JPH04185764A - Deodorant fiber and its production - Google Patents
Deodorant fiber and its productionInfo
- Publication number
- JPH04185764A JPH04185764A JP2312560A JP31256090A JPH04185764A JP H04185764 A JPH04185764 A JP H04185764A JP 2312560 A JP2312560 A JP 2312560A JP 31256090 A JP31256090 A JP 31256090A JP H04185764 A JPH04185764 A JP H04185764A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- crosslinked
- fibers
- introducing
- deodorizing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 49
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000002781 deodorant agent Substances 0.000 title abstract description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 24
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229920002972 Acrylic fiber Polymers 0.000 claims abstract description 15
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 15
- 239000003063 flame retardant Substances 0.000 claims abstract description 12
- 125000002560 nitrile group Chemical group 0.000 claims abstract description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 12
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims abstract description 11
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910001431 copper ion Inorganic materials 0.000 claims abstract description 11
- 125000003368 amide group Chemical group 0.000 claims abstract description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 5
- 239000001301 oxygen Substances 0.000 claims abstract description 5
- 230000001877 deodorizing effect Effects 0.000 claims description 24
- 238000004132 cross linking Methods 0.000 claims description 10
- 238000006460 hydrolysis reaction Methods 0.000 claims description 6
- 230000003301 hydrolyzing effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 18
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 239000000178 monomer Substances 0.000 description 7
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 6
- 239000002341 toxic gas Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- -1 vinyl halide Chemical class 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 235000011121 sodium hydroxide Nutrition 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910000365 copper sulfate Inorganic materials 0.000 description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000000954 titration curve Methods 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 1
- NJYFRQQXXXRJHK-UHFFFAOYSA-N (4-aminophenyl) thiocyanate Chemical compound NC1=CC=C(SC#N)C=C1 NJYFRQQXXXRJHK-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- FUSNOPLQVRUIIM-UHFFFAOYSA-N 4-amino-2-(4,4-dimethyl-2-oxoimidazolidin-1-yl)-n-[3-(trifluoromethyl)phenyl]pyrimidine-5-carboxamide Chemical compound O=C1NC(C)(C)CN1C(N=C1N)=NC=C1C(=O)NC1=CC=CC(C(F)(F)F)=C1 FUSNOPLQVRUIIM-UHFFFAOYSA-N 0.000 description 1
- MAGFQRLKWCCTQJ-UHFFFAOYSA-N 4-ethenylbenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=C(C=C)C=C1 MAGFQRLKWCCTQJ-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 1
- 239000005750 Copper hydroxide Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000002211 L-ascorbic acid Substances 0.000 description 1
- 235000000069 L-ascorbic acid Nutrition 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- KQWLJXPRTSCUOO-UHFFFAOYSA-N aminoazanium;bromate Chemical compound [NH3+]N.[O-]Br(=O)=O KQWLJXPRTSCUOO-UHFFFAOYSA-N 0.000 description 1
- BIVUUOPIAYRCAP-UHFFFAOYSA-N aminoazanium;chloride Chemical compound Cl.NN BIVUUOPIAYRCAP-UHFFFAOYSA-N 0.000 description 1
- RAESLDWEUUSRLO-UHFFFAOYSA-O aminoazanium;nitrate Chemical compound [NH3+]N.[O-][N+]([O-])=O RAESLDWEUUSRLO-UHFFFAOYSA-O 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000009960 carding Methods 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910001956 copper hydroxide Inorganic materials 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000000578 dry spinning Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 229930003935 flavonoid Natural products 0.000 description 1
- 150000002215 flavonoids Chemical class 0.000 description 1
- 235000017173 flavonoids Nutrition 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 1
- 239000012493 hydrazine sulfate Substances 0.000 description 1
- 229910000377 hydrazine sulfate Inorganic materials 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000005394 methallyl group Chemical group 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000000419 plant extract Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000002166 wet spinning Methods 0.000 description 1
Landscapes
- Chemical Or Physical Treatment Of Fibers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は高度の難燃性を有し、カートかけ等の加工に耐
える実用性能を備えた消臭性繊維およびその製造方法に
間する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a deodorizing fiber that has a high degree of flame retardancy and has practical performance that can withstand processing such as carting, and a method for producing the same.
(従来の技術)
従来より、消臭性繊維を得るための多くの方法が提案さ
れており、その1方法として消臭性能を有する物質、例
えば金属フタロシアニン誘導体、硫酸第1鉄/L−アス
コルビン酸、フラボノイド等植物抽出物質を繊維表面に
付着固定させる方法があるが、この方法では一般に耐久
性、風合変化、可燃性なと種々の欠点がある。(Prior Art) Many methods have been proposed to obtain deodorant fibers, one of which is the use of substances with deodorizing properties, such as metal phthalocyanine derivatives, ferrous sulfate/L-ascorbic acid. There is a method of attaching and fixing plant extracts such as flavonoids to the fiber surface, but this method generally has various drawbacks such as durability, change in texture, and flammability.
