JPH04184185A - Searching for invisible article - Google Patents
Searching for invisible articleInfo
- Publication number
- JPH04184185A JPH04184185A JP2308763A JP30876390A JPH04184185A JP H04184185 A JPH04184185 A JP H04184185A JP 2308763 A JP2308763 A JP 2308763A JP 30876390 A JP30876390 A JP 30876390A JP H04184185 A JPH04184185 A JP H04184185A
- Authority
- JP
- Japan
- Prior art keywords
- data
- point
- normalized
- reflected wave
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007935 neutral effect Effects 0.000 claims description 10
- 238000001514 detection method Methods 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 238000010606 normalization Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Landscapes
- Geophysics And Detection Of Objects (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、収集した反射波データに基づき不可視物体
の位置を検出する不可視物体探査方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an invisible object detection method for detecting the position of an invisible object based on collected reflected wave data.
一例として、地中に存在する管路の地中探査を挙げて説
明する。As an example, underground exploration of underground pipes will be explained.
地表から地中に向はパルス信号の電磁波を放射させ、そ
の反射波を記憶する。これを移動させながら一定走査距
離毎に行い、走査終了後に反射波の画像データ(反射波
データ)を得、このデータを入力として用いる。Pulse electromagnetic waves are emitted from the earth's surface into the ground, and the reflected waves are stored. This is performed every fixed scanning distance while moving, and after the scanning is completed, image data of reflected waves (reflected wave data) is obtained, and this data is used as input.
第4図は収集した反射波データの一例である。FIG. 4 is an example of collected reflected wave data.
横軸の上段は移動走査する場合の移動距離を、横軸の下
段は反射波の振幅を、また縦軸はパルス信号送信から受
信までの時間を示し、深さ方向と対応している。The upper row of the horizontal axis shows the moving distance during moving scanning, the lower row of the horizontal axis shows the amplitude of the reflected wave, and the vertical axis shows the time from pulse signal transmission to reception, which corresponds to the depth direction.
次に、収集した反射波データについて、その反射波デー
タの振幅方向の一方へ正の符号を他方へ負の符号を付与
し、中立値(0)から正の値へ変化する点、正の値から
負の値へ変化する点、負の値から中立値に変化する点の
振幅値を「+1」に、その他の振幅値を「0」に規格化
して、規格化データを作成する。反射波データの1ライ
ンの規格化の様子を第5図に示す。Next, for the collected reflected wave data, a positive sign is assigned to one side of the amplitude direction of the reflected wave data and a negative sign is assigned to the other side, and the point where the reflected wave data changes from a neutral value (0) to a positive value is determined by Normalized data is created by normalizing the amplitude values at the points where the amplitude changes from a negative value to a negative value and from a negative value to a neutral value to "+1", and the other amplitude values to "0". FIG. 5 shows how one line of reflected wave data is normalized.
そして、この作成した規格化データに対し、合成開口法
を適用する。この合成開口法については、特願平2−5
8173号に示されているので、その詳細については省
略する。Then, the synthetic aperture method is applied to the created normalized data. Regarding this synthetic aperture method, patent application No. 2-5
Since it is shown in No. 8173, its details will be omitted.
規格化データ上では管路は双曲線状の像になって現れる
ため、合成開口処理を行うことにより、双曲線上のデー
タがその双曲線の頂点に集結する。Since the conduit appears as a hyperbolic image on the normalized data, by performing synthetic aperture processing, the data on the hyperbola are concentrated at the vertex of the hyperbola.
したがって、管路の存在する位置に高いデータ値を持つ
画像データが得られ、この画像データのピークの存在す
る位置を管路の位置として観測者が認識できる。あるい
は、データレベルを検出できる演算装置を用いて自動的
に算出することができる。Therefore, image data having a high data value is obtained at the position where the conduit exists, and the observer can recognize the position where the peak of this image data exists as the position of the conduit. Alternatively, it can be automatically calculated using a calculation device that can detect the data level.
