold surfaces are exposed. And on the front side, M2O is applied by electron beam evaporation.

薄膜2を120nm、 MgF2薄膜4を141nm、
 Al tOz薄膜2を120nm、 MgF、薄膜4
を141nm順次形成し、リアー側にはに!20.薄膜
2を120nm、Si薄膜3を72nmAlzo:+t
l膜2を120nm、Sil膜3を72nm、 Alt
(h 薄膜2を240nmこの順に5層積層膜として形
成する。
Thin film 2 is 120 nm, MgF2 thin film 4 is 141 nm,
Al tOz thin film 2 of 120 nm, MgF thin film 4
are sequentially formed at 141 nm, and on the rear side! 20. Thin film 2 is 120 nm, Si thin film 3 is 72 nm Alzo: +t
L film 2 is 120 nm thick, Sil film 3 is 72 nm thick, Alt
(h) The thin film 2 is formed as a 5-layer laminated film of 240 nm in this order.

このときの蒸着速度はAl2O3薄膜2を5Δ/s、M
gF2薄膜4を5A/s、Si薄膜3をLA/sとし、
屈折率はA)20.薄膜2は1.62. MgF、薄膜
4は1.38.5iTi1.膜3ば2.7が得られた。
At this time, the deposition rate was 5Δ/s, M
The gF2 thin film 4 is 5A/s, the Si thin film 3 is LA/s,
The refractive index is A) 20. Thin film 2 is 1.62. MgF, thin film 4 is 1.38.5iTi1. 2.7 mm of membrane 3 was obtained.

反射率は同時に蒸着したGaAs試料を分光器により測
定した。
The reflectance was measured using a spectrometer on a GaAs sample deposited at the same time.

また、以上と同様の薄膜形成方法により、保護膜として
フロント側にへ120.薄膜2を240nm、門gF2
薄膜4を142nm形成した素子の模式断面図を第2図
に示し、その膜厚と反射率の関係線図を第3図中の曲線
(ハ)として併記しである。この場合のリアー側の保護
膜は第1図の構成と全く同じ5層であり、第3図では曲
線(ロ)で示している。
Also, by using the same thin film forming method as above, a protective film was formed on the front side. Thin film 2 240nm, gate gF2
FIG. 2 shows a schematic cross-sectional view of an element in which a thin film 4 of 142 nm is formed, and a relationship diagram between the film thickness and reflectance is also shown as a curve (c) in FIG. 3. The protective film on the rear side in this case has exactly the same five layers as the structure shown in FIG. 1, and is shown by a curve (b) in FIG.

このようにして得られた保護膜を持つ半導体レーザー素
子について、第1図の保護膜構成では試料数10個でフ
ロント側〔第3図曲線(イ)〕の反射率平均値は9.4
%、誤差は+2.4%、  −3,5%が得られ、9個
の試料が10±3%の設定範囲に収まっている。リアー
側〔第3図曲線(ロ)〕の反射率平均値は85.4%、
誤差は→−2.1%、−4.8%が得られた。目標の9
0%にはやや及ばないが、性能上は従来の7層積層膜と
なんら遜色がない。
Regarding the semiconductor laser device having the protective film obtained in this way, with the protective film configuration shown in Fig. 1, the average reflectance value on the front side [curve (A) in Fig. 3] is 9.4 when the number of samples is 10.
%, errors of +2.4% and -3.5% were obtained, and 9 samples fell within the set range of 10±3%. The average reflectance value on the rear side [Figure 3 curve (b)] is 85.4%,
The errors were -2.1% and -4.8%. Goal 9
Although it is slightly less than 0%, in terms of performance it is comparable to the conventional 7-layer laminated film.

第2図の保護膜構成を持つ素子では、試料数10個でフ
ロント側〔第3図曲線(ハ)〕の反射率平均値は11.
2%、誤差は+3.2%、−2,0%が得られ、8個の
試料が10±3%の設定範囲に収まった。またリアー側
〔第3図曲線(ロ)〕の反射率平均値は85.4%、ば
らつきは+1.9%、−3,7%である。
In the device having the protective film structure shown in FIG. 2, the average value of the reflectance on the front side [curve (c) in FIG. 3] is 11.0 with 10 samples.
2%, errors of +3.2% and -2.0% were obtained, and 8 samples fell within the set range of 10±3%. The average value of the reflectance on the rear side (curve (b) in Figure 3) is 85.4%, with variations of +1.9% and -3.7%.