また、他の方法として、特開昭63−214261に示
されているようにカルボキシル基を有するアクリロニト
リル系繊維に遷移金属を作用させた繊維が提案されてい
るが、消臭性で難燃性ではあるものの燃焼時に有毒ガス
の発生を伴なう欠点がある。In addition, as another method, as shown in JP-A-63-214261, a fiber made by applying a transition metal to acrylonitrile fiber having a carboxyl group has been proposed, but it is not deodorizing and flame retardant. Some have the disadvantage of producing toxic gases when burned.
また、他の方法として、アクリル系繊維、ピッチ系繊維
を炭化した活性炭I#維があるが高価である。一方、難
燃性繊維については、例えばリン化合物、ハロゲン化合
物などの難燃剤を繊維表面に付着固定させる後加工法や
ハロゲン化ビニル、ハロゲン化ビニリデン単量体を共重
合させた重合体を用いて繊維を形成させる方法があるが
、前者については一般に耐久性、風合変化、難燃剤自体
及び燃焼時の毒性などの欠点があり、また後者について
は、高度難燃性を得るためにはハロゲン単量体を多量に
共重合させる必要があり、その結果として燃焼時の有毒
ガスの発生を伴なう本質的欠点がある。Other methods include activated carbon I# fibers obtained by carbonizing acrylic fibers and pitch fibers, but these are expensive. On the other hand, for flame-retardant fibers, for example, post-processing methods in which flame retardants such as phosphorus compounds and halogen compounds are attached and fixed on the fiber surface, and polymers made by copolymerizing vinyl halide and vinylidene halide monomers are used. There are methods for forming fibers, but the former generally has drawbacks such as durability, change in texture, flame retardant itself and toxicity during combustion, and the latter requires the use of halogen monomers to achieve high flame retardancy. The essential drawback is that it requires copolymerization of large amounts of polymers, resulting in the generation of toxic gases during combustion.
(発明が解決しようとする課題)
本発明の目的は、上述した耐久性、燃焼時の有毒ガスの
発生がなく、高度な難燃性を有し、さらにカートかけ等
の加工に耐える実用性能を備えた消臭性繊維を提案する
ことである。(Problems to be Solved by the Invention) The objects of the present invention are to provide the above-mentioned durability, no generation of toxic gas during combustion, high flame retardancy, and practical performance that can withstand processing such as hanging on a cart. The purpose is to propose deodorizing fibers with the following properties.
(課題を解決するための手段)
上述した本発明の目的は、ヒドラジン架橋による窒素含
有量の増加が1.0〜8.0重量%である架橋アクリル
系繊維であって、残存ニトリル基の一部には銅イオンに
よりイオン架橋された0、5〜4,5mmol/gのカ
ルボキシル基が、残部にはアミド基が導入されており、
1g/d以上の引張強度及び30以上の限界酸素指数を
有する難燃性消臭性at紺、及び第2請求項記載の製造
方法により達成される。(Means for Solving the Problems) The above-mentioned object of the present invention is to provide a crosslinked acrylic fiber whose nitrogen content increases by 1.0 to 8.0% by weight due to hydrazine crosslinking, which 0.5 to 4.5 mmol/g of carboxyl groups ionically crosslinked with copper ions are introduced into the remaining part, and amide groups are introduced into the remaining part.
This is achieved by the flame-retardant deodorizing at-navy blue having a tensile strength of 1 g/d or more and a limiting oxygen index of 30 or more, and the manufacturing method according to the second claim.
出発アクリル系繊維はアクリロニトリル(以下、ANと
いう)を40重量%以上、好ましくは50重量%以上含
有するA、 N系重合体により形成された繊維であり、
短繊維、トウ、糸、編織物、不織布等いずれの形態のも
のでもよく、また、製造工程中途品、廃!!!維なとて
も構わない。AN系重合体は、AN単独重合体、ANと
他のモノマーとの共重合体のいずれても良く、他のモノ
マーとしては、ハロゲン化ビニル及びハロゲン化ビニリ
デン; (メタ)アクリル酸エステル;メタリルスルホ
ン酸、p−スチレンスルホン酸等のスルホン酸含有モノ
マー及びその塩; (メタ)アクリル酸、イタコン酸等
のカルボン酸含有モノマー及びその塩;アクリルアミド
、スチレン、酢酸ビニル等のその他のモノマーが挙げら
れる。The starting acrylic fiber is a fiber formed from an A, N-based polymer containing 40% by weight or more, preferably 50% by weight or more of acrylonitrile (hereinafter referred to as AN),
It can be in any form such as staple fiber, tow, yarn, knitted fabric, non-woven fabric, etc. Also, it can be used as a product in the middle of the manufacturing process or as a waste! ! ! I don't really care. The AN-based polymer may be an AN homopolymer or a copolymer of AN and other monomers, and other monomers include vinyl halides and vinylidene halides; (meth)acrylic esters; methallyl. Examples include sulfonic acid-containing monomers and their salts such as sulfonic acid and p-styrene sulfonic acid; carboxylic acid-containing monomers and their salts such as (meth)acrylic acid and itaconic acid; other monomers such as acrylamide, styrene, and vinyl acetate. .
