[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0418512B2 - - Google Patents

Info

Publication number
JPH0418512B2
JPH0418512B2 JP61212989A JP21298986A JPH0418512B2 JP H0418512 B2 JPH0418512 B2 JP H0418512B2 JP 61212989 A JP61212989 A JP 61212989A JP 21298986 A JP21298986 A JP 21298986A JP H0418512 B2 JPH0418512 B2 JP H0418512B2
Authority
JP
Japan
Prior art keywords
luminance signal
signal
color
luminance
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61212989A
Other languages
Japanese (ja)
Other versions
JPS6367889A (en
Inventor
Yoshio Sugimori
Yoshihide Kimata
Hiroya Araki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Television Network Corp
Original Assignee
Nippon Television Network Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Television Network Corp filed Critical Nippon Television Network Corp
Priority to JP61212989A priority Critical patent/JPS6367889A/en
Publication of JPS6367889A publication Critical patent/JPS6367889A/en
Publication of JPH0418512B2 publication Critical patent/JPH0418512B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Color Television Systems (AREA)
  • Processing Of Color Television Signals (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は、カラーテレビジヨン放送における
ガンマ補正に関する。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to gamma correction in color television broadcasting.

<従来の技術> カラーテレビジヨン放送においては、3原色信
号R,G,Bに基いて作成した輝度信号Yと色信
号I及びQをそのまゝ送ると、受像管の非直線性
によつて忠実に色が再現されないため、ガンマ補
正された信号を放送している。現行のガンマ補正
は、 Y′=0.30R1/〓+0.59G1/〓+0.11B1/〓 (1) I′=0.60R1/〓−0.28G1/〓−0.32B1/〓 (2) Q′=0.21R1/〓−0.52G1/〓−0.31B1/〓 (3) に従つて行われている。しかし、この補正方式
は、高彩度の色のときに輝度信号の高域での再現
性が劣化する。
<Prior art> In color television broadcasting, if the luminance signal Y and the color signals I and Q created based on the three primary color signals R, G, and B are sent as they are, they will be distorted due to the nonlinearity of the picture tube. Since colors cannot be faithfully reproduced, a gamma-corrected signal is broadcast. The current gamma correction is Y′=0.30R 1/ 〓+0.59G 1/ 〓+0.11B 1/ 〓 (1) I′=0.60R 1/ 〓−0.28G 1/ 〓−0.32B 1/ 〓 ( 2) Q′=0.21R 1/ 〓−0.52G 1/ 〓−0.31B 1/ 〓 This is done according to (3). However, with this correction method, the high-frequency reproducibility of the luminance signal deteriorates when the color is highly saturated.

彩度の高い色で輝度解像度が劣化するのを防ぐ
一案として、(1)式による輝度信号の代りに Y1/〓=(0.30R+0.59G+0.11B)1/〓 (4) を、(2)式及び(3)式の色信号と共に放送すること
が、日本放送協会編「放送技術双書カラーテレビ
ジヨン」第251〜253頁に示されている。この案に
よれば、受像機画面での輝度は本来の輝度信号Y
に比例するから、白黒受像機の場合は希望の輝度
を再現でき、カラー受像機の場合も高域では正し
い輝度を再現することができる。
One way to prevent the brightness resolution from deteriorating with highly saturated colors is to use Y 1/ 〓 = (0.30R + 0.59G + 0.11B) 1/ 〓 (4) instead of the brightness signal using equation (1), ( Broadcasting together with color signals of formulas 2) and (3) is shown in "Broadcasting Technology Series Color Television," edited by the Japan Broadcasting Corporation, pages 251 to 253. According to this proposal, the brightness on the receiver screen is based on the original brightness signal Y.
Since it is proportional to , a monochrome receiver can reproduce the desired brightness, and a color receiver can also reproduce the correct brightness in the high range.

<発明が解決しようとする問題点> 前述のように、現行のガンマ補正方式は、彩度
が高い色のときに輝度信号の高域での再現性が劣
化する。また、これを解決しようとする上述の案
によるときは、輝度信号の低域での色の再現性が
劣化するのであり、輝度を正しく再現させるため
には、上記図書第252頁第6〜8行に記載されて
いるように、受像機に0.5MHz以下のときにY1/〓を
Y′に変換する回路を設けなければならない不便
がある。
<Problems to be Solved by the Invention> As described above, in the current gamma correction method, the reproducibility of the luminance signal in the high range deteriorates when the color is highly saturated. Furthermore, when using the above-mentioned proposal to solve this problem, the color reproducibility in the low range of the luminance signal deteriorates, and in order to reproduce the luminance correctly, it is necessary to As stated in the line, input Y 1/ 〓 to the receiver when below 0.5MHz.
There is the inconvenience of having to provide a circuit for converting to Y'.