以上のように、第1図の保護膜構成を持つ素子は、フロ
ント側の反射率の実測値が9.4%と設定値よりやや小
さく、第2図の保護膜構成を持つ素子は、フロント側の
反射率の実測値が11.2%と若干大きめになるものの
、いずれも製造工数の短縮による生産性向上の利点が大
きい。
As described above, the element with the protective film configuration shown in Figure 1 has an actual measured value of reflectance on the front side of 9.4%, which is slightly smaller than the set value, and the element with the protective film configuration shown in Figure 2 has a front side reflectance of 9.4%, which is slightly smaller than the set value. Although the actual measured value of the reflectance on the side is 11.2%, which is slightly larger, both have the great advantage of improving productivity by reducing the number of manufacturing steps.

〔発明の効果〕〔Effect of the invention〕

半導体レーザー素子の共振器面に設ける保護膜を形成す
るとき、厚膜を制御し、反射率の変動を抑えるのが難し
かったが、本発明によれば、保護膜材料とその組み合わ
せを適当に定め、フロント側の膜厚をλ/4nの繰り返
し多層膜として、膜厚のばらつきによる反射率の変動を
吸収し、リアー側は最外層の膜厚をλ/2nとして従来
より2層少ない構造としたために、光学式の計測器など
を用いることなく、簡単な操作で所定の反射率を持−7
)薄膜の形成が可能となり、半導体レーザー素子の生産
性の向上に寄与する所が大きい。
When forming a protective film on the cavity surface of a semiconductor laser device, it was difficult to control the thickness of the film and suppress fluctuations in reflectance. However, according to the present invention, it is possible to appropriately determine the protective film material and its combination. , the front side has a repeating multilayer film with a thickness of λ/4n to absorb changes in reflectance due to variations in film thickness, and the rear side has a structure with two fewer layers than the conventional one, with the outermost layer having a thickness of λ/2n. It is possible to obtain the desired reflectance with simple operations without using optical measuring instruments.
) It becomes possible to form thin films, which greatly contributes to improving the productivity of semiconductor laser devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の保護膜を備えた半導体レーザー素子
の側面からみた模式断面図、第2図は第1図とは異なる
構成の本発明の保護膜を備えた半導体レーザー素子の側
面からみた模式断面図、第3図は本発明の保護膜の光学
膜厚と反射率の関係を示す線図、第4図は従来の保護膜
を備えた半導体レーザー素子の側面からみた模式断面図
、第5図は従来の保護膜の光学膜厚と反射率の関係を示
す線図である。 に半導体ウェハ、27 kl z(h薄膜、3:Si薄
膜、4 : MgFzf!1膜、5:活性層。 2裔嬉の 名 称 半導体レーザ素子の保護膜 3補正をする者 事件との関係 住   所 名   称
FIG. 1 is a schematic cross-sectional view of a semiconductor laser device equipped with a protective film of the present invention seen from the side, and FIG. 2 is a side view of a semiconductor laser device equipped with a protective film of the present invention having a different configuration from that shown in FIG. FIG. 3 is a diagram showing the relationship between optical thickness and reflectance of the protective film of the present invention; FIG. 4 is a schematic cross-sectional view of a semiconductor laser device equipped with a conventional protective film as seen from the side; FIG. 5 is a diagram showing the relationship between optical film thickness and reflectance of a conventional protective film. Semiconductor wafer, 27klz (h thin film, 3: Si thin film, 4: MgFzf!1 film, 5: active layer. 2 Name of descendant 3 Person who corrects the protective film of semiconductor laser device Address related to the case) Name

Claims (1)