しかしながら、反射波には管路からの大きな反射波以外
に、小さな波が雑音どして存在し、そのため、規格化デ
ータには多数の雑音点が含まれている。管路からの反射
波は横方向に連続性を持っているが、雑音部は横方向の
相関の低いものである。こういった雑音を多く含むro
、+IJの2値規格化データを用いた合成開口処理の結
果、管路からの反射波は集結するが、反射波に含まれる
雑音が多く残り、擬似集結し、誤った点が管路の位置と
して観測される虞れがある。However, in addition to the large reflected waves from the pipe, the reflected waves include small waves as noise, and therefore the normalized data includes many noise points. The reflected wave from the pipe has continuity in the lateral direction, but the noise part has low correlation in the lateral direction. ro that contains a lot of noise like this
As a result of synthetic aperture processing using binary normalized data of There is a possibility that it will be observed as
第6図は第4図に示した反射波データより生成した2値
規格化データに対し合成開口処理を行った結果を示す。FIG. 6 shows the result of performing synthetic aperture processing on the binary normalized data generated from the reflected wave data shown in FIG.
黒丸点で示される位置データが「+1」に規格化され、
これ以外の点は全て「0」に規格化される。合成開口処
理により、破線21で示す双曲線上の点は、矢印で示す
点23に集結する。この結果、この点の値は「+7」と
なり、ピークとなる。また、第6図の下部に現れる雑音
部分のデータについて合成開口処理を行うと、破線22
の双曲線上の点が矢印で示す点24に集結し、この点の
値は「+5」となり、かなり大きい値で、誤認識を引き
起こす原因となることが分かる。The position data indicated by black dots is normalized to "+1",
All other points are normalized to "0". By the synthetic aperture processing, points on the hyperbola indicated by the broken line 21 converge at a point 23 indicated by the arrow. As a result, the value at this point becomes "+7", which is the peak. Furthermore, when synthetic aperture processing is performed on the data of the noise portion appearing at the bottom of Fig. 6, the broken line 22
The points on the hyperbola converge at point 24 indicated by the arrow, and the value at this point is "+5", which is a fairly large value and can cause erroneous recognition.
本発明はこのような課題を解決するために提案されたも
ので、収集した反射波データの振幅方向の一方へ第1の
状態符号を他方へ第2の状態符号を付与し、中立状態か
ら第1の状態符号へ変化する点および第2の状態符号か
ら中立状態へ変化する点の振幅値を「+1」に、第1の
状態符号から第2の状態符号へ変化する点の振幅値をr
−IJに、その他の振幅値を「0」に規格化して規格化
データを作成し、この作成した規格化データに対し合成
開口処理を行うようにしたものである。The present invention was proposed in order to solve such problems, and it assigns a first state code to one side of the collected reflected wave data in the amplitude direction and a second state code to the other side, and changes the collected reflected wave data from the neutral state to the second state code. The amplitude value at the point where the state code changes to 1 and the point where the second state code changes to the neutral state is set to "+1", and the amplitude value at the point where the state code changes from the first state code to the second state code is set to r.
-IJ, other amplitude values are normalized to "0" to create normalized data, and the created normalized data is subjected to synthetic aperture processing.
したがってこの発明によれば、合成開口処理を行うデー
タとして、従来のrO,+IJの2値規格化データの代
わりにr−1,0,+IJの3値規格化データが用いら
れるものとなる。これにより、従来誤認識の原因となっ
ていた雑音部分は、合成開口処理で加算の対象となる双
曲線上で−1゜0、+1がランダムに存在するものとな
り、−1と+1が互いに打ち消し合い、ピーク値を不可
視物体の位置に比べて小さく抑えることが可能となる。Therefore, according to the present invention, ternary normalized data of r-1, 0, +IJ is used as data for performing synthetic aperture processing instead of conventional binary normalized data of rO, +IJ. As a result, the noise part that conventionally caused erroneous recognition becomes -1°0, +1 randomly existing on the hyperbola that is the target of addition in synthetic aperture processing, and -1 and +1 cancel each other out. , it is possible to suppress the peak value to be smaller than the position of the invisible object.
以下、本発明に係る不可視物体探査方法を、−例として
、地中に存在する管路の地中探査を挙げて説明する。Hereinafter, the method for detecting an invisible object according to the present invention will be explained by taking, as an example, an underground probe for a pipe existing underground.