アクリル系繊維に、ヒドラジン架橋を導入する方法とし
ては、窒素含有量の増加が1.0〜8.0重量%に調整
しうる手段である限り採用出来るが、濃度6〜80%、
温度50〜120℃で1〜5時間処理する手段が工業的
に好ましい、ここで、窒素含有量の増加とは原料アクリ
ル繊維の窒素含有量とヒドラジン架橋アクリル繊維のW
緊含有量との差をいうなお、窒素含有量の増加が上記下
限に満たない場合には、最終的に実用上満足し得る物性
の繊維が得られず、また上限を越えると高度難燃性と消
臭性を兼ね備えた繊維が製造出来ない、ここに使用する
ヒドラジンとしては、水加ヒドラジン、硫酸ヒドラジン
、塩酸ヒドラジン、硝酸ヒドラジン、臭素酸ヒドラジン
等が例示される。A method for introducing hydrazine crosslinking into acrylic fibers can be adopted as long as the increase in nitrogen content can be adjusted to 1.0 to 8.0% by weight;
A method of treatment at a temperature of 50 to 120°C for 1 to 5 hours is industrially preferable. Here, the increase in nitrogen content refers to the nitrogen content of the raw material acrylic fiber and the W of the hydrazine crosslinked acrylic fiber.
Note that if the increase in nitrogen content is less than the lower limit above, it will not be possible to obtain a fiber with practically satisfactory physical properties, and if it exceeds the upper limit, it will have high flame retardant properties. Examples of the hydrazine used here that cannot produce fibers having both deodorizing properties include hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, hydrazine nitrate, and hydrazine bromate.
また、加水分解反応により、ヒドラジン架橋されずに残
存しているニトリル基を実質的に消失させ、0.5〜4
.5mmol/ g、好ましくは 1.0〜3.5mm
ol/gのカルボキシル基と残部にアミド基を導入する
方法としては、アルカリ金属水酸化物、アンモニア等の
塩基性水溶液、或は硝酸、硫酸、塩酸等の鉱酸の水溶液
な含浸、または該水溶液中に原料繊維を浸漬した状態で
加熱処理する手段が挙げられる。なお、前記架橋結合の
導入と同時に加水分解反応を行うことも出来る。In addition, by the hydrolysis reaction, the remaining nitrile group without being crosslinked with hydrazine is substantially eliminated, and 0.5 to 4
.. 5 mmol/g, preferably 1.0-3.5 mm
A method for introducing an amide group into the carboxyl group and the remainder of ol/g is impregnation with a basic aqueous solution such as an alkali metal hydroxide or ammonia, or an aqueous solution of a mineral acid such as nitric acid, sulfuric acid, or hydrochloric acid, or such aqueous solution. An example of this method is to heat-treat the raw material fibers while being immersed therein. Note that the hydrolysis reaction can also be carried out simultaneously with the introduction of the crosslinking bond.
なお、カルボキシル基が上記下限に満たない場合には最
終的に高度な難燃性と消臭性能を兼ね備えたIkを製造
することが出来ず、上限を越えると実用上満足しろる物
性の繊維が得られない。In addition, if the carboxyl group is less than the above lower limit, it will not be possible to produce Ik that has both high flame retardancy and deodorizing performance, and if it exceeds the upper limit, the fiber will not have physical properties that are practically satisfactory. I can't get it.
イオン架橋法としては硫酸銅、硝酸銅、塩化鋼、水酸化
銅等の無機塩、酢酸銅等の有機塩の 1〜20重量%水
溶液で 10〜100℃の温度で処理することが望まし
い。なお、銅イオンの導入量としては本発明の目的達成
上0,5〜4.5meq/ g、好ましくは1.0〜3
.5+neq/ gの範囲内が望ましい。As for the ionic crosslinking method, it is preferable to treat with a 1 to 20% by weight aqueous solution of an inorganic salt such as copper sulfate, copper nitrate, steel chloride, copper hydroxide, or an organic salt such as copper acetate at a temperature of 10 to 100°C. In addition, the amount of copper ions introduced is 0.5 to 4.5 meq/g, preferably 1.0 to 3 meq/g, in order to achieve the purpose of the present invention.
.. It is desirable to be within the range of 5+neq/g.