<問題点を解決するための手段> この発明においては、0.5MHz乃至1.5MHzの間
に存在する周波数領域を境界にして、(4)式に従う
輝度信号Y1/〓(第2輝度信号)の高域成分と、(1)
式に従う輝度信号Y′(第3の輝度信号)の低域成
分とを合成して、放送用の輝度信号(第4の輝度
信号)を作成する。
<Means for solving the problem> In the present invention, the luminance signal Y 1/ 〓 (second luminance signal) according to equation (4) is calculated using the frequency region existing between 0.5 MHz and 1.5 MHz as the boundary. High frequency component and (1)
A brightness signal for broadcasting (fourth brightness signal) is created by combining the low-frequency component of the brightness signal Y' (third brightness signal) according to the formula.

輝度信号Y1/〓は、3原色信号R,G,Bより(4)
式右辺の括弧内成分(第1の輝度信号Y)を得る
マトリクスと、このマトリクスによつて得た輝度
信号Yにガンマ補正を行つて輝度信号Y1/〓に変換
するガンマ補正回路とを使用して作成する。
The luminance signal Y 1/ 〓 is from the three primary color signals R, G, B (4)
Uses a matrix that obtains the component in parentheses (first luminance signal Y) on the right side of the equation, and a gamma correction circuit that performs gamma correction on the luminance signal Y obtained by this matrix and converts it into a luminance signal Y 1/ 〓 and create it.

輝度信号Y′は、3原色信号R,G,Bをそれ
ぞれガンマ補正するガンマ補正回路と、このガン
マ補正を受けた3原色信号R1/〓,G1/〓,B1/〓より
(1)式に従う計算を行うマトリクスとを使用して作
成する。なお、このマトリクスでは、同時に(2)式
及び(3)式に従う色信号I′及びQ′も同時に作成され
る。
The luminance signal Y' is generated from a gamma correction circuit that gamma-corrects the three primary color signals R, G, and B, respectively, and the three primary color signals R 1/ 〓, G 1/ 〓, B 1/ 〓 that have undergone the gamma correction.
It is created using a matrix that performs calculations according to formula (1). Note that in this matrix, color signals I' and Q' according to equations (2) and (3) are also created at the same time.

輝度信号Y1/〓の境界周波数領域より高域成分の
抽出には高域通過濾波器を使用し、輝度信号
Y′の境界周波数領域より低域成分の抽出には低
域通過濾波器を使用する。その上で、それぞれ濾
波器を通過した両輝度信号は、加算器(合成回
路)で合成して、放送用鉄度信号(第4の輝度信
号)となし、上記色信号と共に、放送用カラーテ
レビシヨン信号の作成に使用する。
A high-pass filter is used to extract high-frequency components from the boundary frequency region of the luminance signal Y 1/ 〓.
A low-pass filter is used to extract components lower than the boundary frequency region of Y′. Then, both luminance signals that have passed through the filters are combined in an adder (synthesizing circuit) to form a broadcasting intensity signal (fourth luminance signal), which is then combined with the color signal for broadcasting color television. used to create a signal.

上記境界周波数領域は、色信号Q′成分の上限
の0.5MHzから色信号I′成分の上限の1.5MHzの間
を指す。この領域内に或る固定された境界周波数
f(例えば1.0MHz)を設定し、この境界周波数f
以下では輝度信号Y′を使用し、境界周波数f以
上では輝度信号Y1/〓を使用することができる。
The boundary frequency region refers to a range from 0.5 MHz, which is the upper limit of the color signal Q' component, to 1.5 MHz, which is the upper limit of the color signal I' component. A fixed boundary frequency f (for example, 1.0MHz) is set within this region, and this boundary frequency f
In the following, the luminance signal Y' will be used, and above the boundary frequency f, the luminance signal Y 1/ 〓 can be used.