先ず、従来と同様にして、反射波データを収集する。次
に、収集した反射波データについて、その反射波データ
の振幅方向の一方へ正の符号を他方へ負の符号を付与し
く第4図参照)、中立値(O)から正の値へ変化する点
および負の値から中立値に変化する点の振幅値を「+1
」に、正の値から負の値へ変化する点の振幅値をr−I
Jに、その他の振幅値を「0」に規格化して、規格化デ
ータを作成する。反射波データの1ラインの規格化の様
子を第2図に示す。First, reflected wave data is collected in the same manner as before. Next, for the collected reflected wave data, give a positive sign to one side and a negative sign to the other side in the amplitude direction of the reflected wave data (see Figure 4), and change from the neutral value (O) to a positive value. The amplitude value of the point and the point that changes from negative value to neutral value is set to “+1”.
”, the amplitude value at the point where it changes from a positive value to a negative value is r−I
J and other amplitude values are normalized to "0" to create normalized data. Figure 2 shows how one line of reflected wave data is normalized.
そして、この作成した3値規格化データに対し、合成開
口処理を行う。Then, synthetic aperture processing is performed on the created three-value normalized data.
第3図は第4図に示した反射波データより作成した3値
規格化データに対し合成開口処理を行った結果を示す。FIG. 3 shows the result of synthetic aperture processing performed on the ternary normalized data created from the reflected wave data shown in FIG. 4.
黒丸点で示される位置データは「+1」に、白丸点で示
される位置データはr−1」に規格化され、これ以外の
点は全て「0」に規格化される。合成開口処理により、
破線11で示す双曲線上の点は、矢印で示す点13に集
結する。Position data indicated by black dots is normalized to "+1", position data indicated by white dots is normalized to "r-1", and all other points are normalized to "0". With synthetic aperture processing,
Points on the hyperbola indicated by a broken line 11 converge at a point 13 indicated by an arrow.
この結果、この点の値は「+7」となり、ピークとなる
。また、第3図の下部に現れる雑音部分のデータについ
て合成開口処理を行うと、破線12の双曲線上の点が矢
印で示す点14に集結し、この点の値は「−1」とな゛
す、雑音部分の擬似集結が抑えられる。すなわち、管路
の位置はピークを持ち、雑音点は+1と−1との打ち消
し合いにより抑制されるものとなり、誤認識を引き起こ
す虞れかないものとなる。第1図に上述の処理フローを
示す。また、下記表に、第6図に示した従来の合成開口
処理結果との比較を示す。As a result, the value at this point becomes "+7", which is the peak. Furthermore, when synthetic aperture processing is performed on the data of the noise portion appearing at the bottom of Fig. 3, the points on the hyperbola of the broken line 12 converge at the point 14 indicated by the arrow, and the value of this point becomes "-1". As a result, pseudo-concentration of noise parts can be suppressed. That is, the position of the conduit has a peak, and the noise point is suppressed by the cancellation of +1 and -1, so that there is no possibility of erroneous recognition. FIG. 1 shows the above-mentioned processing flow. Further, the table below shows a comparison with the conventional synthetic aperture processing results shown in FIG.
なお、上述した実施例においては、電磁波を放射して探
査を行うものとしたが、超音波を放射して探査を行うも
のとしてもよく、これ以外にも放射する送信波は種々考
えられる。In addition, in the above-mentioned embodiment, the exploration is performed by emitting electromagnetic waves, but the exploration may be performed by emitting ultrasonic waves, and various other transmission waves can be considered.
また、規格化データを作成する際、反射波データの変化
率に応じて、規格化する振幅値に重み付けをするように
してもよい。Further, when creating the normalized data, the amplitude values to be normalized may be weighted according to the rate of change of the reflected wave data.
また、第2図において、その反射波データの振幅の図示
右方向を正1図示左方向を負として符号を付与したが、
右方向を負、左方向を正としてもよい。この場合、中立
値(0)がら負の値へ変化する点および正の値から中立
値に変化する点の振幅値を「+1」に、負の値から正の
値へ変化する点の振幅値を「−1」に、その他の振幅値
を「0」に規格化して、規格化データを作成するものと
する。In addition, in FIG. 2, the amplitude of the reflected wave data is given a positive sign in the right direction in the figure and a negative sign in the left direction in the figure.