このようにして、引張強度がIg/d以上、好ましくは
1.5g/d以上、限界酸素指数(LOI)が30以
上、好ましくは32以上で悪臭物質の吸収性能に優れ、
且つ燃焼時に有毒ガスの発生しない難燃性を有する消臭
性繊維を提供することが出来る。In this way, the tensile strength is Ig/d or more, preferably 1.5 g/d or more, and the limiting oxygen index (LOI) is 30 or more, preferably 32 or more, and has excellent absorption performance for malodorous substances,
Moreover, it is possible to provide a flame-retardant deodorizing fiber that does not generate toxic gas when burned.
なお、アクリル系繊維を、ポンプ循環系を備えた容器内
に充填し、上記架橋結合の導入、加水分解反応、及び銅
イオン架橋の形成の各反応を逐次行なう手段が、装置上
、安全性、均−反応性等の諸点から望ましい。かかる装
置(ポンプ循環系を備えた容器)の代表例としては、オ
ーバーマイヤー染色機が挙げられる。It should be noted that the method of filling acrylic fibers into a container equipped with a pump circulation system and sequentially performing the above-mentioned cross-linking introduction, hydrolysis reaction, and formation of copper ion cross-links is not suitable for equipment, safety, Desirable from various points such as homogeneous reactivity. A typical example of such a device (vessel equipped with a pump circulation system) is an Obermeyer dyeing machine.
また、実用上問題のない繊維物性を維持し、所定量のカ
ルボキシル基、銅イオン架橋を導入し、高度の難燃性と
消臭性を兼ね備えた繊維を提供するためには、特に下記
特性を備えた出発アクリル系!1′維を採用することが
望ましい。In addition, in order to maintain fiber physical properties that do not cause any practical problems, introduce a predetermined amount of carboxyl groups and copper ion crosslinks, and provide fibers that have both a high degree of flame retardancy and deodorizing properties, the following characteristics must be met. Acrylic system ready for departure! It is desirable to use 1' fiber.
即ち、繊維を形成するAN系重合体分子が十分に配向し
ておリコンゴーレット(以下CRという)二色性比が0
.4以上、更に好ましくは0.5以上のアクリル系繊維
を採択することが望ましい。なお、CR二色性比は、高
分子化学23 (252)193 (1966)記載の
方法に従って求められるものである。That is, the AN polymer molecules forming the fibers are sufficiently oriented and the recongoulet (hereinafter referred to as CR) dichroic ratio is 0.
.. It is desirable to use acrylic fibers with a fiber density of 4 or more, more preferably 0.5 or more. Note that the CR dichroism ratio is determined according to the method described in Kobunshi Kagaku 23 (252) 193 (1966).
なお、かかるアクリル系繊維の製造手段に限定はなく、
上記CR二色性比が満たされる限り、適宜公知の手段を
用いることができるが、中でも全延伸倍率を6倍以上、
好ましくは8倍以上とし、かつ工程収縮率を30%以下
、好ましくは20%以下とする手段の採用により工業的
有利に所望のアクリル系繊維を作製することができる。Note that there are no limitations to the method for producing such acrylic fibers.
As long as the above CR dichroic ratio is satisfied, known means can be used as appropriate, but among them, the total stretching ratio is 6 times or more,
Desired acrylic fibers can be produced industrially advantageously by employing means to preferably increase the shrinkage rate to 8 times or more and to reduce the shrinkage rate in the process to 30% or less, preferably 20% or less.
更に、出発アクリル系繊維として、延伸後熱処理前の繊
維(AN系重合体の紡糸原液を、常法に従って紡糸し、
延伸配向され、乾燥縁密化、温熱緩和処理等の熱処理の
施されていない繊維、中でも湿式又は乾/湿式紡糸、延
伸後の水膨潤ゲル状繊維:水膨潤度30〜150%)を
使用することにより、反応液中への繊維の分散性、繊維
中への反応液の浸透性などが改善され、以て架橋結合の
導入や加水分解反応が均一かつ速やかに行われるので望
ましい。言うまでもないが、水膨潤度とは乾燥繊維重量
規準で表した、含有又は付着水分量の百分率である。Furthermore, as a starting acrylic fiber, a fiber (a spinning stock solution of an AN polymer) after stretching and before heat treatment was spun according to a conventional method,
Use fibers that are stretched and oriented and have not been subjected to heat treatment such as dry edge densification or thermal relaxation treatment, especially wet or dry/wet spinning, water-swellable gel-like fibers after stretching (water swelling degree 30 to 150%). This is desirable because the dispersibility of the fibers in the reaction solution, the permeability of the reaction solution into the fibers, etc. are improved, and the introduction of cross-linking bonds and the hydrolysis reaction are performed uniformly and quickly. Needless to say, the degree of water swelling is the percentage of the amount of water contained or attached, expressed on a dry fiber weight basis.