【特許請求の範囲】 1)リブ型構造を有する半導体レーザー素子の共振器面
に形成する保護膜であって、光出射面には、半導体ウェ
ハ側からAl_2O_3、MgF_2、Al_2O_3
、MgF_2の各薄膜をこの順に4層積層膜として形成
し、前記各薄膜の厚さをいずれもλ/4n(λ:発振波
長、n:屈折率)とし、前記光出射面と反対の面には、
半導体ウェハ側からAl_3O_3、Si、Al_2O
_3、Al_2O_3の各薄膜をこの順に5層積層膜と
して形成し、始めの4層の各薄膜の厚さをいずれもλ/
4n、5層目のAl_2O_薄膜の厚さをλ/2nとし
たことを特徴とする半導体レーザー素子の保護膜。 2)請求項1記載の保護膜として、光出射面には半導体
ウェハ側からAl_2O_3、MgF_2の各薄膜をこ
の順に積層し、前記Al_2O_3薄膜の厚さをλ/2
n、前記MgF_2薄膜の厚さをλ/4nとしたことを
特徴とする半導体レーザー素子の保護膜。
[Claims] 1) A protective film formed on the resonator surface of a semiconductor laser element having a rib-type structure, wherein the light emitting surface is coated with Al_2O_3, MgF_2, Al_2O_3 from the semiconductor wafer side.
, MgF_2 are formed in this order as a four-layer laminated film, each of the thin films has a thickness of λ/4n (λ: oscillation wavelength, n: refractive index), and a teeth,
Al_3O_3, Si, Al_2O from the semiconductor wafer side
The thin films of _3 and Al_2O_3 are formed in this order as a five-layer laminated film, and the thickness of each of the first four thin films is set to λ/
A protective film for a semiconductor laser device, characterized in that the thickness of the 4n and 5th Al_2O_ thin films is λ/2n. 2) As the protective film according to claim 1, thin films of Al_2O_3 and MgF_2 are laminated in this order on the light exit surface from the semiconductor wafer side, and the thickness of the Al_2O_3 thin film is set to λ/2.
n. A protective film for a semiconductor laser device, characterized in that the thickness of the MgF_2 thin film is λ/4n.
JP3213490A 1990-02-13 1990-02-13 Protective film for semiconductor laser element Pending JPH0418784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3213490A JPH0418784A (en) 1990-02-13 1990-02-13 Protective film for semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3213490A JPH0418784A (en) 1990-02-13 1990-02-13 Protective film for semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH0418784A true JPH0418784A (en) 1992-01-22

Family

ID=12350426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3213490A Pending JPH0418784A (en) 1990-02-13 1990-02-13 Protective film for semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH0418784A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133486A (en) * 1990-09-26 1992-05-07 Sharp Corp Semiconductor laser device
JP2001077456A (en) * 1999-09-07 2001-03-23 Sony Corp Semiconductor laser and coating film for optical component
US6496605B1 (en) * 1996-08-02 2002-12-17 United Module Corporation Block deformation removing filter, image processing apparatus using the same, method of filtering image signal, and storage medium for storing software therefor
US7106775B2 (en) 2003-03-27 2006-09-12 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser devices
KR20070059383A (en) * 2005-12-06 2007-06-12 손우영 Watertight construction of pipes and that making method
US8094696B2 (en) 2009-03-25 2012-01-10 Mitsubishi Electric Corporation Semiconductor laser device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133486A (en) * 1990-09-26 1992-05-07 Sharp Corp Semiconductor laser device
US6496605B1 (en) * 1996-08-02 2002-12-17 United Module Corporation Block deformation removing filter, image processing apparatus using the same, method of filtering image signal, and storage medium for storing software therefor
JP2001077456A (en) * 1999-09-07 2001-03-23 Sony Corp Semiconductor laser and coating film for optical component
US7106775B2 (en) 2003-03-27 2006-09-12 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser devices
KR20070059383A (en) * 2005-12-06 2007-06-12 손우영 Watertight construction of pipes and that making method
US8094696B2 (en) 2009-03-25 2012-01-10 Mitsubishi Electric Corporation Semiconductor laser device
US8233514B2 (en) 2009-03-25 2012-07-31 Mitsubishi Electric Corporation Semiconductor laser device

Similar Documents

Publication Publication Date Title
US4599729A (en) Semiconductor laser device having facets provided with dielectric layers
JPS62191801A (en) Anti reflection film for plastic optical parts
JP3856300B2 (en) Semiconductor laser element
KR100653320B1 (en) Semiconductor laser device
JPH08307008A (en) Multilayer film structure and face luminescence laser
JP2001119096A (en) Semiconductor laser
JP3014208B2 (en) Semiconductor optical device
JPH0418784A (en) Protective film for semiconductor laser element
JP5132902B2 (en) Antireflection film for passband of photonic band gap crystal
JP2002350610A (en) Thin film nd filter and method for manufacturing the same
US7616673B2 (en) Semiconductor laser device
JP7183484B1 (en) Method for manufacturing optical semiconductor device and method for designing antireflection film for optical semiconductor device
JPH0777601A (en) Two-wavelength antireflection film
JP7378692B1 (en) Method for manufacturing optical semiconductor device and method for designing low reflectance film
JPH0784105A (en) Reflecting film
JP3863577B2 (en) Semiconductor laser
JPS62143002A (en) Dielectric multi-layer film nonreflective coating
JPS63128690A (en) Semiconductor laser element
JP3084784B2 (en) Argon gas laser mirror
JPH04145677A (en) High efficiency reflector for visible laser beam
JP2004029526A (en) Optical multilayer film filter
JP2004085975A (en) Oxide multilayer optical element and manufacturing method therefor
JPH02247601A (en) Antireflection film of laser element
JPH06224514A (en) End surface coating for semiconductor laser
JP2003057406A (en) Antireflection film for faraday rotator