The right direction may be negative and the left direction may be positive. In this case, the amplitude value at the point where the neutral value (0) changes to a negative value and the point where the positive value changes to the neutral value is set to "+1", and the amplitude value at the point where the value changes from a negative value to a positive value. It is assumed that normalized data is created by normalizing the amplitude values to "-1" and the other amplitude values to "0".
以上説明したことから明らかなようにこの発明によると
、合成開口処理を行うデータとして[−1、O,+IJ
の3値規格化データが用いられるものとなり、雑音部分
のピーク値を不可視物体の位置に比べて小さく抑えるこ
とができ、不可視物体の探査を高精度に行うことが可能
となる。As is clear from the above explanation, according to the present invention, [-1, O, +IJ
The three-value normalized data is used, and the peak value of the noise part can be suppressed to be smaller than the position of the invisible object, making it possible to search for the invisible object with high precision.
第1図は本発明に係る不可視物体探査方法の適用例とし
て地中に存在する管路の地中探査を行う際の処理フロー
を示す図、第2図は第4図に示した反射波データの本願
方法を適用しての1ラインの規格化の様子を示す図、第
3図は本願方法を適用しての3値規格化データ龜対し合
成開口処理を行った結果を示す図、第4図は収集した反
射波データの一例を示す図、第5図はこの反射波データ
の従来方法を適用しての1ラインの規格化の様子を示す
図、第6図は従来方法を適用しての2値規格化データに
対し合成開口処理を行った結果を示す図である。
11.12・・・破線、13.14・・・点(集結点)
。
特許出願人 日本電信電話株式会社FIG. 1 is a diagram showing a processing flow when performing underground exploration of underground pipes as an application example of the invisible object exploration method according to the present invention, and FIG. 2 is a diagram showing the reflected wave data shown in FIG. 4. Figure 3 is a diagram showing the state of standardization of one line by applying the method of the present invention, Figure 3 is a diagram showing the result of synthetic aperture processing on the ternary normalized data column by applying the method of the present invention, and Figure 4 The figure shows an example of collected reflected wave data, Figure 5 shows how one line is normalized by applying the conventional method to this reflected wave data, and Figure 6 shows how the reflected wave data is normalized by applying the conventional method. FIG. 3 is a diagram showing the results of synthetic aperture processing performed on the binary normalized data of FIG. 11.12... broken line, 13.14... point (convergence point)
. Patent applicant Nippon Telegraph and Telephone Corporation
Claims (2)
させながら所定走査距離毎に行うことにより反射波デー
タを収集し、この収集した反射波データに基づき不可視
物体の位置を検出する不可視物体探査方法において、 前記反射波データの振幅方向の一方へ第1の状態符号を
他方へ第2の状態符号を付与し、 中立状態から第1の状態符号へ変化する点および第2の
状態符号から中立状態へ変化する点の振幅値を「+1」
に、第1の状態符号から第2の状態符号へ変化する点の
振幅値を「−1」に、その他の振幅値を「0」に規格化
して規格化データを作成し、 この作成した規格化データに対し合成開口処理を行うよ
うにした ことを特徴とする不可視物体探査方法。(1) Emit a transmitted wave, memorize the reflected wave, collect reflected wave data by scanning it every predetermined distance while moving it, and detect the position of an invisible object based on the collected reflected wave data. In the invisible object detection method, a first state code is assigned to one side of the amplitude direction of the reflected wave data and a second state code is assigned to the other side, and a point where the neutral state changes to the first state code and the second state are determined. Add 1 to the amplitude value at the point where the sign changes to the neutral state.
Then, normalized data is created by normalizing the amplitude value at the point where the first state code changes to the second state code to "-1" and the other amplitude values to "0", and this created standard An invisible object detection method characterized in that synthetic aperture processing is performed on converted data.