しかし、境界周波数fは、色信号I′成分とQ′成
分の比率によつて連続的に変化させ、I′成分が多
い時には1.5MHzに近い値をとらせ、Q′成分が多
い時には0.5MHzに近い値をとらせるとが望まし
い。
However, the boundary frequency f is continuously changed depending on the ratio of the color signal I' component and Q' component, and when the I' component is large, it takes a value close to 1.5 MHz, and when the Q' component is large, it takes a value close to 1.5 MHz. It is desirable to have a value close to .

また、0.5〜1.5MHzの境界周波数領域内では輝
度信号としてY′とY1/〓の混合信号を用いてもよ
い。この混合比率は、例えば1対1と言つた固定
された比率でもよいが、I′成分が多いときには輝
度信号Y′の含有率が高く、Q′成分が多いときに
は輝度信号Y1/〓の含有率が高くなるように連続的
に変化させることが望ましい。
Furthermore, within the boundary frequency region of 0.5 to 1.5 MHz, a mixed signal of Y' and Y 1/ 〓 may be used as the luminance signal. This mixing ratio may be a fixed ratio such as 1:1, but when the I' component is large, the luminance signal Y' content is high, and when the Q' component is large, the luminance signal Y 1/ 〓 content is high. It is desirable to change the rate continuously so that the rate increases.

なお、これらの境界周波数fや混合比率の決定
に際しては、上述のようにガンマ補正された色信
号I′及びQ′を用いる代りに、ガンマ補正されてい
ない色信号I及びQを用いてもよい。
Note that when determining these boundary frequencies f and mixing ratios, instead of using the gamma-corrected color signals I' and Q' as described above, the non-gamma-corrected color signals I and Q may be used. .

<作用> 上述の説明においては、色信号が関係しない輝
度信号の高域分として、(4)式に従う第2の輝度信
号Y1/〓を送信するから、受像側では高域における
輝度の再現性の劣化を除くことができる。そして
色信号I及びQが影響する輝度信号の低域分とし
ては、(1)式に従う第3の輝度信号Y′を送信する
から、現行の放送方式と同様に色の再現性には支
障を来たさない。しかも、このような送信を行う
ことによつて、受像側では特殊な受像機を使用す
ることなくして、改善された画像を得ることがで
きる。
<Function> In the above explanation, since the second luminance signal Y 1/ 〓 according to equation (4) is transmitted as the high frequency portion of the luminance signal that is not related to the color signal, the receiving side cannot reproduce the luminance in the high frequency range. It can eliminate sexual deterioration. As for the low-frequency portion of the luminance signal affected by the color signals I and Q, the third luminance signal Y' according to equation (1) is transmitted, so there is no problem with color reproducibility as in the current broadcasting system. I won't come. Moreover, by performing such transmission, an improved image can be obtained on the receiving side without using a special receiver.

また、色信号のI成分が多いときは輝度信号の
1.5MHz以下の成分が色の再現に関係し、Q成分
が多いときは輝度信号の0.5MHz以下の成分が色
の再現に関係するから、第2及び第3の輝度信号
Y1/〓及びY′の境界周波数fを色信号IとQとの比
率によつて調節し、或いは0.5〜1.5MHzの間の境
界周波数領域における第2及び第3の輝度信号の
混合比率を、色信号IとQとの比率によつて調節
すれば、色の再現性を全く損うことなく、高域で
の再現性、即ち分解能を最大限に改善することが
できる。
Also, when the I component of the color signal is large, the luminance signal
The components below 1.5MHz are related to color reproduction, and when there are many Q components, the components below 0.5MHz of the luminance signal are related to color reproduction, so the second and third luminance signals
Adjust the boundary frequency f of Y 1/ 〓 and Y' by the ratio of color signals I and Q, or adjust the mixing ratio of the second and third luminance signals in the boundary frequency region between 0.5 and 1.5 MHz. By adjusting the ratio of the color signals I and Q, the reproducibility in high frequencies, that is, the resolution, can be improved to the maximum without impairing the color reproducibility at all.

<実施例> 第1図において、1はカラーカメラで、3原色
の映像信号R,G,Bを出力する。これらの出力
は、マトリクス2において輝度信号Yと色信号I
及びQに変換され、輝度信号はガンマ補正回路3
において(4)式に従う輝度信号Y1/〓に変換される。
また、映像信号R,G,Bはそれぞれガンマ補正
回路4,5,6で処理されて、ガンマ補正された
映像信号R1/〓,G1/〓,B1/〓となり、これらはマト
リクス7に導入されて、(1)式に従う輝度信号
Y′及び(2)(3)式に従う色信号I′、Q′に変換される。
<Embodiment> In FIG. 1, 1 is a color camera which outputs video signals R, G, and B of three primary colors. These outputs are divided into a luminance signal Y and a color signal I in matrix 2.
and Q, and the luminance signal is sent to the gamma correction circuit 3.
is converted into a luminance signal Y 1/ 〓 according to equation (4).
Furthermore, the video signals R, G, and B are processed by gamma correction circuits 4, 5, and 6, respectively, and become gamma-corrected video signals R 1/ 〓, G 1/ 〓, B 1/ 〓, which are sent to the matrix 7. is introduced into the luminance signal according to equation (1).
Y' and color signals I' and Q' according to equations (2) and (3).

8は境界周波数fから上方を通過させる濾波器
で、ガンマ補正回路3が出力した輝度信号Y1/〓を
濾波して加算器10に導き、9は境界周波数fか
ら下方を通過させる濾波器で、マトリクス7が出
力した輝度信号Y′を濾波して加算器10に導く。
加算器10の出力は、4.2MHzの低域通過濾波器
11を通してNTSCエンコーダ14に導かれ、マ
トリクス7が出力した色信号I′及びQ′はそれぞれ
1.5MHzの低域通過濾波器12及び0.5MHzの低域
通過濾波器13を通してNTSCエンコーダ14に
導かれる。
8 is a filter that passes the signal above the boundary frequency f, which filters the luminance signal Y 1/ 〓 outputted by the gamma correction circuit 3 and guides it to the adder 10, and 9 is a filter that passes the signal below the border frequency f. , the luminance signal Y' output from the matrix 7 is filtered and guided to the adder 10.
The output of the adder 10 is guided to the NTSC encoder 14 through the 4.2MHz low-pass filter 11, and the color signals I' and Q' output by the matrix 7 are respectively
It is guided to an NTSC encoder 14 through a 1.5 MHz low pass filter 12 and a 0.5 MHz low pass filter 13.

15は濾液器遮断周波数fの制御回路で、マト
リクス2が出力した色信号I成分とQ成分との比
率に応じ、例えば第2図に示すような特性で制御
する。即ち、濾波器8及び9の遮断周波数fは、
第5図に示すようにK=I/(I+Q)が0のと
きは0.5MHzになされ、K=1のときは1.5MHzに
なされ、その間ではKの値に応じて連続的に変化
する。濾波器8及び9は、このように遮断周波数
fの制御が可能なように、電流制御型インダクタ
や電圧制御型キヤパシタを用いるなどして構成す
る。
Reference numeral 15 denotes a control circuit for the filter cutoff frequency f, which controls the filter cutoff frequency f according to the ratio between the I component and the Q component of the color signal outputted by the matrix 2, for example, with characteristics as shown in FIG. That is, the cutoff frequency f of the filters 8 and 9 is
As shown in FIG. 5, when K=I/(I+Q) is 0, the frequency is set to 0.5 MHz, when K=1, the frequency is set to 1.5 MHz, and in between, it changes continuously depending on the value of K. The filters 8 and 9 are configured using current-controlled inductors and voltage-controlled capacitors so that the cutoff frequency f can be controlled in this manner.

上述の装置において、加算器10において加算
された輝度信号は、周波数fより下方が(1)式に従
い、周波数fより上方が(4)式に従つている。
NTSCエンコーダから出力されて放送されるカラ
ーテレビジヨン放送信号は、このような輝度信号
と、(2)式及び(3)式に従う色信号とを含んでいる。
よつて、この放送信号を受像した場合は、分解能
が(4)式の輝度信号の採用によつて向上し、色の再
現性は(1)式の輝度信号の採用によつて忠実に行わ
れる。しかも、境界周波数を色信号I成分とQ成
分の含有量に応じて調節しているために、色の再
現性を損うことなく、最大限に分解能の向上を計
ることができる。
In the above-mentioned device, the luminance signals added by the adder 10 below the frequency f follow equation (1), and above the frequency f follow equation (4).
The color television broadcast signal output from the NTSC encoder and broadcast includes such a luminance signal and a color signal according to equations (2) and (3).
Therefore, when this broadcast signal is received, resolution is improved by using the luminance signal of equation (4), and color reproducibility is faithfully achieved by using the luminance signal of equation (1). . Moreover, since the boundary frequency is adjusted according to the contents of the I component and Q component of the color signal, resolution can be improved to the maximum without impairing color reproducibility.

第3図に示す実施例では、濾波器8及び9とし
てデジタルフイルタを使用する。マトリクス2で
得た色信号I成分及びQ成分は、それぞれ遮断周
波数1.5MHz及び0.5MHzの低域通過濾波器16及
び17を通過した後、AD変換器18及び19に
よつてデジタル化される。濾波器制御回路15に
おいては、前記K=I/(I+Q)の値を計算
し、その計算値Kに対応するパラメータ値fをル
ツクアツプテーブル20によつて見付け、デジタ
ルフイルタ8及び9の遮断周波数がこのパラメー
タ値fに一致するように、これらフイルタを制御
する。
In the embodiment shown in FIG. 3, digital filters are used as filters 8 and 9. The color signal I component and Q component obtained from the matrix 2 are digitized by AD converters 18 and 19 after passing through low-pass filters 16 and 17 with cut-off frequencies of 1.5 MHz and 0.5 MHz, respectively. The filter control circuit 15 calculates the value of K=I/(I+Q), finds the parameter value f corresponding to the calculated value K using the lookup table 20, and sets the cutoff frequency of the digital filters 8 and 9. These filters are controlled so that f matches this parameter value f.

第4図に示す実施例では、輝度信号Y′は0.5M
Hz及び1.5MHzの低域通過濾波器21及び22に
与えられ、これら濾波器21,22の出力は、
(1−K)対Kの割合で可変比率合成器23で合
成される。また輝度信号Y1/〓は、0.5MHz及び
1.5MHzの高域通過濾波器24及び25に与えら
れ、これら濾波器24,25の出力は、(1−K)
対Kの割合で可変比率合成器26で合成される。
合成器23及び26の出力は加算器10で互に加
算され、放送用の輝度信号として利用される。2
7は、マトリクス2が出力した色信号I成分及び
Q成分からK=I/(I+Q)の値Kを算出する
演算回路で、その出力Kにより、加変比率合成器
23及び26の合成比率を制御している。
In the embodiment shown in FIG. 4, the luminance signal Y' is 0.5M
Hz and 1.5MHz low-pass filters 21 and 22, and the outputs of these filters 21 and 22 are
The signals are synthesized by the variable ratio synthesizer 23 at a ratio of (1-K) to K. Also, the luminance signal Y 1/ 〓 is 0.5MHz and
The outputs of these filters 24 and 25 are (1-K).
A variable ratio synthesizer 26 synthesizes the signals at a ratio of K to K.
The outputs of the combiners 23 and 26 are added together in an adder 10 and used as a brightness signal for broadcasting. 2
7 is an arithmetic circuit that calculates the value K of K=I/(I+Q) from the color signal I component and Q component outputted by the matrix 2, and the output K is used to calculate the combination ratio of the additive ratio combiners 23 and 26. It's in control.

第4図示の実施例では、放送用輝度信号は、第
6図に示すように0.5MHz以下の低域分は(1)式に
従う信号Y′であり、1.5MHz以上の高域分は(4)式
に従う信号Y1/〓である。そして、0.5MHzから
1.5MHzの間の中間域では、両信号Y′及びY1/〓が
K対(1−K)の割合で混合されており、I成分
の比率が大きいときは信号Y′の含有率が高く、
I成分の比率が小さくなれば逆に信号Y1/〓の含有
率が高まる。よつて、第1図及び第3図の実施例
と同様に、色の再現性を損うことなく最大限に分
解能の向上を計ることができる。
In the embodiment shown in Figure 4, the broadcasting brightness signal is, as shown in Figure 6, the low frequency part of 0.5 MHz or less is a signal Y' according to equation (1), and the high frequency part of 1.5 MHz or more is (4 ) is the signal Y 1/ 〓 according to the equation. And from 0.5MHz
In the intermediate range between 1.5MHz, both signals Y' and Y 1/ 〓 are mixed at a ratio of K to (1-K), and when the ratio of I component is large, the content of signal Y' is high. ,
Conversely, as the ratio of the I component decreases, the content of the signal Y 1/ 〓 increases. Therefore, similar to the embodiments shown in FIGS. 1 and 3, it is possible to maximize resolution without impairing color reproducibility.

<発明の効果> 以上のように、この発明によるときは、現行の
放送方式との共立性を得ながら、色の再現性を損
うことなく、輝度信号の高域における再現性を向
上して、解像度の高い画像を得ることができる。
<Effects of the Invention> As described above, the present invention improves the reproducibility in the high range of luminance signals without impairing color reproducibility while achieving compatibility with the current broadcasting system. , it is possible to obtain high resolution images.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明を実施した放送装置の映像信
号処理部分のブロツク図、第2図は同実施例にお
ける濾波器8及び9の遮断周波数の制御特性図、
第3図及び第4図はそれぞれこの発明の他の実施
例のブロツク図、第5図は第2図及び第3図に示
す実施例の動作の説明図、第6図は第4図に示す
実施例の動作の説明図である。 2及び7……マトリクス、3〜6……ガンマ補
正回路、8,9,21,22,24,25……濾
波器、10……加算器(合成回路)、R,G,B
……3原色信号、Y……第1の輝度信号、Y1/〓…
…第2の輝度信号、Y′……第3の輝度信号、I,
I′,Q,Q′……色信号。
FIG. 1 is a block diagram of the video signal processing portion of a broadcasting device embodying the present invention, and FIG. 2 is a control characteristic diagram of the cutoff frequency of filters 8 and 9 in the same embodiment.
3 and 4 are block diagrams of other embodiments of the present invention, FIG. 5 is an explanatory diagram of the operation of the embodiment shown in FIGS. 2 and 3, and FIG. 6 is shown in FIG. 4. It is an explanatory diagram of operation of an example. 2 and 7... Matrix, 3-6... Gamma correction circuit, 8, 9, 21, 22, 24, 25... Filter, 10... Adder (synthesizing circuit), R, G, B
...Three primary color signals, Y...First luminance signal, Y 1/ 〓...
...Second luminance signal, Y'...Third luminance signal, I,
I', Q, Q'...color signal.

Claims (1)

【特許請求の範囲】 1 3原色信号より第1の輝度信号を得る第1の
マトリクスと、第1の輝度信号にガンマ補正を行
なつて第2の輝度信号を得るガンマ補正回路と、
上記3原色信号にそれぞれガンマ補正を行なうガ
ンマ補正回路と、このガンマ補正された3原色信
号より第3の輝度信号を得る第2のマトリクス
と、第1または第2のマトリクスによつて得られ
る色信号中におけるI信号成分とQ信号成分の比
率を求める手段と、0.5MHz以下の帯域では第3
の輝度信号であり、1.5MHz以上の帯域では第2
の輝度信号であり、0.5MHz乃至1.5MHzの帯域で
は上記比率がI信号成分の多いことを示す数値で
あるときは第3の輝度信号成分の占める割合が大
きくQ信号成分の多いことを示す数値であるとき
は第2の輝度信号成分の占める割合が大きい第4
の輝度信号を上記比率に基づいて作成する手段
と、第4の輝度信号および第2のマトリクスによ
つて得られる色信号によつて放送用カラーテレビ
ジヨン信号を生成する手段とよりなるカラーテレ
ビジヨン放送装置。 2 第4の輝度信号の作成手段において、0.5M
Hz乃至1.5MHzの間に上記比率に従つて連続的に
制御される境界周波数を設定し、この境界周波数
より下方の領域では第3の輝度信号を取出し、こ
の境界周波数より上方の領域では第2の輝度信号
を取出すことを特徴とする特許請求の範囲第1項
記載のカラーテレビジヨン放送装置。 3 第4の輝度信号の作成手段において、0.5M
Hz乃至1.5MHzの間の帯域では、第2及び第3の
輝度信号を上記比率に従つて混合していることを
特徴とする特許請求の範囲第1項記載のカラーテ
レビジヨン放送装置。
[Scope of Claims] 1. A first matrix that obtains a first luminance signal from three primary color signals; a gamma correction circuit that performs gamma correction on the first luminance signal to obtain a second luminance signal;
a gamma correction circuit that performs gamma correction on each of the three primary color signals; a second matrix that obtains a third luminance signal from the gamma-corrected three primary color signals; and a color obtained by the first or second matrix. A means for determining the ratio of the I signal component and Q signal component in the signal, and a third method in the band below 0.5 MHz.
It is a luminance signal of
In the band from 0.5MHz to 1.5MHz, if the above ratio is a value indicating that there are many I signal components, it is a value that indicates that the proportion occupied by the third luminance signal component is large and that there are many Q signal components. , the fourth luminance signal component accounts for a large proportion of the second luminance signal component.
a fourth luminance signal based on the ratio; and a fourth luminance signal and a color signal obtained by the second matrix to generate a broadcasting color television signal. Broadcasting equipment. 2 In the fourth luminance signal generation means, 0.5M
A boundary frequency that is continuously controlled according to the above ratio is set between Hz and 1.5MHz, the third luminance signal is extracted in the area below this boundary frequency, and the second brightness signal is extracted in the area above this boundary frequency. 2. A color television broadcasting apparatus according to claim 1, wherein the color television broadcasting apparatus extracts a luminance signal. 3 In the fourth luminance signal generation means, 0.5M
2. The color television broadcasting apparatus according to claim 1, wherein in a band between Hz and 1.5 MHz, the second and third luminance signals are mixed according to the above ratio.
JP61212989A 1986-09-09 1986-09-09 Color television broadcasting equipment Granted JPS6367889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61212989A JPS6367889A (en) 1986-09-09 1986-09-09 Color television broadcasting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61212989A JPS6367889A (en) 1986-09-09 1986-09-09 Color television broadcasting equipment

Publications (2)

Publication Number Publication Date
JPS6367889A JPS6367889A (en) 1988-03-26
JPH0418512B2 true JPH0418512B2 (en) 1992-03-27

Family

ID=16631620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61212989A Granted JPS6367889A (en) 1986-09-09 1986-09-09 Color television broadcasting equipment

Country Status (1)

Country Link
JP (1) JPS6367889A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD737986S1 (en) 2013-05-29 2015-09-01 Spidertech Inc. Kinesiology tape strip with release liner grid lines

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0457585A (en) * 1990-06-27 1992-02-25 Matsushita Electric Ind Co Ltd Color image pickup device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546105A (en) * 1978-09-29 1980-03-31 Tokyo Electric Co Ltd Electronic weighing machine with price indicator
JPS5741091A (en) * 1980-08-25 1982-03-06 Hitachi Ltd Signal processing circuit of color video camera
JPS5799089A (en) * 1980-12-12 1982-06-19 Nippon Hoso Kyokai <Nhk> Detail compensation system
JPS6031151A (en) * 1983-07-29 1985-02-16 Toshiba Corp Formation of image

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546105A (en) * 1978-09-29 1980-03-31 Tokyo Electric Co Ltd Electronic weighing machine with price indicator
JPS5741091A (en) * 1980-08-25 1982-03-06 Hitachi Ltd Signal processing circuit of color video camera
JPS5799089A (en) * 1980-12-12 1982-06-19 Nippon Hoso Kyokai <Nhk> Detail compensation system
JPS6031151A (en) * 1983-07-29 1985-02-16 Toshiba Corp Formation of image

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD737986S1 (en) 2013-05-29 2015-09-01 Spidertech Inc. Kinesiology tape strip with release liner grid lines

Also Published As

Publication number Publication date
JPS6367889A (en) 1988-03-26

Similar Documents

Publication Publication Date Title
JPH0310481A (en) Multiplex signal transmission and multiplex signal receiver
JPS6222309B2 (en)
US5216505A (en) Scanning line interpolation circuit
JPH0418512B2 (en)
US5912702A (en) Video camera and image enhancing apparatus
JPH09224186A (en) Video camera and control correcting device
JPH089199A (en) Method and device for processing image pickup signal
JPH0435111B2 (en)
JPS622506B2 (en)
JPS62264771A (en) Contour correcting device
JP3192212B2 (en) Color television signal processing circuit
JP2699582B2 (en) Contour corrector
JPH0578235B2 (en)
JP2667496B2 (en) Color television transmission luminance signal correction circuit
JPH02285779A (en) Contour correction device
JPS63275285A (en) Compensation system for gamma correction on image-sending side of television signal
JPH07143516A (en) Video signal compressor
JP2810310B2 (en) High-frequency compensation device for chroma image
JP2739991B2 (en) Luminance signal correction method for color television
JPS62143589A (en) Contour corrector
KR0183690B1 (en) Image processing apparatus having digital picture quality correction unit
JPH0435952B2 (en)
JPH044693A (en) Video signal processing unit
JPH01274584A (en) Picture quality improving device for television camera
JPH0435490A (en) Video signal processor