(作用)
本発明に係る消臭性繊維並びに該製造方法が、難燃性を
有しつつ消臭性能を兼ね備える理由は、十分に解明する
に至っていないが、概ね次のように考えられる。(Function) The reason why the deodorizing fiber and the manufacturing method of the present invention have both flame retardancy and deodorizing performance has not been fully elucidated, but it is generally thought to be as follows.
即ち、AN系重合体から出発してい九から、シアン発生
の原因となり得るニトリル基が実質的に消失しているこ
と及び、ヒドラジン架橋及び銅イオン架橋の両架橋によ
り難燃性能が付与されている。また前記の鋼のからんだ
両架橋構造の存在が消臭機能を付与したものであろう。That is, since starting from an AN-based polymer, nitrile groups that can cause cyanogen generation have substantially disappeared, and flame retardant performance is imparted by both hydrazine crosslinking and copper ion crosslinking. . Moreover, the existence of the double crosslinked structure in which the steel is intertwined may provide the deodorizing function.
また該発明繊維の加工性能を支えているのは、CR二色
性比にみられる配向構造に由来するところが大であろう
(実施例)
以下実施例により本発明を具体的に説明する。Further, the processing performance of the inventive fiber is likely to be largely due to the orientation structure seen in the CR dichroic ratio (Example) The present invention will be specifically explained below with reference to Examples.
実施例中の部及び百分率は、断りのない限り重量基準で
示す。Parts and percentages in the examples are expressed on a weight basis unless otherwise specified.
なお、残存ニトリル基量(gaol/ g) 、カルボ
キシル基量(mmol/g)、銅イオン導入量(Ieq
/ g)、LOI(限界酸素指数)及び消臭機能は以下
の方法により求めた。In addition, the amount of residual nitrile groups (gaol/g), the amount of carboxyl groups (mmol/g), the amount of copper ions introduced (Ieq
/ g), LOI (limiting oxygen index), and deodorizing function were determined by the following methods.
(1)残存ニトリル基量(mg+ol/ g)AN/ア
クリル酸メチル(MA)の比が、10010.80/
20.50/ 50.30/ To、10/ 90、の
ポリマーのIRスペクトルから、ニトリル基の吸収ピー
クにおける吸光度を算出して検量線を作り、これに基づ
き、供試繊維のIRスペクトルから架橋結合導入後に残
存しているニトリル基量を算出した。(1) Amount of residual nitrile groups (mg+ol/g) AN/methyl acrylate (MA) ratio is 10010.80/
From the IR spectrum of the polymer of 20.50/50.30/To, 10/90, the absorbance at the absorption peak of the nitrile group was calculated to create a calibration curve, and based on this, the crosslinking was determined from the IR spectrum of the test fiber. The amount of nitrile groups remaining after introduction was calculated.
(2)カルボキシル基t (mmol/ g)十分乾燥
した供試繊維約1gを精秤しくXg)、これに2001
の水を加えた後、50℃に加温しながらIN塩酸水溶液
を添加してpH2にし、次いで0、IN 苛性ソーダ水
溶液で常法に従って滴定曲線を求めた。該滴定曲線から
カルボキシル基に消費された苛性ソーダ水溶液消費量(
Y cc)を求めた。以上の測定結果から、次式によっ
て算出した。(2) Carboxyl group t (mmol/g) Accurately weigh approximately 1 g of sufficiently dried test fiber (X g), add 2001
After adding water, IN hydrochloric acid aqueous solution was added while heating to 50°C to adjust the pH to 2, and then a titration curve was determined using a 0, IN caustic soda aqueous solution according to a conventional method. From the titration curve, the amount of caustic soda aqueous solution consumed by carboxyl groups (
Ycc) was calculated. From the above measurement results, it was calculated using the following formula.
尚、多価カチオンが含まれる場合は、常法によりこれら
のカチオンの量を求め、上式を補正する必要がある。In addition, when polyvalent cations are included, it is necessary to determine the amount of these cations by a conventional method and correct the above formula.
(3)銅イオン導入量(meq/ g)元紫分析により
求めた。(3) Copper ion introduction amount (meq/g) was determined by original purple analysis.
(4)LOI
JIS−に7201の最低WI素素数数測定法に従って
行なった。(4) LOI was conducted according to JIS-7201 lowest WI prime number measurement method.
(5)消臭性能
11gを所定の、濃度ならびに悪臭ガスの入った50(
1++ lバイヤル瓶に入れ、1時間経過後のガス濃度
をガスクロマトグラフで測定した。評価したガス及びそ
の初濃度はアンモニア(NH3) : 690pp剛、
il化水素(H2S) : 600ppm、 メチル
メルカプタン: Iooppm、 である。(5) Deodorizing performance of 11g with the specified concentration and 50(
The mixture was placed in a 1++ l vial, and the gas concentration after 1 hour was measured using a gas chromatograph. The evaluated gases and their initial concentrations were: ammonia (NH3): 690pp;
Hydrogen ilide (H2S): 600 ppm, Methyl mercaptan: Iooppm.
(6)燃焼ガス分析
JIS−に7117法により燃焼し、JIS−KO10
9によりシアン化水素を測定した。(6) Combustion gas analysis: Burned according to JIS-7117 method, JIS-KO10
9, hydrogen cyanide was measured.
実施例 I
A N 90%及びアクリル酸メチル(以下、MAとい
う)10%からなるAN系重合体(30℃ジメチルホル
ムアミド中での極限粘度[η] : 1.2) 10
部を48%のロダンソーダ水溶液90部に溶解した紡糸
原液を、常法に従って紡糸、延伸(全延伸倍率;10倍
)した後、転球/湿球=120℃/60℃の雰囲気下で
乾燥(工程収縮率14%)して単wk維繊度1.5dの
原料!1taI(CR二色性比0.58)を得た。Example I AN polymer consisting of 90% AN and 10% methyl acrylate (hereinafter referred to as MA) (intrinsic viscosity [η] in dimethylformamide at 30°C: 1.2) 10
After spinning and stretching (total stretching ratio: 10 times) according to a conventional method, a spinning stock solution in which 90 parts of a 48% Rodan soda aqueous solution was dissolved was dried in an atmosphere of rolling ball/wet bulb = 120°C/60°C ( Raw material with a process shrinkage rate of 14%) and a single wk fiber fineness of 1.5d! 1taI (CR dichroism ratio 0.58) was obtained.
原料繊維Iを、表1に示した条件でヒドラジン処理及び
NaOH水溶液で処理したのち脱水し、これを5%硫酸
銅水溶液中に80℃で60分間浸漬した。その後水洗、
乾燥を行ない繊維1〜6を得た。得られた!#維の特性
値を試験し、表1,2に示した。Raw material fiber I was treated with hydrazine and an aqueous NaOH solution under the conditions shown in Table 1, dehydrated, and immersed in a 5% aqueous copper sulfate solution at 80° C. for 60 minutes. Then wash with water,
Fibers 1 to 6 were obtained by drying. Got it! # The characteristic values of the fibers were tested and shown in Tables 1 and 2.
本発明例の11〜3は、燃焼時に有毒ガスを発生しない
高度に難燃性て優れた消臭性能を有することが判る。こ
れに対してヒドラジン処理による窒素増加量の少ない比
較例4は消臭性を有するものの引張強度o、6v、/
dと低く、脆い繊維でカード掛は等の加工に耐える物性
を有するものではなかった。窒素増加量が少なく、しか
し加水分解によるカルボキシル基の導入が2 +wmo
l/ gの比較例5は引張強度は 1.2g/dで、難
燃性を有するものの燃焼時にシアン化水素ガスを発生す
るものであった。窒素増加量の多い比較例6はカルボキ
シル基導入量が低くなるため、消臭効果が低く、実用性
がないことが判る。It can be seen that Examples 11 to 3 of the present invention are highly flame retardant and have excellent deodorizing performance without generating toxic gas during combustion. On the other hand, Comparative Example 4, which has a small increase in nitrogen due to hydrazine treatment, has deodorizing properties but has a tensile strength of o, 6v, /
The fiber had a low d and was brittle, and did not have physical properties that could withstand processing such as carding. The amount of nitrogen increase is small, but the introduction of carboxyl groups by hydrolysis is 2 +wmo
Comparative Example 5 of l/g had a tensile strength of 1.2 g/d and was flame retardant, but generated hydrogen cyanide gas when burned. It can be seen that in Comparative Example 6, which has a large increase in nitrogen, the amount of introduced carboxyl groups is low, so the deodorizing effect is low and it is not practical.
以下余白
実施例 2
MAにかえて塩化ビニリデンを使用する以外は実施例1
と同様にして原料繊維II (CR二色性比0.55)
を得、これを実施例1の繊維NO12と同様に処理した
。The following is a blank Example 2 Example 1 except that vinylidene chloride is used instead of MA
Raw material fiber II (CR dichroic ratio 0.55)
was obtained and treated in the same manner as the fiber NO12 of Example 1.
得られた繊維は、望素増加分3.8%、カルボキシル基
導入13.Ommol/gて−CN基の残存は認められ
ず、銅厚入量は2.7meq/ gで引張強度1.6g
/d、LOI32て燃焼時のシアン化水素の発生はなく
、消臭効果はアンモニヤ50pp111以下、硫化水素
o、2ppm以下、メチルメルカプタン8ppmであり
、難燃性並びに消臭性を兼ね備えていた。The obtained fiber had a desired increase of 3.8% and a carboxyl group introduction of 13. No residual -CN group was observed at Ommol/g, copper thickness was 2.7 meq/g, and tensile strength was 1.6 g.
/d, LOI32, there was no generation of hydrogen cyanide during combustion, and the deodorizing effect was less than 50 pp111 of ammonia, less than 2 ppm of hydrogen sulfide, and 8 ppm of methyl mercaptan, and had both flame retardancy and deodorizing properties.
(発明の効果)
本発明の出現により、実用上問題のない繊維物性を維持
し、かつ水膨潤度も一定水準以下に抑えられており、し
かも燃焼時に有毒ガスを発生しない高度の難燃性を兼ね
備えた消臭性繊維を工業的有利に製造する手段を提供し
得た点が本発明の特筆すべき効果である。(Effects of the invention) With the advent of the present invention, fiber properties that do not cause any problems in practical use are maintained, water swelling is suppressed to below a certain level, and high flame retardance is achieved that does not generate toxic gas when burned. A noteworthy effect of the present invention is that it provides a means for industrially advantageously producing fibers with deodorizing properties.
このようにして得られた消臭性繊維は、任意の使用形態
で消臭性が求められる用途分野において広く用いられる
。The deodorizing fiber thus obtained is widely used in fields of application where deodorizing properties are required in any usage form.
特許出願人 東洋紡績株式会社Patent applicant: Toyobo Co., Ltd.
Claims (1)
8.0重量%である架橋アクリル系繊維であって、残存
ニトリル基の一部には銅イオンによりイオン架橋された
0.5〜4.5mmol/gのカルボキシル基が、残部
にはアミド基が導入されており、1g/d以上の引張強
度及び30以上の限界酸素指数を有する難燃性消臭性繊
維。 2、アクリル系繊維にヒドラジン処理により架橋結合を
導入して窒素含有量の増加を1.0〜8.0重量%の範
囲内に調整し、加水分解反応により残存しているニトリ
ル基量の0.5〜4.5mmol/gにカルボキシル基
を、残部にアミド基を導入し、次いで0.5〜4.5m
eq/gの銅イオンによりイオン架橋を形成させること
を特徴とする難燃性を有する消臭性繊維の製造方法。[Claims] 1. The increase in nitrogen content due to hydrazine crosslinking is 1.0 to
8.0% by weight of crosslinked acrylic fibers, some of the remaining nitrile groups contain 0.5 to 4.5 mmol/g of carboxyl groups ionically crosslinked with copper ions, and the rest contains amide groups. A flame-retardant deodorizing fiber that has been introduced into Japan and has a tensile strength of 1 g/d or more and a limiting oxygen index of 30 or more. 2. Introducing crosslinks into acrylic fibers by hydrazine treatment to adjust the increase in nitrogen content within the range of 1.0 to 8.0% by weight, and reduce the amount of remaining nitrile groups to 0 by hydrolysis reaction. Carboxyl groups were introduced into .5 to 4.5 mmol/g and amide groups were introduced into the remainder, then 0.5 to 4.5 mmol/g.
A method for producing deodorizing fibers having flame retardancy, which comprises forming ionic crosslinks with eq/g of copper ions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2312560A JPH04185764A (en) | 1990-11-17 | 1990-11-17 | Deodorant fiber and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2312560A JPH04185764A (en) | 1990-11-17 | 1990-11-17 | Deodorant fiber and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04185764A true JPH04185764A (en) | 1992-07-02 |
Family
ID=18030684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2312560A Pending JPH04185764A (en) | 1990-11-17 | 1990-11-17 | Deodorant fiber and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04185764A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06272174A (en) * | 1993-03-16 | 1994-09-27 | Toray Ind Inc | Deodorizing acrylonitrile synthetic fiber and its production |
EP0722004A3 (en) * | 1995-01-13 | 1997-01-22 | Japan Exlan Co Ltd | Basic gas absorptive fiber and production thereof |
JPH09241967A (en) * | 1996-03-04 | 1997-09-16 | Japan Exlan Co Ltd | Deodorant fiber and its production |
KR100452034B1 (en) * | 1996-06-11 | 2004-12-03 | 도레이 가부시끼가이샤 | Deodorant textile material and its manufacturing method |
WO2005083171A1 (en) * | 2004-03-02 | 2005-09-09 | Japan Exlan Co., Ltd. | Antiviral fiber, process for producing the fiber, and textile product comprising the fiber |
WO2007029597A1 (en) * | 2005-09-05 | 2007-03-15 | Toyo Boseki Kabushiki Kaisha | Allergen inactivating fiber, process for producing the fiber, and fiber product making use of the fiber |
US7696283B2 (en) | 2004-09-07 | 2010-04-13 | Japan Exlan Company Limited | Fiber and a fiber structure having a high flame-retarding property and high moisture-absorptive property |
JP2013204206A (en) * | 2012-03-29 | 2013-10-07 | Daiwabo Holdings Co Ltd | Multifunctional regenerated cellulosic fiber, fiber structure including the same, and method for producing them |
JP2014074243A (en) * | 2012-10-03 | 2014-04-24 | Japan Exlan Co Ltd | Photocatalyst inclusion fiber and fiber structure including the fiber |
-
1990
- 1990-11-17 JP JP2312560A patent/JPH04185764A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06272174A (en) * | 1993-03-16 | 1994-09-27 | Toray Ind Inc | Deodorizing acrylonitrile synthetic fiber and its production |
EP0722004A3 (en) * | 1995-01-13 | 1997-01-22 | Japan Exlan Co Ltd | Basic gas absorptive fiber and production thereof |
JPH09241967A (en) * | 1996-03-04 | 1997-09-16 | Japan Exlan Co Ltd | Deodorant fiber and its production |
KR100452034B1 (en) * | 1996-06-11 | 2004-12-03 | 도레이 가부시끼가이샤 | Deodorant textile material and its manufacturing method |
WO2005083171A1 (en) * | 2004-03-02 | 2005-09-09 | Japan Exlan Co., Ltd. | Antiviral fiber, process for producing the fiber, and textile product comprising the fiber |
JPWO2005083171A1 (en) * | 2004-03-02 | 2008-01-17 | 日本エクスラン工業株式会社 | Antiviral fiber, method for producing the fiber, and fiber product using the fiber |
US7696283B2 (en) | 2004-09-07 | 2010-04-13 | Japan Exlan Company Limited | Fiber and a fiber structure having a high flame-retarding property and high moisture-absorptive property |
WO2007029597A1 (en) * | 2005-09-05 | 2007-03-15 | Toyo Boseki Kabushiki Kaisha | Allergen inactivating fiber, process for producing the fiber, and fiber product making use of the fiber |
JP2007070748A (en) * | 2005-09-05 | 2007-03-22 | Toyobo Co Ltd | Allergen-inactivating fiber, method for producing the fiber and fiber product using the fiber |
JP2013204206A (en) * | 2012-03-29 | 2013-10-07 | Daiwabo Holdings Co Ltd | Multifunctional regenerated cellulosic fiber, fiber structure including the same, and method for producing them |
JP2014074243A (en) * | 2012-10-03 | 2014-04-24 | Japan Exlan Co Ltd | Photocatalyst inclusion fiber and fiber structure including the fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05132858A (en) | Highly moisture absorbing and releasing fiber and its production | |
CN102560747B (en) | Preparation method of durable low-smoke halogen-free flame-retardant polyacrylonitrile fiber | |
JPH04185764A (en) | Deodorant fiber and its production | |
WO2018047344A1 (en) | Modified acrylonitrile-based fiber, method for producing said fiber, and fibrous structure containing said fiber | |
CN104988724B (en) | Polyvinyl alcohol reinforcement modification halogen-free flame retardant polyacrylic composite fiber and preparation method thereof | |
JP5051544B2 (en) | Amino group-containing fiber, method for producing the same, and fiber structure containing the fiber | |
JP2998958B1 (en) | Crosslinked acrylic hygroscopic fiber and method for producing the same | |
CN105986474B (en) | A kind of heat-resistant fireproof polyacrylonitrile fibre and preparation method thereof | |
KR101593726B1 (en) | Crosslinked acrylate-based fibers and the production thereof | |
JP2580724B2 (en) | Manufacturing method of flame retardant fiber | |
US3997515A (en) | Flame retardant shaped materials | |
JP3196577B2 (en) | pH buffering hygroscopic acrylic fiber and method for producing the same | |
Tsukada et al. | Characterization of methacrylonitrile‐grafted silk fibers | |
JP2580729B2 (en) | Manufacturing method of flame retardant fiber | |
JP2010216051A (en) | High-brightness crosslinked acrylate-based fiber having color fastness and method for producing the same | |
JP2019085688A (en) | Hygroscopic acrylonitrile-based fiber, method for producing the same and fiber structure containing the same | |
JP5141914B2 (en) | High whiteness discoloration-resistant cross-linked acrylate fiber and process for producing the same | |
JP2580717B2 (en) | Flame retardant fiber | |
US5766757A (en) | Basic gas absorptive fiber and production thereof | |
JP2009167574A (en) | Hygroscopic conjugate fiber | |
CN113481724A (en) | Halogen-free flame-retardant vinylon and preparation method thereof | |
JP2007023458A (en) | Flame-retardant blended yarn | |
CN117089974A (en) | Flame-retardant and negative oxygen ion composite Lyocell/bamboo fiber health-care fabric | |
Bentis et al. | Intumescent flame retardant properties of graft copolymerized vinyl monomers onto cotton fabric | |
JP2019060066A (en) | Moisture-absorptive acrylonitrile-based fiber, production method of the fiber, and fiber structure containing the fiber |