反射波データの変化率に応じて、規格化する振幅値に重
み付けをするようにしたことを特徴とする不可視物体探
査方法。(2) In claim 1, when creating the standardized data,
An invisible object detection method characterized in that the amplitude value to be normalized is weighted according to the rate of change of reflected wave data.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30876390A JP2757268B2 (en) | 1990-11-16 | 1990-11-16 | Invisible object search method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30876390A JP2757268B2 (en) | 1990-11-16 | 1990-11-16 | Invisible object search method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04184185A true JPH04184185A (en) | 1992-07-01 |
JP2757268B2 JP2757268B2 (en) | 1998-05-25 |
Family
ID=17985004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30876390A Expired - Fee Related JP2757268B2 (en) | 1990-11-16 | 1990-11-16 | Invisible object search method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2757268B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2752461A1 (en) * | 1996-08-14 | 1998-02-20 | Dory Jacques | METHOD AND DEVICE FOR PROCESSING SIGNALS REPRESENTATIVE OF WAVES REFLECTED OR TRANSMITTED BY A VOLUME STRUCTURE WITH A VIEW TO PERFORMING AN EXPLORATION AND ANALYSIS OF THIS STRUCTURE |
-
1990
- 1990-11-16 JP JP30876390A patent/JP2757268B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2752461A1 (en) * | 1996-08-14 | 1998-02-20 | Dory Jacques | METHOD AND DEVICE FOR PROCESSING SIGNALS REPRESENTATIVE OF WAVES REFLECTED OR TRANSMITTED BY A VOLUME STRUCTURE WITH A VIEW TO PERFORMING AN EXPLORATION AND ANALYSIS OF THIS STRUCTURE |
EP0825453A1 (en) * | 1996-08-14 | 1998-02-25 | Jacques Dory | Method and apparatus for processing signals representative of waves which have been reflected by or transmitted through a volume structure, in order to enable exploration and analysis of said structure |
US6023660A (en) * | 1996-08-14 | 2000-02-08 | Dory; Jacques | Method and device for the processing of signals representative of waves reflected or transmitted by a voluminal structure with a view to exploring and analyzing said structure |
Also Published As
Publication number | Publication date |
---|---|
JP2757268B2 (en) | 1998-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Weirathmueller et al. | Source levels of fin whale 20 Hz pulses measured in the Northeast Pacific Ocean | |
KR960706087A (en) | Obstacle Detection Method Using Ultrasound | |
CN103477244A (en) | Detecting structural changes to underwater structures | |
JPH0513588B2 (en) | ||
NO332156B1 (en) | Method and apparatus for detecting seismic events, and for detecting and correcting geometry and static errors in seismic data | |
CN113960558B (en) | Non-line-of-sight target positioning method and system based on multiple-input multiple-output radar | |
GB2421314A (en) | Method for interpreting seismic data using duplex waves | |
KR20150109083A (en) | Method of Distance Adaptive Detection Threshold Value for Infrared Target Detection System | |
CN101551467A (en) | Automatic first break picking method based on edge detection | |
CN111443344A (en) | Automatic extraction method and device for side-scan sonar sea bottom line | |
Wang et al. | Sea bottom line tracking in side-scan sonar image through the combination of points density clustering and chains seeking | |
RU2075764C1 (en) | Electrooptical registration system for sea seismic prospecting | |
CN112526589A (en) | Target detection method in incomplete sound channel in deep sea | |
US6756934B1 (en) | Target shadow detector for synthetic aperture radar | |
JPH04184185A (en) | Searching for invisible article | |
JP3263752B2 (en) | Processing method of received signal used for buried object detection | |
JP2011226873A (en) | Underwater acoustic imaging device | |
WO2024124976A1 (en) | Method for eliminating synchronous interference of ultrasonic radar, system, vehicle, and storage medium | |
US4197539A (en) | Target detecting and ranging system | |
JP3223897B2 (en) | Underground radar signal processor | |
Yayu et al. | Research on location of underwater sound source target in deep sea sound field based on bellhop model | |
Murino et al. | Object pose estimation in underwater acoustic images | |
CN111691876A (en) | Method and device for imaging adjacent well by using acoustic logging and storage medium | |
CN118169759A (en) | Method, device, computing equipment and storage medium for detecting mode arrival time | |
CN112327360B (en) | Method, device, computer storage medium and terminal for realizing noise processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |